1.Correlation between platelet to lymphocyte ratio,neutrophil to lymphocyte ratio and carotid atherosclerotic plaque in patients with type 2 diabetes mellitus
Shufan YAO ; Xiaogang WENG ; Lili ZHANG
Journal of Xinxiang Medical College 2024;41(1):53-59
Objective To explore the correlation between platelet to lymphocyte ratio(PLR),neutrophil to lymphocyte ratio(NLR)and carotid atherosclerotic(CAS)plaque in patients with type 2 diabetes(T2DM),and the predictive value of PLR and NLR for T2DM complicated with CAS plaque.Methods A total of 369 T2DM patients admitted to the Department of Endocrinology,the Third Affiliated Hospital of Xinxiang Medical University from September 2019 to November 2021 were se-lected as research subjects.The clinical data such as gender,age,course of disease,body mass index(BMI),systolic blood pressure(SBP),diastolic blood pressure(DBP),personal history,and history of past illness of patients were collected by searching the electronic medical record system.Neutrophil(NC)count,lymphocyte count(LC)and platelet(PLT)count were detected by fully automated blood routine analyzer,and PLR,NLR were calculated;the levels of fasting blood glucose(FBG),total cholesterol(TC),triglycerides(TG),high-density lipoprotein-cholesterol(HDL-C)and low-density lipoprotein-cholesterol(LDL-C)were detected by biochemical analyzer;the level of glycosylated hemoglobin(HbA1c)were detected by high-performance liquid chromatography.The T2DM patients were divided into T2DM uncomplicated with CAS plaque group(n=94)and T2DM complicated with GAS plaque group(n=275)based on whether they complicated with CAS plaque or not;the general clinical data,blood indicators,and PLR,NLR of patients were compared between the two groups.The T2DM patients were divided into non plaque group(group A,n=94),1 plaque group(group B,n=79),2 plaque group(group C,n=89),and 3 or more plaques group(group D,n=107)based on the number of CAS plaques;the indicators with statistical differences between T2DM uncomplicated with CAS plaque group and T2DM complicated with CAS plaque group of patients were compared among the four groups.According to the PLR quartile,the patients were divided into P1 group(PLR≤94.87,n=93),P2 group(94.87<PLR≤117.30,n=91),P3 group(117.30<PLR ≤ 148.53,n=93),and P4 group(PLR>148.53,n=92),and the detection rate of CAS plaques of patients was compared among the four groups;according to the NLR quartile,the patients were divided into N1 group(NLR≤1.59,n=92),N2 group(1.59<NLR≤1.93,n=92),N3 group(1.93<NLR≤2.50,n=93),and N4 group(NLR>2.50,n=92),and the detection rate of CAS plaque of patients was compared among the four groups.The risk factors of T2DM complicated with CAS plaque was analysed by multivariate logistic regression analysis,and the predictive efficacy of PLR and NLR for T2DM complicated with CAS plaque were evaluated by receiver operating characteristic(ROC)curve.Results The age,course of T2DM,proportion of patients combined with hyper-tension,SBP,PLR,and NLR of patients in the T2DM complicated with CAS plaque group were significantly higher than those in the T2DM uncomplicated with CAS plaque group,while LC and TG levels were significantly lower than those in the T2DM uncomplicated with CAS plaque group(P<0.05);there was no significant difference in gender,proportion of patients com-bined with hyperlipidemia,proportion of smoking history,proportion of drinking history,and the levels of DBP,BMI,NC,PLT,TC,HDL-C,LDL-C,FBG,HbA1c between the T2DM uncomplicated with CAS plaque group and T2DM complicated with CAS plaque group(P>0.05).The age,proportion of patients combined with hypertension,course of T2DM,SBP,PLR,and NLR of patients in group B,group C,and group D were significantly higher than that in group