1.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
2.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
3.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
4.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
5.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
6.Relationship between lumbar spine development and hip development in children with spastic cerebral palsy
Xinwei ZUO ; Gang LIU ; Huizhong BAI ; Lin XU ; Yi ZHAO ; Jingpei REN ; Chuanyu HU ; Xiaohong MU
Chinese Journal of Tissue Engineering Research 2024;28(8):1247-1252
BACKGROUND:Most scholars now believe that children with cerebral palsy who have severe spinal deformities in early childhood(<15 years of age)may have a higher risk of progression of spinal deformities,which may result from imbalances in movement due to pelvic tilt,pain,etc. OBJECTIVE:To investigate the relationship between lumbar spine development and hip joint development in children with spastic cerebral palsy. METHODS:A retrospective analysis was performed in 102 children with spastic cerebral palsy admitted at Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine from January 2014 to December 2021.All admitted children had X-rays of the pelvic position and the lumbar lateral position.Anteroposterior X-ray of the pelvis was performed to measure femoral head migration percentage,central edge angle,neck-shaft angle,and acetabular index.The sagittal Cobb angle,sacral slope,arch-top distance,and lumbar lordosis index were measured by the lateral X-ray of the lumbar spine.Correlation of the two sets of indicators was further analyzed.All children were divided into normal group,risk group,hip subluxation group and total hip dislocation group according to their femoral head migration percentage,and the differences in lumbar spine indexes between groups were evaluated. RESULTS AND CONCLUSION:Pearson correlation analysis showed that the femoral head migration percentage was moderately positively correlated with sagittal Cobb angle and arch-top distance,and weakly positively correlated with lumbar lordosis index;the central edge angle was moderately negatively correlated with the arch-top distance and weakly negatively correlated with the sagittal Cobb angle;the neck-shaft angle was weakly positively correlated or not correlated with the sagittal Cobb angle and lumbar lordosis index;and the acetabular index was weakly positively correlated with the sagittal Cobb angle and arch-top distance.No statistically significant correlation was found between the remaining indicators.According to the femoral head migration percentage,the children were divided into four groups,including 25 cases in the normal group,41 cases in the risk group,27 cases in the hip subluxation group,and 9 cases in the total hip dislocation group.The sagittal Cobb angle was significantly increased in the risk group,the hip subluxation group and the total hip dislocation group compared with the normal group,showing an increasing trend group by group,and there were significant differences between groups(P<0.05).Compared with the normal group,the lumbar lordosis index in the risk group and the hip subluxation group increased significantly,and there were significant differences between groups(P<0.05).There was an increase trend in the lumbar lordosis index of the total hip dislocation group compared with the normal group.Compared with the normal group,the arch-top distance in the hip subluxation group and the total hip dislocation group increased significantly(P<0.05),and there was a stepwise increasing trend.There was no significant difference in sacral slope between groups.To conclude,the development of the lumbar spine in children with cerebral palsy is closely related to the development of the pelvic hip joint,and the most obvious relationship is between lumbar lordosis and hip dislocation.
