1.Characteristics of imprinted differentially methylated regions in preeclampsia placenta
Huijun TANG ; Xiaojun JIA ; Xinzhi ZHAO ; Weiping YE
Chinese Journal of Clinical Medicine 2025;32(1):65-71
Objective To investigate the characteristics of imprinted differentially methylated regions (iDMRs) in placentas and their correlation with preeclampsia (PE). Methods A total of 43 healthy pregnant women (control group) and 33 pregnant women with PE (PE group) at Shanghai Putuo Maternity and Infant Hospital and International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine from September 2021 to September 2023 were selected. A total of 3 362 CpG sites in 62 iDMRs were analyzed in 76 placenta and 5 maternal blood samples using BisCap targeted bisulfite resequencing (BisCap-seq) assays. The CpG sites in the CpG islands of the iDMRs were assessed for their methylation levels and methylation linkage disequilibrium (MLD). Imprinted methylation haplotype blocks (iMHBs) were constructed based on MLD. The methylation levels and variablility of CpG sites and iMHBs were compared among the healthy placenta, PE placenta and blood samples. Results The CpG sites in the CpG islands of the iDMRs exhibited intermediate methylation, with adjacent sites displaying high MLD (methylation levels: 0.35-0.65, D’ > 0.8). A total of 185 iMHBs were constructed using these coupled CpG sites, 60 placenta-specific iMHBs and 38 somatic iMHBs were found to be differentially methylated in the placenta compared with maternal blood (Padj<0.05). Twenty-seven iMHBs were identified with differentially variable methylation patterns in the placenta. The iMHBs methylation was unchanged in the PE placentas compared to the healthy placentas. Twenty-seven differentially methylated cytosines (DMCs) were identified outside the iMHBs structure, among which the methylation levels of 19 CpG sites showed statistically significant differences between the PE group and the control group (Padj<0.05). The quantitative results of placental compositions of maternal plasma cell-free DNA (cfDNA) using placenta-specific haplotype (PSH) were highly correlated with those estimated by a deconvolution methodology (r=0.973, P<0.01). Conclusions The genomic imprinting features in the PE placentas were obvious, and PSH could be a potential marker of the placenta to quantify the placental compositions of maternal plasma cfDNA.
2.Synthetic MRI Combined With Clinicopathological Characteristics for Pretreatment Prediction of Chemoradiotherapy Response in Advanced Nasopharyngeal Carcinoma
Siyu CHEN ; Jiankun DAI ; Jing ZHAO ; Shuang HAN ; Xiaojun ZHANG ; Jun CHANG ; Donghui JIANG ; Heng ZHANG ; Peng WANG ; Shudong HU
Korean Journal of Radiology 2025;26(2):135-145
Objective:
To explore the feasibility of synthetic magnetic resonance imaging (syMRI) combined with clinicopathological characteristics for the pre-treatment prediction of chemoradiotherapy (CRT) response in advanced nasopharyngeal carcinoma (ANPC).
Materials and Methods:
Patients with ANPC treated with CRT between September 2020 and June 2022 were retrospectively enrolled and categorized into response group (RG, n = 95) and non RGs (NRG, n = 32) based on the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. The quantitative parameters from pre-treatment syMRI (longitudinal [T1] and transverse [T2] relaxation times and proton density [PD]), diffusion-weighted imaging (apparent diffusion coefficient [ADC]), and clinicopathological characteristics were compared between RG and NRG. Logistic regression analysis was applied to identify parameters independently associated with CRT response and to construct a multivariable model. The areas under the receiveroperating characteristic curve (AUC) for various diagnostic approaches were compared using the DeLong test.
Results:
The T1, T2, and PD values in the NRG were significantly lower than those in the RG (all P < 0.05), whereas no significant difference was observed in the ADC values between these two groups. Clinicopathological characteristics (Epstein–Barr virus [EBV]-DNA level, lymph node extranodal extension, clinical stage, and Ki-67 expression) exhibited significant differences between the two groups. Logistic regression analysis showed that T1, PD, EBV-DNA level, clinical stage, and Ki-67 expression had significant independent relationships with CRT response (all P < 0.05). The multivariable model incorporating these five variables yielded AUC, sensitivity, and specificity values of 0.974, 93.8% (30/32), and 91.6% (87/95), respectively.