A,while LC level was significantly lower than that in group A(P<0.05).The TG level of patients in group D was significantly lower than those in group A(P<0.05);there was no statistically significant difference in TG level of patients among group A,group B,and group C(P>0.05).The age,proportion of patients combined with hypertension,and course of T2DM of patients in group C and group D were significantly higher than those in group B,while the SBP of patients in group D was significantly higher than that in group B(P<0.05);there was no statistically significant difference in SBP of patients between group C and group B(P>0.05).The age,proportion of patients combined with hypertension,course of T2DM,and SBP of patients in group D were significantly higher than those in group C(P<0.05).There was no statistically significant difference in the levels of LC,TG,and PLR of patients among group B,group C,and group D(P>0.05).The NLR of patients in group D was significantly higher than that in group B(P<0.05);there was no statistically significant difference in NLR of patients between group C and group B(P>0.05),and there was no statistically significant difference in NLR of patients between group D and group C(P>0.05).The detection rate of CAS plaques of patients in P1 group,P2 group,P3 group,and P4 group showed a significant increase trend(x2=30.610,P=0.000);and the detection rate of CAS plaques of patients in N1 group,N2 group,N3 group,and N4 group showed a significant increase trend(x2=35.170,P=0.000).Multivariate logistic regression analysis showed that age,PLR,and NLR were independent risk factors for T2DM complicated with CAS plaque(odds ratio=1.107,1.017,1.940;P<0.05).The opti-mal cutoff value of PLR in predicting T2DM complicated with CAS plaque was 119.95,with an area under the curve of 0.680,a sensitivity of 54.7%,and a specificity of 76.3%;the optimal cutoff value of NLR in predicting T2DM complicated with CAS plaque was 1.97,with an area under the curve of 0.698,a sensitivity of 56.5%,and a specificity of 79.6%.Conclusion PLR and NLR are associated with T2DM complicated with CAS plaque,which are independent risk factors for T2DM compli-cated with CAS plaque,and have certain predictive value for T2DM complicated with CAS plaque.
2.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
3.Primary cilia support cartilage regeneration after injury.
Dike TAO ; Lei ZHANG ; Yunpeng DING ; Na TANG ; Xiaoqiao XU ; Gongchen LI ; Pingping NIU ; Rui YUE ; Xiaogang WANG ; Yidong SHEN ; Yao SUN
International Journal of Oral Science 2023;15(1):22-22
In growing children, growth plate cartilage has limited self-repair ability upon fracture injury always leading to limb growth arrest. Interestingly, one type of fracture injuries within the growth plate achieve amazing self-healing, however, the mechanism is unclear. Using this type of fracture mouse model, we discovered the activation of Hedgehog (Hh) signaling in the injured growth plate, which could activate chondrocytes in growth plate and promote cartilage repair. Primary cilia are the central transduction mediator of Hh signaling. Notably, ciliary Hh-Smo-Gli signaling pathways were enriched in the growth plate during development. Moreover, chondrocytes in resting and proliferating zone were dynamically ciliated during growth plate repair. Furthermore, conditional deletion of the ciliary core gene Ift140 in cartilage disrupted cilia-mediated Hh signaling in growth plate. More importantly, activating ciliary Hh signaling by Smoothened agonist (SAG) significantly accelerated growth plate repair after injury. In sum, primary cilia mediate Hh signaling induced the activation of stem/progenitor chondrocytes and growth plate repair after fracture injury.