7.Effects of sinomenine hydrochloride on ultrastructure and STING ex-pression in kidney tissues of db/db mice
Tongtong HE ; Xiaofei JIN ; Chunyue ZUO ; Xiaohong ZHOU ; Yu GAO ; Xiangmei CHEN ; Weijuan GAO
Chinese Journal of Pathophysiology 2024;40(11):2074-2080
AIM:This study aimed to investigate the effects of sinomenine hydrochloride(SIN)on the ultra-structure of renal tissue and the expression of interferon gene-stimulating factor in db/db mice.METHODS:Sixteen 12-week-old male db/db mice were randomly divided into two groups:a model group and a sinomenine hydrochloride(SIN)group,each consisting of 8 mice.An additional 8 wild-type(WT)mice served as the normal control group.The sinome-nine hydrochloride group was administered the treatment for 8 weeks,followed by a 20-week observation period,while the normal and model groups received an equal volume of saline via gavage.Weekly measurements were taken for body weight and fasting blood glucose.Serum creatinine(SCr)and blood urea nitrogen(BUN)levels were assessed,and 24-hour uri-nary microalbumin(ALB)levels,as well as serum inflammatory cytokines interleukin-1β(IL-1β),IL-6 and tumor necro-sis factor-α(TNF-α),were determined using ELISA.Pathological changes in renal tissue were evaluated through hema-toxylin-eosin(HE)staining,while ultrastructural alterations were examined using transmission electron microscopy.Im-munohistochemistry and Western blotting were employed to assess STING protein expression in renal tissue,and STING mRNA expression was quantified via RT-qPCR.RESULTS:Compared to the normal group,the model group exhibited significant increases in BUN,ALB,and SCr levels(P<0.01),alongside elevated inflammatory markers IL-1β,IL-6,and TNF-α(P<0.01).Notable pathological changes included leukocyte wall thickening in capillaries,inflammatory cell infiltration,increased mesangial matrix,disorganized and linear alignment of podocytes,and thickening of the basement membrane.Moreover,STING protein and mRNA expression levels were significantly elevated(P<0.01).In contrast,the sinomenine hydrochloride group demonstrated significantly reduced levels of renal function markers(BUN,ALB and SCr)compared to the model group(P<0.01),as well as decreased concentrations of inflammatory factors IL-1β,IL-6,and TNF-α(P<0.01).Improvements in renal histopathology included decreased leukocyte wall thickening,reduced inflam-matory cell presence,diminished mesangial matrix,and a significant reduction in foot process fusion,alongside thinner basement membranes.Both STING protein and mRNA expression levels were also significantly lower(P<0.01).CON-CLUSION:Sinomenine hydrochloride effectively mitigates renal tissue injury,improves ultrastructural alterations,and inhibits inflammatory responses in db/db mice.Its mechanism of action appears closely linked to the downregulation of STING protein and mRNA expression.
8.CTCs Detection and Whole-exome Sequencing Might Be Used to Differentiate Benign and Malignant Pulmonary Nodules.
Changdan XU ; Xiaohong XU ; Weipeng SHAO ; Hongliang SUN ; Xiaohong LIU ; Hongxiang FENG ; Xianbo ZUO ; Jingyang GAO ; Guohui WANG ; Xiongtao YANG ; Runchuan GU ; Shutong GE ; Shijie WANG ; Liwei GAO ; Guangying ZHU
Chinese Journal of Lung Cancer 2023;26(6):449-460
BACKGROUND:
Low-density computed tomography (LDCT) improved early lung cancer diagnosis but introduces an excess of false-positive pulmonary nodules data. Hence, accurate diagnosis of early-stage lung cancer remains challenging. The purpose of the study was to assess the feasibility of using circulating tumour cells (CTCs) to differentiate malignant from benign pulmonary nodules.
METHODS:
122 patients with suspected malignant pulmonary nodules detected on chest CT in preparation for surgery were prospectively recruited. Peripheral blood samples were collected before surgery, and CTCs were identified upon isolation by size of epithelial tumour cells and morphological analysis. Laser capture microdissection, MALBAC amplification, and whole-exome sequencing were performed on 8 samples. The diagnostic efficacy of CTCs counting, and the genomic variation profile of benign and malignant CTCs samples were analysed.
RESULTS:
Using 2.5 cells/5 mL as the cut-off value, the area under the receiver operating characteristic curve was of 0.651 (95% confidence interval: 0.538-0.764), with a sensitivity and specificity of 0.526 and 0.800, respectively, and positive and negative predictive values of 91.1% and 30.3%, respectively. Distinct sequence variations differences in DNA damage repair-related and driver genes were observed in benign and malignant samples. TP53 mutations were identified in CTCs of four malignant cases; in particular, g.7578115T>C, g.7578645C>T, and g.7579472G>C were exclusively detected in all four malignant samples.