Conclusion
SyMRI may be used for the pretreatment prediction of CRT response in ANPC. The multivariable model incorporating syMRI quantitative parameters and clinicopathological characteristics, which were independently associated with CRT response, may be a new tool for the pretreatment prediction of CRT response.
3.Synthetic MRI Combined With Clinicopathological Characteristics for Pretreatment Prediction of Chemoradiotherapy Response in Advanced Nasopharyngeal Carcinoma
Siyu CHEN ; Jiankun DAI ; Jing ZHAO ; Shuang HAN ; Xiaojun ZHANG ; Jun CHANG ; Donghui JIANG ; Heng ZHANG ; Peng WANG ; Shudong HU
Korean Journal of Radiology 2025;26(2):135-145
Objective:
To explore the feasibility of synthetic magnetic resonance imaging (syMRI) combined with clinicopathological characteristics for the pre-treatment prediction of chemoradiotherapy (CRT) response in advanced nasopharyngeal carcinoma (ANPC).
Materials and Methods:
Patients with ANPC treated with CRT between September 2020 and June 2022 were retrospectively enrolled and categorized into response group (RG, n = 95) and non RGs (NRG, n = 32) based on the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. The quantitative parameters from pre-treatment syMRI (longitudinal [T1] and transverse [T2] relaxation times and proton density [PD]), diffusion-weighted imaging (apparent diffusion coefficient [ADC]), and clinicopathological characteristics were compared between RG and NRG. Logistic regression analysis was applied to identify parameters independently associated with CRT response and to construct a multivariable model. The areas under the receiveroperating characteristic curve (AUC) for various diagnostic approaches were compared using the DeLong test.
Results:
The T1, T2, and PD values in the NRG were significantly lower than those in the RG (all P < 0.05), whereas no significant difference was observed in the ADC values between these two groups. Clinicopathological characteristics (Epstein–Barr virus [EBV]-DNA level, lymph node extranodal extension, clinical stage, and Ki-67 expression) exhibited significant differences between the two groups. Logistic regression analysis showed that T1, PD, EBV-DNA level, clinical stage, and Ki-67 expression had significant independent relationships with CRT response (all P < 0.05). The multivariable model incorporating these five variables yielded AUC, sensitivity, and specificity values of 0.974, 93.8% (30/32), and 91.6% (87/95), respectively.
Conclusion
SyMRI may be used for the pretreatment prediction of CRT response in ANPC. The multivariable model incorporating syMRI quantitative parameters and clinicopathological characteristics, which were independently associated with CRT response, may be a new tool for the pretreatment prediction of CRT response.
4.Synthetic MRI Combined With Clinicopathological Characteristics for Pretreatment Prediction of Chemoradiotherapy Response in Advanced Nasopharyngeal Carcinoma
Siyu CHEN ; Jiankun DAI ; Jing ZHAO ; Shuang HAN ; Xiaojun ZHANG ; Jun CHANG ; Donghui JIANG ; Heng ZHANG ; Peng WANG ; Shudong HU
Korean Journal of Radiology 2025;26(2):135-145
Objective:
To explore the feasibility of synthetic magnetic resonance imaging (syMRI) combined with clinicopathological characteristics for the pre-treatment prediction of chemoradiotherapy (CRT) response in advanced nasopharyngeal carcinoma (ANPC).
Materials and Methods:
Patients with ANPC treated with CRT between September 2020 and June 2022 were retrospectively enrolled and categorized into response group (RG, n = 95) and non RGs (NRG, n = 32) based on the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. The quantitative parameters from pre-treatment syMRI (longitudinal [T1] and transverse [T2] relaxation times and proton density [PD]), diffusion-weighted imaging (apparent diffusion coefficient [ADC]), and clinicopathological characteristics were compared between RG and NRG. Logistic regression analysis was applied to identify parameters independently associated with CRT response and to construct a multivariable model. The areas under the receiveroperating characteristic curve (AUC) for various diagnostic approaches were compared using the DeLong test.