Mice
;
Animals
;
Hedgehog Proteins/genetics*
;
Receptors, G-Protein-Coupled/metabolism*
;
Cilia/metabolism*
;
Cartilage/metabolism*
;
Regeneration
4.Chinese expert consensus on emergency surgery for severe trauma and infection prevention during corona virus disease 2019 epidemic (version 2023)
Yang LI ; Yuchang WANG ; Haiwen PENG ; Xijie DONG ; Guodong LIU ; Wei WANG ; Hong YAN ; Fan YANG ; Ding LIU ; Huidan JING ; Yu XIE ; Manli TANG ; Xian CHEN ; Wei GAO ; Qingshan GUO ; Zhaohui TANG ; Hao TANG ; Bingling HE ; Qingxiang MAO ; Zhen WANG ; Xiangjun BAI ; Daqing CHEN ; Haiming CHEN ; Min DAO ; Dingyuan DU ; Haoyu FENG ; Ke FENG ; Xiang GAO ; Wubing HE ; Peiyang HU ; Xi HU ; Gang HUANG ; Guangbin HUANG ; Wei JIANG ; Hongxu JIN ; Laifa KONG ; He LI ; Lianxin LI ; Xiangmin LI ; Xinzhi LI ; Yifei LI ; Zilong LI ; Huimin LIU ; Changjian LIU ; Xiaogang MA ; Chunqiu PAN ; Xiaohua PAN ; Lei PENG ; Jifu QU ; Qiangui REN ; Xiguang SANG ; Biao SHAO ; Yin SHEN ; Mingwei SUN ; Fang WANG ; Juan WANG ; Jun WANG ; Wenlou WANG ; Zhihua WANG ; Xu WU ; Renju XIAO ; Yang XIE ; Feng XU ; Xinwen YANG ; Yuetao YANG ; Yongkun YAO ; Changlin YIN ; Yigang YU ; Ke ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Gang ZHAO ; Xiaogang ZHAO ; Xiaosong ZHU ; Yan′an ZHU ; Changju ZHU ; Zhanfei LI ; Lianyang ZHANG
Chinese Journal of Trauma 2023;39(2):97-106
During coronavirus disease 2019 epidemic, the treatment of severe trauma has been impacted. The Consensus on emergency surgery and infection prevention and control for severe trauma patients with 2019 novel corona virus pneumonia was published online on February 12, 2020, providing a strong guidance for the emergency treatment of severe trauma and the self-protection of medical staffs in the early stage of the epidemic. With the Joint Prevention and Control Mechanism of the State Council renaming "novel coronavirus pneumonia" to "novel coronavirus infection" and the infection being managed with measures against class B infectious diseases since January 8, 2023, the consensus published in 2020 is no longer applicable to the emergency treatment of severe trauma in the new stage of epidemic prevention and control. In this context, led by the Chinese Traumatology Association, Chinese Trauma Surgeon Association, Trauma Medicine Branch of Chinese International Exchange and Promotive Association for Medical and Health Care, and Editorial Board of Chinese Journal of Traumatology, the Chinese expert consensus on emergency surgery for severe trauma and infection prevention during coronavirus disease 2019 epidemic ( version 2023) is formulated to ensure the effectiveness and safety in the treatment of severe trauma in the new stage. Based on the policy of the Joint Prevention and Control Mechanism of the State Council and by using evidence-based medical evidence as well as Delphi expert consultation and voting, 16 recommendations are put forward from the four aspects of the related definitions, infection prevention, preoperative assessment and preparation, emergency operation and postoperative management, hoping to provide a reference for severe trauma care in the new stage of the epidemic prevention and control.
5.Tooth number abnormality: from bench to bedside.
Han ZHANG ; Xuyan GONG ; Xiaoqiao XU ; Xiaogang WANG ; Yao SUN
International Journal of Oral Science 2023;15(1):5-5
Tooth number abnormality is one of the most common dental developmental diseases, which includes both tooth agenesis and supernumerary teeth. Tooth development is regulated by numerous developmental signals, such as the well-known Wnt, BMP, FGF, Shh and Eda pathways, which mediate the ongoing complex interactions between epithelium and mesenchyme. Abnormal expression of these crutial signalling during this process may eventually lead to the development of anomalies in tooth number; however, the underlying mechanisms remain elusive. In this review, we summarized the major process of tooth development, the latest progress of mechanism studies and newly reported clinical investigations of tooth number abnormality. In addition, potential treatment approaches for tooth number abnormality based on developmental biology are also discussed. This review not only provides a reference for the diagnosis and treatment of tooth number abnormality in clinical practice but also facilitates the translation of basic research to the clinical application.
