1.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
2.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
3.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
4.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
5.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.
6.Changing resistance profiles of Staphylococcus isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yuling XIAO ; Mei KANG ; Yi XIE ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(5):570-580
Objective To investigate the changing distribution and antibiotic resistance profiles of clinical isolates of Staphylococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Staphylococcus according to the unified protocol of CHINET(China Antimicrobial Surveillance Network)using disk diffusion method and commercial automated systems.The CHINET antimicrobial resistance surveillance data from 2015 to 2021 were interpreted according to the 2021 CLSI breakpoints and analyzed using WHONET 5.6.Results During the period from 2015 to 2021,a total of 204,771 nonduplicate strains of Staphylococcus were isolated,including 136,731(66.8%)strains of Staphylococcus aureus and 68,040(33.2%)strains of coagulase-negative Staphylococcus(CNS).The proportions of S.aureus isolates and CNS isolates did not show significant change.S.aureus strains were mainly isolated from respiratory specimens(38.9±5.1)%,wound,pus and secretions(33.6±4.2)%,and blood(11.9±1.5)%.The CNS strains were predominantly isolated from blood(73.6±4.2)%,cerebrospinal fluid(12.1±2.5)%,and pleural effusion and ascites(8.4±2.1)%.S.aureus strains were mainly isolated from the patients in ICU(17.0±7.3)%,outpatient and emergency(11.6±1.7)%,and department of surgery(11.2±0.9)%,whereas CNS strains were primarily isolated from the patients in ICU(32.2±9.7)%,outpatient and emergency(12.8±4.7)%,and department of internal medicine(11.2±1.9)%.The prevalence of methicillin-resistant strains was 32.9%in S.aureus(MRSA)and 74.1%in CNS(MRCNS).Over the 7-year period,the prevalence of MRSA decreased from 42.1%to 29.2%,and the prevalence of MRCNS decreased from 82.1%to 68.2%.MRSA showed higher resistance rates to all the antimicrobial agents tested except trimethoprim-sulfamethoxazole than methicillin-susceptible S.aureus(MSSA).Over the 7-year period,MRSA strains showed decreasing resistance rates to gentamicin,rifampicin,and levofloxacin,MRCNS showed decreasing resistance rates to gentamicin,erythromycin,rifampicin,and trimethoprim-sulfamethoxazole,but increasing resistance rate to levofloxacin.No vancomycin-resistant strains were detected.The prevalence of linezolid-resistant MRCNS increased from 0.2%to 2.3%over the 7-year period.Conclusions Staphylococcus remains the major pathogen among gram-positive bacteria.MRSA and MRCNS were still the principal antibiotic-resistant gram-positive bacteria.No S.aureus isolates were found resistant to vancomycin or linezolid,but linezolid-resistant strains have been detected in MRCNS isolates,which is an issue of concern.
7.Efficacy and safety of mitoxantrone hydrochloride liposome injection in treatment of peripheral T-cell lymphomas: a multicenter, non-interventional, ambispective cohort, real-world study (MOMENT)
Huiqiang HUANG ; Zhiming LI ; Lihong LIU ; Liang HUANG ; Jie JIN ; Hongyan TONG ; Hui ZHOU ; Zengjun LI ; Zhenqian HUANG ; Wenbin QIAN ; Kaiyang DING ; Quande LIN ; Ming HOU ; Yunhong HUANG ; Jingbo WANG ; Pengcheng HE ; Xiuhua SUN ; Xiaobo WANG ; Zunmin ZHU ; Yao LIU ; Jinhai REN ; Huijing WU ; Liling ZHANG ; Hao ZHANG ; Liangquan GENG ; Jian GE ; Ou BAI ; Liping SU ; Guangxun GAO ; Xin LI ; Yanli YANG ; Yijian CHEN ; Aichun LIU ; Xin WANG ; Yi WANG ; Liqun ZOU ; Xiaobing HUANG ; Dongping HUANG ; Shujuan WEN ; Donglu ZHAO ; Jun MA
Journal of Leukemia & Lymphoma 2023;32(8):457-464
Objective:To evaluate the efficacy and safety of mitoxantrone hydrochloride liposome injection in the treatment of peripheral T-cell lymphoma (PTCL) in a real-world setting.Methods:This was a real-world ambispective cohort study (MOMENT study) (Chinese clinical trial registry number: ChiCTR2200062067). Clinical data were collected from 198 patients who received mitoxantrone hydrochloride liposome injection as monotherapy or combination therapy at 37 hospitals from January 2022 to January 2023, including 166 patients in the retrospective cohort and 32 patients in the prospective cohort; 10 patients in the treatment-na?ve group and 188 patients in the relapsed/refractory group. Clinical characteristics, efficacy and adverse events were summarized, and the overall survival (OS) and