Results:
The T1, T2, and PD values in the NRG were significantly lower than those in the RG (all P < 0.05), whereas no significant difference was observed in the ADC values between these two groups. Clinicopathological characteristics (Epstein–Barr virus [EBV]-DNA level, lymph node extranodal extension, clinical stage, and Ki-67 expression) exhibited significant differences between the two groups. Logistic regression analysis showed that T1, PD, EBV-DNA level, clinical stage, and Ki-67 expression had significant independent relationships with CRT response (all P < 0.05). The multivariable model incorporating these five variables yielded AUC, sensitivity, and specificity values of 0.974, 93.8% (30/32), and 91.6% (87/95), respectively.
Conclusion
SyMRI may be used for the pretreatment prediction of CRT response in ANPC. The multivariable model incorporating syMRI quantitative parameters and clinicopathological characteristics, which were independently associated with CRT response, may be a new tool for the pretreatment prediction of CRT response.
5.Synthetic MRI Combined With Clinicopathological Characteristics for Pretreatment Prediction of Chemoradiotherapy Response in Advanced Nasopharyngeal Carcinoma
Siyu CHEN ; Jiankun DAI ; Jing ZHAO ; Shuang HAN ; Xiaojun ZHANG ; Jun CHANG ; Donghui JIANG ; Heng ZHANG ; Peng WANG ; Shudong HU
Korean Journal of Radiology 2025;26(2):135-145
Objective:
To explore the feasibility of synthetic magnetic resonance imaging (syMRI) combined with clinicopathological characteristics for the pre-treatment prediction of chemoradiotherapy (CRT) response in advanced nasopharyngeal carcinoma (ANPC).
Materials and Methods:
Patients with ANPC treated with CRT between September 2020 and June 2022 were retrospectively enrolled and categorized into response group (RG, n = 95) and non RGs (NRG, n = 32) based on the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. The quantitative parameters from pre-treatment syMRI (longitudinal [T1] and transverse [T2] relaxation times and proton density [PD]), diffusion-weighted imaging (apparent diffusion coefficient [ADC]), and clinicopathological characteristics were compared between RG and NRG. Logistic regression analysis was applied to identify parameters independently associated with CRT response and to construct a multivariable model. The areas under the receiveroperating characteristic curve (AUC) for various diagnostic approaches were compared using the DeLong test.
Results:
The T1, T2, and PD values in the NRG were significantly lower than those in the RG (all P < 0.05), whereas no significant difference was observed in the ADC values between these two groups. Clinicopathological characteristics (Epstein–Barr virus [EBV]-DNA level, lymph node extranodal extension, clinical stage, and Ki-67 expression) exhibited significant differences between the two groups. Logistic regression analysis showed that T1, PD, EBV-DNA level, clinical stage, and Ki-67 expression had significant independent relationships with CRT response (all P < 0.05). The multivariable model incorporating these five variables yielded AUC, sensitivity, and specificity values of 0.974, 93.8% (30/32), and 91.6% (87/95), respectively.
Conclusion
SyMRI may be used for the pretreatment prediction of CRT response in ANPC. The multivariable model incorporating syMRI quantitative parameters and clinicopathological characteristics, which were independently associated with CRT response, may be a new tool for the pretreatment prediction of CRT response.
6.Synthetic MRI Combined With Clinicopathological Characteristics for Pretreatment Prediction of Chemoradiotherapy Response in Advanced Nasopharyngeal Carcinoma
Siyu CHEN ; Jiankun DAI ; Jing ZHAO ; Shuang HAN ; Xiaojun ZHANG ; Jun CHANG ; Donghui JIANG ; Heng ZHANG ; Peng WANG ; Shudong HU
Korean Journal of Radiology 2025;26(2):135-145
Objective:
To explore the feasibility of synthetic magnetic resonance imaging (syMRI) combined with clinicopathological characteristics for the pre-treatment prediction of chemoradiotherapy (CRT) response in advanced nasopharyngeal carcinoma (ANPC).