Gene Expression Regulation, Developmental
;
Odontogenesis
;
Signal Transduction
;
Tooth/metabolism*
;
Humans
6.Influences of gas explosion on acute blast lung injury and time phase changes of pulmonary function in rats under real roadway environment
Xinwen DONG ; Sanqiao YAO ; Weidong WU ; Jia CAO ; Xiaogang WENG ; Lei SUN ; Juan LI ; Houcheng REN ; Wenjie REN
Chinese Journal of Industrial Hygiene and Occupational Diseases 2021;39(2):137-142
Objective:The aims of this study were to investigate the effect of gas explosion on rats and to explore the pulmonary function alterations associated with gas explosion-induced acute blast lung injury (ABLI) in real roadway environment.Methods:In April 2018, the large coal mine gas explosion test roadway and explosion test system were used to simulate the real gas explosion roadway environment, fixed the cage and set the explosion parameters. 72 SD rats, male, SPF grade, were randomly divided into nine groups by completely random grouping method according to their body weight: control group, close range group (160 m) , and long range group (240 m) . In each group, there were wound groups (24 h group and 48h group, 8/group, total 48 in six groups) and no wound groups (8/group, total 24 in three groups) . Except for the control group, the other groups were placed in cages at different distances under anesthesia, the experiment of gas explosion was carried out by placing the rats in a position that could force the lungs. The changes of respiratory function of the rats in the non-invasive group were monitored with pulmonary function instrument at 2 h, 24 h, 48 h, 72 h and 168h after the explosion, and were killed under anesthesia 7 days later; the rats in invasive groups were anesthetized and killed at 24 h, 48 h and 168 h, respectively. Gross observation, lung wet-dry ratio and lung histopathology were performed.Results:Compared with the control group, f (respiratory frequency, f) , MV (minute ventilation, MV) , PEF (peak expiratory flow rate, PEF) , PIF (peak inspiratory flow rate, PIF) and EF50 (1/2 tidal volume expiratory flow, EF50) of rats in the close and long range groups decreased significantly after gas explosion 2 h. PAU (respiration pause, PAU) , Te (expiratory time, Te) , Ti (inspiratory time, Ti) and Tr (relaxation time, Tr) were significantly increased ( P<0.05) . After 48 h, TV (tidal volume, TV) , Penh (enhanced respiration pause, Penh) , PAU, and PIF of rats in the long range group were significantly increased ( P<0.05) . After 72 h, MV in the long range group was significantly decreased ( P<0.05) . Compared with the control group, Penh, PAU, Ti and Te were significantly decreased after 168 h in the close and long range groups, with statistical significance ( P<0.05) . At the same time, the body weight of rats in different range groups was significantly decreased ( P<0.05) . In addition, both HE staining and routine observation of lung tissues of rats in different range groups showed that gas explosion caused pulmonary edema, obviously congested pulmonary capillaries, a large number of inflammatory cells and infiltrated red blood cells. Conclusion:Gas explosion in real roadway environment can cause the change of respiratory function phase and lung tissue damage in rats, suggesting that the model of gas explosion-induced ABLI has been initially established successfully, which would provide a basis for further study on the pathogenesis of ABLI.
7.Establishment of an auxiliary diagnosis system of newborn screening for inherited metabolic diseases based on artificial intelligence technology and a clinical trial
Rulai YANG ; Yanling YANG ; Ting WANG ; Weize XU ; Gang YU ; Jianbin YANG ; Qiaoling SUN ; Maosheng GU ; Haibo LI ; Dehua ZHAO ; Juying PEI ; Tao JIANG ; Jun HE ; Hui ZOU ; Xinmei MAO ; Guoxing GENG ; Rong QIANG ; Guoli TIAN ; Yan WANG ; Hongwei WEI ; Xiaogang ZHANG ; Hua WANG ; Yaping TIAN ; Lin ZOU ; Yuanyuan KONG ; Yuxia ZHOU ; Mingcai OU ; Zerong YAO ; Yulin ZHOU ; Wenbin ZHU ; Yonglan HUANG ; Yuhong WANG ; Cidan HUANG ; Ying TAN ; Long LI ; Qing SHANG ; Hong ZHENG ; Shaolei LYU ; Wenjun WANG ; Yan YAO ; Jing LE ; Qiang SHU
Chinese Journal of Pediatrics 2021;59(4):286-293