progression-free survival (PFS) were analyzed.Results:All 198 patients were treated with mitoxantrone hydrochloride liposome injection for a median of 3 cycles (range 1-7 cycles); 28 cases were treated with mitoxantrone hydrochloride liposome injection as monotherapy, and 170 cases were treated with the combination regimen. Among 188 relapsed/refractory patients, 45 cases (23.9%) were in complete remission (CR), 82 cases (43.6%) were in partial remission (PR), and 28 cases (14.9%) were in disease stabilization (SD), and 33 cases (17.6%) were in disease progression (PD), with an objective remission rate (ORR) of 67.6% (127/188). Among 10 treatment-na?ve patients, 4 cases (40.0%) were in CR, 5 cases (50.0%) were in PR, and 1 case (10.0%) was in PD, with an ORR of 90.0% (9/10). The median follow-up time was 2.9 months (95% CI 2.4-3.7 months), and the median PFS and OS of patients in relapsed/refractory and treatment-na?ve groups were not reached. In relapsed/refractory patients, the difference in ORR between patients with different number of treatment lines of mitoxantrone hydrochloride liposome injection [ORR of the second-line, the third-line and ≥the forth-line treatment was 74.4% (67/90), 73.9% (34/46) and 50.0% (26/52)] was statistically significant ( P = 0.008). Of the 198 PTCL patients, 182 cases (91.9%) experienced at least 1 time of treatment-related adverse events, and the incidence rate of ≥grade 3 adverse events was 66.7% (132/198), which was mainly characterized by hematologic adverse events. The ≥ grade 3 hematologic adverse events mainly included decreased lymphocyte count, decreased neutrophil count, decreased white blood cell count, and anemia; non-hematologic adverse events were mostly grade 1-2, mainly including pigmentation disorders and upper respiratory tract infection. Conclusions:The use of mitoxantrone hydrochloride liposome injection-containing regimen in the treatment of PTCL has definite efficacy and is well tolerated, and it is a new therapeutic option for PTCL patients.
8.Time phased scheduling and Disease grading management to achieve efficient rescue of batches of COVID-19 infected patients in shelter hospital
Ying SUN ; Minghua SU ; Xiaohong ZHANG ; Jiajia LI ; Tingting LUO ; Yun ZHANG ; Feng CHEN ; Tao JIANG ; Tong WU ; Xiaobo HUANG ; Kang CHEN ; Chuanzhu LV
Chinese Journal of Emergency Medicine 2022;31(8):1110-1115
Objective:To introduce how to quickly set up a doctor team to achieve efficient treatment of batchs COVID-19 patients in Changchun GongTi shelter hospital.Methods:A cross-sectional study was conducted to analyze the basic situation of the doctors who supported the Changchun Gongti shelter hospital. The workload is the total number of patients from April 3 to 28, 2022. At the beginning of the task, the first week and the third week of the task, the five point scoring method was used to reflect the doctor's physical and mental state, stress state and rescue achievement. The time phased scheduling and disease grading management were fully implemented after 10 days of operation in the shelter. The doctors' ward round efficiency and self scoring changes before and after the implementation of the plan were compared, and the rescue results were summarized.Results:Total of 56 doctors (the Sichuan medical assistance team to Changchun), who undertook the work of Changchun Gongti shelter Hospital, came from 12 professional departments of 14 hospitals. By internal and external linkage-time phased scheduling and information-based patient zoning and grading management, the admission time of batch patients was shortened from (14.64±10.09) min to (6.80±5.10) min per person( P<0.05), the number of patients that each doctor can view per hour ranges from (28.50±12.26) to (68.43±19.95) ( P<0.01). A total of 1 293 patients were treated. There were no deaths, no accidents and no mild illness to severe illness in shelter hospital. 35 doctors completed a continuous survey. Before and after the implementation of those measures, the average physical state scores and the psychological state scores of doctors improved ( P=0.03), the self-score of stress feeling decreased ( P<0.01), and the self-score of professional achievement increased ( P<0.01). Conclusions:To adapt to the characteristics of emergency treatment for batch COVID-19 patients, the internal and external linkage-time phased scheduling and information-based patient zoning and grading management could help the temporarily convened doctors deal with a large number of patients efficiently, reduce work stress and exposure risk in shelter hospital.