CONCLUSIONS
CTCs play an ancillary role in the diagnosis of pulmonary nodules. TP53 mutations in CTCs might be used to identify benign and malignant pulmonary nodules.
Humans
;
Lung Neoplasms
;
Exome Sequencing
;
Multiple Pulmonary Nodules
;
Carcinoma
;
DNA Repair
9.Effect of Tangbikang Granules on PI3K Pathway in Type 2 Diabetic Mellitus Rats with Non-alcoholic Fatty Liver Disease
Yaqi ZHANG ; Lingling QIN ; Chengfei ZHANG ; Qiue ZHANG ; Huizhong BAI ; Gang LIU ; Xinwei ZUO ; Yi ZHAO ; Tonghua LIU ; Xiaohong MU
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(9):71-80
ObjectiveThis study aims to investigate the therapeutic effect of Tangbikang granules(TBK) on type 2 diabetes mellitus (T2DM) complicated with non-alcoholic fatty liver disease (NAFLD) and to elucidate the underlying mechanism. MethodT2DM and NAFLD were induced in ZDF rats, which were then respectively treated (ig) with low-dose (0.625 g·kg-1), medium-dose (1.25 g·kg-1), and high-dose (2.5 g·kg-1) TBK for 12 weeks. Fasting blood glucose (FBG) and body mass were recorded every 4 weeks during the treatment. One week before sampling, the feed intake of rats was detected, and after 12 h night fasting, oral glucose tolerance test (OGTT) was performed. The area under the curve (AUC) was used to evaluate glucose tolerance, and the homeostatic model assessment for insulin resistance (HOMA-IR) was calculated. Blood in abdominal aorta and liver were collected for determination of blood glucose and lipid metabolism indexes: Fasting serum insulin (FINS), serum total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), and nonesterified fatty acids (NEFA). The liver was weighed to calculate the liver index, and the liver tissue morphology was observed and analyzed based on hematoxylin-eosin (HE) staining and periodic acid-Schiff (PAS) staining. The protein levels of insulin receptor substrate (IRS), phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt) and phosphorylated IRS and Akt were detected by Western blotting. All data were analyzed by SPSS 20.0. ResultThe feed intake of the model group was higher than that in the normal group (P<0.01), and the feed intake the administration groups was lower than that in the model group (P<0.05, P<0.01). At the 8th and 12th week, the body mass in the model group was lower than that in the normal group (P<0.01). Compared with the model group, TBK reduced FBG in a concentration-dependent manner. The blood glucose level in OGTT and AUC in the model group were higher/larger than those in the normal group (P<0.01). The blood glucose value in OGTT was decreased in TBK groups and the metformin group compared with that in the model group, and AUC in the administration groups was significantly different from that in the model group (P<0.01). The serum level of FINS and HOMA-IR in the model group were higher than those in the normal group (P<0.01), and they were lower in the TBK groups than in the model group (P<0.01). Serum levels of TG, TC, HDL-C, NEFA (P<0.05, P<0.01), and LDL-C were higher in the model group than in the normal group. Serum levels of TG, TC, LDL-C, and NEFA in the TBK groups were lower than those in the model group, and the levels of TG, LDL-C, and NEFA in TBK groups were concentration-dependent (lowest levels in high-dose TBK group). Compared with the model group, high-dose TBK significantly increased the level of HDL-C (P<0.05). Liver index of the model group was higher than that in the normal group (P<0.01). The liver index of the administration groups showed a decreasing trend with no significant difference from that in the model group. As for the HE staining result of liver, the model group had unclear structure of liver lobule, enlarged cells of different sizes, and obvious steatosis of hepatocytes. TBK of all doses alleviated liver injury, particularly the high dose. For the PAS staining, compared with the normal group, the model group demonstrated significant fat vacuoles and significant reduction in purplish red glycogen granules in the cytoplasm. The staining results of high- and medium-dose groups of TBK were more similar to the normal group. Western blot was used to detect the protein expression of liver tissue. The expression of PI3K protein, p-IRS1/IRS1, and p-Akt/Akt in the model group were lower than those in the normal group (P<0.01), and they were higher in the high-dose TBK group than in the model group (P<0.01). ConclusionTBK exerts therapeutic effect on T2DM combined with NAFLD in ZDF rats by activating the typical PI3K signaling pathway.