Objective:To establish a disease risk prediction model for the newborn screening system of inherited metabolic diseases by artificial intelligence technology.Methods:This was a retrospectively study. Newborn screening data ( n=5 907 547) from February 2010 to May 2019 from 31 hospitals in China and verified data ( n=3 028) from 34 hospitals of the same period were collected to establish the artificial intelligence model for the prediction of inherited metabolic diseases in neonates. The validity of the artificial intelligence disease risk prediction model was verified by 360 814 newborns ' screening data from January 2018 to September 2018 through a single-blind experiment. The effectiveness of the artificial intelligence disease risk prediction model was verified by comparing the detection rate of clinically confirmed cases, the positive rate of initial screening and the positive predictive value between the clinicians and the artificial intelligence prediction model of inherited metabolic diseases. Results:A total of 3 665 697 newborns ' screening data were collected including 3 019 cases ' positive data to establish the 16 artificial intelligence models for 32 inherited metabolic diseases. The single-blind experiment ( n=360 814) showed that 45 clinically diagnosed infants were detected by both artificial intelligence model and clinicians. A total of 2 684 cases were positive in tandem mass spectrometry screening and 1 694 cases were with high risk in artificial intelligence prediction model of inherited metabolic diseases, with the positive rates of tandem 0.74% (2 684/360 814)and 0.46% (1 694/360 814), respectively. Compared to clinicians, the positive rate of newborns was reduced by 36.89% (990/2 684) after the application of the artificial intelligence model, and the positive predictive values of clinicians and artificial intelligence prediction model of inherited metabolic diseases were 1.68% (45/2 684) and 2.66% (45/1 694) respectively. Conclusion:An accurate, fast, and the lower false positive rate auxiliary diagnosis system for neonatal inherited metabolic diseases by artificial intelligence technology has been established, which may have an important clinical value.
8.Influences of gas explosion on acute blast lung injury and time phase changes of pulmonary function in rats under real roadway environment
Xinwen DONG ; Sanqiao YAO ; Weidong WU ; Jia CAO ; Xiaogang WENG ; Lei SUN ; Juan LI ; Houcheng REN ; Wenjie REN
Chinese Journal of Industrial Hygiene and Occupational Diseases 2021;39(2):137-142
Objective:The aims of this study were to investigate the effect of gas explosion on rats and to explore the pulmonary function alterations associated with gas explosion-induced acute blast lung injury (ABLI) in real roadway environment.Methods:In April 2018, the large coal mine gas explosion test roadway and explosion test system were used to simulate the real gas explosion roadway environment, fixed the cage and set the explosion parameters. 72 SD rats, male, SPF grade, were randomly divided into nine groups by completely random grouping method according to their body weight: control group, close range group (160 m) , and long range group (240 m) . In each group, there were wound groups (24 h group and 48h group, 8/group, total 48 in six groups) and no wound groups (8/group, total 24 in three groups) . Except for the control group, the other groups were placed in cages at different distances under anesthesia, the experiment of gas explosion was carried out by placing the rats in a position that could force the lungs. The changes of respiratory function of the rats in the non-invasive group were monitored with pulmonary function instrument at 2 h, 24 h, 48 h, 72 h and 168h after the explosion, and were killed under anesthesia 7 days later; the rats in invasive groups were anesthetized and killed at 24 h, 48 h and 168 h, respectively. Gross observation, lung wet-dry ratio and lung histopathology were performed.Results:Compared with the control group, f (respiratory frequency, f) , MV (minute ventilation, MV) , PEF (peak expiratory flow rate, PEF) , PIF (peak inspiratory flow rate, PIF) and EF50 (1/2 tidal volume expiratory flow, EF50) of rats in the close and long range groups decreased significantly after gas explosion 2 h. PAU (respiration pause, PAU) , Te (expiratory time, Te) , Ti (inspiratory time, Ti) and Tr (relaxation time, Tr) were significantly increased ( P<0.05) . After 48 h, TV (tidal volume, TV) , Penh (enhanced respiration pause, Penh) , PAU, and PIF of rats in the long range group were significantly increased ( P<0.05) . After 72 h, MV in the long range group was significantly decreased ( P<0.05) . Compared with the control group, Penh, PAU, Ti and Te were significantly decreased after 168 h in the close and long range groups, with statistical significance ( P<0.05) . At the same time, the body weight of rats in different range groups was significantly decreased ( P<0.05) . In addition, both HE staining and routine observation of lung tissues of rats in different range groups showed that gas explosion caused pulmonary edema, obviously congested pulmonary capillaries, a large number of inflammatory cells and infiltrated red blood cells. Conclusion:Gas explosion in real roadway environment can cause the change of respiratory function phase and lung tissue damage in rats, suggesting that the model of gas explosion-induced ABLI has been initially established successfully, which would provide a basis for further study on the pathogenesis of ABLI.