Materials and Methods:
Patients with ANPC treated with CRT between September 2020 and June 2022 were retrospectively enrolled and categorized into response group (RG, n = 95) and non RGs (NRG, n = 32) based on the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. The quantitative parameters from pre-treatment syMRI (longitudinal [T1] and transverse [T2] relaxation times and proton density [PD]), diffusion-weighted imaging (apparent diffusion coefficient [ADC]), and clinicopathological characteristics were compared between RG and NRG. Logistic regression analysis was applied to identify parameters independently associated with CRT response and to construct a multivariable model. The areas under the receiveroperating characteristic curve (AUC) for various diagnostic approaches were compared using the DeLong test.
Results:
The T1, T2, and PD values in the NRG were significantly lower than those in the RG (all P < 0.05), whereas no significant difference was observed in the ADC values between these two groups. Clinicopathological characteristics (Epstein–Barr virus [EBV]-DNA level, lymph node extranodal extension, clinical stage, and Ki-67 expression) exhibited significant differences between the two groups. Logistic regression analysis showed that T1, PD, EBV-DNA level, clinical stage, and Ki-67 expression had significant independent relationships with CRT response (all P < 0.05). The multivariable model incorporating these five variables yielded AUC, sensitivity, and specificity values of 0.974, 93.8% (30/32), and 91.6% (87/95), respectively.
Conclusion
SyMRI may be used for the pretreatment prediction of CRT response in ANPC. The multivariable model incorporating syMRI quantitative parameters and clinicopathological characteristics, which were independently associated with CRT response, may be a new tool for the pretreatment prediction of CRT response.
7.Chinese expert consensus on integrated case management by a multidisciplinary team in CAR-T cell therapy for lymphoma.
Sanfang TU ; Ping LI ; Heng MEI ; Yang LIU ; Yongxian HU ; Peng LIU ; Dehui ZOU ; Ting NIU ; Kailin XU ; Li WANG ; Jianmin YANG ; Mingfeng ZHAO ; Xiaojun HUANG ; Jianxiang WANG ; Yu HU ; Weili ZHAO ; Depei WU ; Jun MA ; Wenbin QIAN ; Weidong HAN ; Yuhua LI ; Aibin LIANG
Chinese Medical Journal 2025;138(16):1894-1896
8.Long-term efficacy of CMV/EBV bivirus-specific T cells for viral co-reactivation after stem cell transplantation.
Xuying PEI ; Meng LV ; Xiaodong MO ; Yuqian SUN ; Yuhong CHEN ; Chenhua YAN ; Yuanyuan ZHANG ; Lanping XU ; Yu WANG ; Xiaohui ZHANG ; Xiaojun HUANG ; Xiangyu ZHAO
Chinese Medical Journal 2025;138(5):607-609
9.Preemptive immunotherapy for KMT2A rearranged acute leukemias post-allogeneic stem cell transplantation.
Jing LIU ; Shuang FAN ; Xiaohui ZHANG ; Lanping XU ; Yu WANG ; Yifei CHENG ; Chenhua YAN ; Yuhong CHEN ; Yuanyuan ZHANG ; Meng LV ; Yazhen QIN ; Xiaosu ZHAO ; Xiaojun HUANG ; Xiaodong MO
Chinese Medical Journal 2025;138(22):3034-3036
10.Development and validation of a prediction score for subtype diagnosis of primary aldosteronism.
Ping LIU ; Wei ZHANG ; Jiao WANG ; Hongfei JI ; Haibin WANG ; Lin ZHAO ; Jinbo HU ; Hang SHEN ; Yi LI ; Chunhua SONG ; Feng GUO ; Xiaojun MA ; Qingzhu WANG ; Zhankui JIA ; Xuepei ZHANG ; Mingwei SHAO ; Yi SONG ; Xunjie FAN ; Yuanyuan LUO ; Fangyi WEI ; Xiaotong WANG ; Yanyan ZHAO ; Guijun QIN
Chinese Medical Journal 2025;138(23):3206-3208

Result Analysis
Print
Save
E-mail