10.Molecular Mechanism of Tangbikang Granules Against Diabetic Peripheral Neuropathy: Based on Network Pharmacology and Experimental Verification
Yaqi ZHANG ; Lingling QIN ; Huizhong BAI ; Chengfei ZHANG ; Qiue ZHANG ; Xinwei ZUO ; Shengyuan JIANG ; Yi ZHAO ; Tonghua LIU ; Xiaohong MU
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(9):81-90
ObjectiveTo explore the mechanism of Tangbikang granules (TBK) against diabetic peripheral neuropathy (DPN) based on network pharmacology and in-vivo experiment. MethodThe active components in medicinals of TBK and their target genes were searched from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The active components of the medicinals which are not included in TCMSP were searched from previous research. After the analysis of drug-likeness by SwissADME, the target genes of them were predicted with SwissTargetPrediction. DPN-related target genes were retrieved from GeneCards. The common targets of the disease and the prescription were the hub genes of TBK against DPN, which were uploaded to Metascape for Gene Ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. High-sugar and high-fat diet and low-dose streptozotocin (STZ, ip) were employed to induce diabetes in rats, and then the model rats were respectively treated with low-dose (0.625 g·kg-1), medium-dose (1.25 g·kg-1), and high-dose (2.5 g·kg-1) TBK for 12 weeks. Sensory nerve conduction velocity (SNCV) was evaluated. After hematoxylin and eosin (HE) staining, the sciatic nerve was observed under light microscope to examine the nerve damage. Real-time PCR was performed to detect the gene expression of adenosine monophosphate-activated protein kinase (AMPK) pathway-related targets in rat sciatic nerve, and Western blot to measure the protein expression of AMPK and phosphorylated (p)-AMPK in rat sciatic nerve. ResultThe main active components of TBK, such as quercetin, kaempferol, β-sitosterol, leech pteridine A, stigmasterol, and baicalein were screened out, mainly acting on interleukin-6 (IL-6), tumor necrosis factor (TNF), protein kinase B (Akt), JUN, and HSP90AA1 and signaling pathways such as AMPK, nuclear factor-κB (NF-κB), and Janus kinase/signal transducer and activator of transcription (JAK/STAT). Molecular docking results showed that β-sitosterol and stigmasterol had high binding affinity with IL-6, TNF, JUN, and HSP90AA1. As for the animal experiment, compared with the normal group, model group had low SNCV of sciatic nerve (P<0.01), disordered and loose myelinated nerve fibers with axonotmesis and demyelinization, low mRNA expression of AMPKα, AMPKβ, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), Sirtuin 3 (SirT3), mitochondrial transcription factor A (TFAM), and low p-AMPK/AMPK ratio in sciatic nerve (P<0.05, P<0.01). Compared with the model group, TBK of the three doses raised the SNCV (P<0.01), restored nerve morphology and nerve compactness, and increased the mRNA expression of AMPKα, AMPKβ, PGC-1α, SirT3, and TFAM (P<0.05, P<0.01). The ratio of p-AMPK/AMPK in the high-dose and medium-dose TBK groups was higher than that in the model group (P<0.01), while the protein expression in the low-dose TBK group was insignificantly different from that in the model group. ConclusionTBK exerts therapeutic effect on DPN through multiple pathways and targets. The mechanism is that it activates and regulates AMPK/PGC-1α/SirT3 signaling, which lays a basis for further study of TBK in the treatment of DPN.

Result Analysis
Print
Save
E-mail