9.Inhibitory effect of RMT1-10-induced tolerogenic dendritic cells in vitro on high-risk corneal allograft rejection in mice and its mechanism
Min ZHAO ; Liuqing YANG ; Mengyu WANG ; Yu TAO ; Yongyue GUO ; Ruifeng SU ; Jing SHI ; Xiaobo TAN
Chinese Journal of Experimental Ophthalmology 2022;40(8):725-733
Objective:To investigate the inhibitory effect of RMT1-10-induced tolerogenic dendritic cells (Tol-DCs) in vitro on high-risk corneal allograft rejection in mice and its mechanism. Methods:One hundred SPF male BALB/c mice and fifty SPF male C57BL/6 mice were selected.Bone marrow-derived immature dendritic cells (imDCs) obtained from C57BL/6 mice were divided into imDCs group, mature dentritic cells (mDCs) group, RMT1-10 group, and IgG isotype control group.The imDCs in the four groups were cultured with no intervention, lipopolysaccharide, RMT1-10 and lipopolysaccharide, or IgG isotype antibody and lipopolysaccharide for 7 days according to grouping.The expression levels of different phenotypes of DCs including CD11c, CD80, CD86, major histocompatibility complex (MHC)-Ⅱ, T cell immunoglobulin and mucin domain containing molecule (Tim)-4 and CD103 in the four groups were detected by flow cytometry.The concentrations of interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) in the DCs supernatants were determined by enzyme-linked immunosorbent assay.A mixed lymphocyte culture system was established, and the stimulation index (SI) of CD4 + T cell proliferation stimulated with DCs was detected by cell counting kit 8 method.Corneal neovascularization was induced by corneal stromal suture in BALB/c mice, and the 80 mice with neovascularization in 4 quadrants growing into the middle and peripheral cornea were used as recipients.The recipient mice were randomized into imDCs group, mDCs group, RMT1-10 group, and IgG isotype control group using the random number table method, with 20 mice in each group.An injection of corresponding DCs (1×10 6 cells/100 μl) was administered to the recipient mice via the tail vein according to grouping.At 7 days following the injection, C57BL/6 mice were used as donors and penetrating keratoplasty was performed.Within one month after the operation, signs of corneal grafts rejection, including opacity, edema and neovascularization, were observed by slit lamp biomicroscopy and scored every day.At 21 days after the operation, 5 recipients selected from each group were subcutaneously injected with naive C57BL/6 splenocytes (1×10 6 cells/100 μl) behind the ear.The delayed type hypersensitivity (DTH) was evaluated by ear swelling at 24 hours after the subcutaneous injection.The use and care of experimental animals complied with the Regulations on the Management of Experimental Animals promulgated by the State Science and Technology Commission.This study protocol was approved by an Ethics Committee of the Affiliated Hospital of Chengde Medical University (No.CYFYLL2020055). Results:Compared with mDCs group, the expressions of CD80, CD86 and MHC-Ⅱ, and the percentage of Tim-4-positive cells in CD11c-positive cells were significantly decreased in RMT1-10 group, showing statistically significant differences (all at P<0.001). The percentage of Tim-4-positive cells were significantly decreased in RMT1-10 group than imDCs group, and the percentage of CD103-positive cells in RMT1-10 group was significantly higher than imDCs group, mDCs group and IgG isotype control group (all at P<0.001). The concentrations of IL-10 and TGF-β in the cell culture supernatant of RMT1-10 group were significantly higher than those of the other three groups, with statistically significant differences (all at P<0.001). There were statistically significant differences in the SI of CD4 + T cell proliferation simulated by DCs ( Fgroup=1 833.00, P<0.001; Fratio=230.40, P<0.001; Finteraction=3.06, P=0.01). The SI of DCs/CD4 + T cells ratio at 1∶5, 1∶10, 1∶20 and 1∶40 were all significantly lower in imDCs group than mDCs group, and were all significantly lower in RMT1-10 group than imDCs group (all at P<0.05). There was a statistically significant difference in corneal graft survival curve among various groups ( χ2=77.69, P<0.001). The survival rate of RMT1-10 group was significantly higher than that of imDCs group ( χ2=9.74, P=0.002), and the survival rate of imDCs group was significantly higher than that of mDCs group ( χ2=31.02, P<0.001). The ear swelling of recipient mice of positive control group, mDCs group, IgG isotype control group, imDCs group and RMT1-10 group was (503.6±17.2), (475.7±17.6), (456.2±18.8), (225.2±39.4), (118.1±12.6), and (106.4±7.4) μm, with a statistically significant difference among them ( F=377.10, P<0.001). The mice ear swelling was more serious in positive control group than mDCs group, more serious in IgG isotype control group than imDCs group, and more serious in imDCs group than RMT1-10 group (all at P<0.05). Conclusions:RMT1-10 can inhibit the rejection of high-risk corneal transplantation in mice, the mechanism of which may be attributed to inducing imDCs to transform into Tol-DCs in vitro and up-regulating the expression of TGF-β and IL-10, which promotes antigen-specific immune tolerance after adoptive transfer, thereby indirectly prolongs the survival of corneal grafts.
10. Prevalence and influencing factors of carotid plaque in population at high-risk for cardiovascular disease in Jiangsu province
Yuan BI ; Yu QIN ; Jian SU ; Lan CUI ; Wencong DU ; Weigang MIAO ; Xiaobo LI ; Jinyi ZHOU
Chinese Journal of Epidemiology 2019;40(11):1432-1438
Objective:
To understand the prevalence of carotid plaque (CP) in population at high-risk for cardiovascular disease (CVD) in Jiangsu province and identify related influencing factors.
Methods:
Based on the China Patient-centered Evaluative Assessment of Cardiac Events Million Persons Project from 2015 to 2016, a total of 11 392 persons at high-risk for CVD were selected from six project areas in Jiangsu province for the questionnaire survey, physical measurement, laboratory test and bilateral ultrasound examination of carotid arteries. The prevalence of CP and influencing factors of abnormal carotid arteries, CP and plaque burden (CP≥2) were analyzed.
Results:
Among the persons surveyed, 4 821 (42.3

Result Analysis
Print
Save
E-mail