9.LncRNA Nron regulates osteoclastogenesis during orthodontic bone resorption.
Ruilin ZHANG ; Junhui LI ; Gongchen LI ; Fujun JIN ; Zuolin WANG ; Rui YUE ; Yibin WANG ; Xiaogang WANG ; Yao SUN
International Journal of Oral Science 2020;12(1):14-14
Activation of osteoclasts during orthodontic tooth treatment is a prerequisite for alveolar bone resorption and tooth movement. However, the key regulatory molecules involved in osteoclastogenesis during this process remain unclear. Long noncoding RNAs (lncRNAs) are a newly identified class of functional RNAs that regulate cellular processes, such as gene expression and translation regulation. Recently, lncRNAs have been reported to be involved in osteogenesis and bone formation. However, as the most abundant noncoding RNAs in vivo, the potential regulatory role of lncRNAs in osteoclast formation and bone resorption urgently needs to be clarified. We recently found that the lncRNA Nron (long noncoding RNA repressor of the nuclear factor of activated T cells) is highly expressed in osteoclast precursors. Nron is downregulated during osteoclastogenesis and bone ageing. To further determine whether Nron regulates osteoclast activity during orthodontic treatment, osteoclastic Nron transgenic (Nron cTG) and osteoclastic knockout (Nron CKO) mouse models were generated. When Nron was overexpressed, the orthodontic tooth movement rate was reduced. In addition, the number of osteoclasts decreased, and the activity of osteoclasts was inhibited. Mechanistically, Nron controlled the maturation of osteoclasts by regulating NFATc1 nuclear translocation. In contrast, by deleting Nron specifically in osteoclasts, tooth movement speed increased in Nron CKO mice. These results indicate that lncRNAs could be potential targets to regulate osteoclastogenesis and orthodontic tooth movement speed in the clinic in the future.
Animals
;
Bone Resorption
;
genetics
;
Mice
;
Mice, Inbred C57BL
;
Osteoclasts
;
Osteogenesis
;
RANK Ligand
;
RNA, Long Noncoding
;
genetics
10.Glycosylation of dentin matrix protein 1 is critical for fracture healing via promoting chondrogenesis.
Hui XUE ; Dike TAO ; Yuteng WENG ; Qiqi FAN ; Shuang ZHOU ; Ruilin ZHANG ; Han ZHANG ; Rui YUE ; Xiaogang WANG ; Zuolin WANG ; Yao SUN
Frontiers of Medicine 2019;13(5):575-589
Fractures are frequently occurring diseases that endanger human health. Crucial to fracture healing is cartilage formation, which provides a bone-regeneration environment. Cartilage consists of both chondrocytes and extracellular matrix (ECM). The ECM of cartilage includes collagens and various types of proteoglycans (PGs), which play important roles in maintaining primary stability in fracture healing. The PG form of dentin matrix protein 1 (DMP1-PG) is involved in maintaining the health of articular cartilage and bone. Our previous data have shown that DMP1-PG is richly expressed in the cartilaginous calluses of fracture sites. However, the possible significant role of DMP1-PG in chondrogenesis and fracture healing is unknown. To further detect the potential role of DMP1-PG in fracture repair, we established a mouse fracture model by using a glycosylation site mutant DMP1 mouse (S89G-DMP1 mouse). Upon inspection, fewer cartilaginous calluses and down-regulated expression levels of chondrogenesis genes were observed in the fracture sites of S89G-DMP1 mice. Given the deficiency of DMP1-PG, the impaired IL-6/JAK/STAT signaling pathway was observed to affect the chondrogenesis of fracture healing. Overall, these results suggest that DMP1-PG is an indispensable proteoglycan in chondrogenesis during fracture healing.

Result Analysis
Print
Save
E-mail