1.Multi-omics analysis of adamantinomatous craniopharyngiomas reveals distinct molecular subgroups with prognostic and treatment response significance
Xianlong WANG ; Chuan ZHAO ; Jincheng LIN ; Hongxing LIU ; Qiuhong ZENG ; Huadong CHEN ; Ye WANG ; Dapeng XU ; Wen CHEN ; Moping XU ; En ZHANG ; Da LIN ; Zhixiong LIN
Chinese Medical Journal 2024;137(7):859-870
		                        		
		                        			
		                        			Background::Adamantinomatous craniopharyngioma (ACP) is the commonest pediatric sellar tumor. No effective drug is available and interpatient heterogeneity is prominent. This study aimed to identify distinct molecular subgroups of ACP based on the multi-omics profiles, imaging findings, and histological features, in order to predict the response to anti-inflammatory treatment and immunotherapies.Methods::Totally 142 Chinese cases diagnosed with craniopharyngiomas were profiled, including 119 ACPs and 23 papillary craniopharyngiomas. Whole-exome sequencing (151 tumors, including recurrent ones), RNA sequencing (84 tumors), and DNA methylome profiling (95 tumors) were performed. Consensus clustering and non-negative matrix factorization were used for subgrouping, and Cox regression were utilized for prognostic evaluation, respectively.Results::Three distinct molecular subgroups were identified: WNT, ImA, and ImB. The WNT subgroup showed higher Wnt/β-catenin pathway activity, with a greater number of epithelial cells and more predominantly solid tumors. The ImA and ImB subgroups had activated inflammatory and interferon response pathways, with enhanced immune cell infiltration and more predominantly cystic tumors. Mitogen-activated protein kinases (MEK/MAPK) signaling was activated only in ImA samples, while IL-6 and epithelial-mesenchymal transition biomarkers were highly expressed in the ImB group, mostly consisting of children. The degree of astrogliosis was significantly elevated in the ImA group, with severe finger-like protrusions at the invasive front of the tumor. The molecular subgrouping was an independent prognostic factor, with the WNT group having longer event-free survival than ImB (Cox, P = 0.04). ImA/ImB cases were more likely to respond to immune checkpoint blockade (ICB) therapy than the WNT group ( P <0.01). In the preliminary screening of subtyping markers, CD38 was significantly downregulated in WNT compared with ImA and ImB ( P = 0.01). Conclusions::ACP comprises three molecular subtypes with distinct imaging and histological features. The prognosis of the WNT type is better than that of the ImB group, which is more likely to benefit from the ICB treatment.
		                        		
		                        		
		                        		
		                        	
2.Expression, purification and bioactivity analysis of a recombinant fusion protein rHSA-hFGF21 in Pichia pastoris.
Tiantian HUANG ; Jianying QI ; Ganggang YANG ; Xianlong YE
Chinese Journal of Biotechnology 2022;38(9):3419-3432
		                        		
		                        			
		                        			Human fibroblast growth factor 21 (hFGF21) has become a candidate drug for regulating blood glucose and lipid metabolism. The poor stability and short half-life of hFGF21 resulted in low target tissue availability, which hampers its clinical application. In this study, the hFGF21 was fused with a recombinant human serum albumin (HSA), and the resulted fusion protein rHSA-hFGF21 was expressed in Pichia pastoris. After codon optimization, the recombinant gene fragment rHSA-hFGF21 was inserted into two different vectors (pPIC9k and pPICZαA) and transformed into three different strains (X33, GS115 and SMD1168), respectively. We investigated the rHSA-hFGF21 expression levels in three different strains and screened an engineered strain X33-pPIC9K-rHSA-hFGF21 with the highest expression level. To improve the production efficiency of rHSA-hFGF21, we optimized the shake flask fermentation conditions, such as the OD value, methanol concentration and induction time. After purification by hollow fiber membrane separation, Blue affinity chromatography and Q ion exchange chromatography, the purity of the rHSA-hFGF21 protein obtained was 98.18%. Compared to hFGF21, the biostabilities of rHSA-hFGF21, including their resistance to temperature and trypsinization were significantly enhanced, and its plasma half-life was extended by about 27.6 times. Moreover, the fusion protein rHSA-hFGF21 at medium and high concentration showed a better ability to promote glucose uptake after 24 h of stimulation in vitro. In vivo animal studies showed that rHSA-hFGF21 exhibited a better long-term hypoglycemic effect than hFGF21 in type 2 diabetic mice. Our results demonstrated a small-scale production of rHSA-hFGF21, which is important for large-scale production and clinical application in the future.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Blood Glucose/metabolism*
		                        			;
		                        		
		                        			Diabetes Mellitus, Experimental
		                        			;
		                        		
		                        			Fibroblast Growth Factors
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Hypoglycemic Agents/metabolism*
		                        			;
		                        		
		                        			Methanol/metabolism*
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Pichia/metabolism*
		                        			;
		                        		
		                        			Recombinant Fusion Proteins
		                        			;
		                        		
		                        			Recombinant Proteins/metabolism*
		                        			;
		                        		
		                        			Saccharomycetales
		                        			;
		                        		
		                        			Serum Albumin/metabolism*
		                        			;
		                        		
		                        			Serum Albumin, Human/metabolism*
		                        			
		                        		
		                        	
3.Improvement of yield and purity of human fibroblast growth factor-21.
Dan YU ; Xianlong YE ; Guiping REN ; Pengfei XU ; Shujie LI ; Zeshan NIU ; Deshan LI
Chinese Journal of Biotechnology 2014;30(4):658-668
		                        		
		                        			
		                        			Fibroblast growth factor -21 (FGF-21) is a recently discovered metabolic regulation factor, regulating glucose and lipid metabolism and increasing insulin sensitivity. FGF-21 is expected to be a potential anti-diabetic drug. Expression of FGF-21 as inclusion bodies has advantages for high yield and purity, but the bioactivity of the protein is almost totally lost after denature and renature. That is why FGF-21 is currently expressed in soluble form. As a result, the yield is considerably low. In this study, we used SUMO vector to express SUMO-human FGF-21 (SUMO-hFGF-21) in form of inclusion body. We optimized the culture conditions to increase the yield of the bioactive human fibroblast growth factor-21. We applied the hollow fiber membrane filtration column to enrich the bacteria, wash, denature and renature inclusion bodies. After affinity and gel filtration chromatography, we examined the hypoglycemic activity of FGF-21 by the glucose uptake assay in HepG2 cells. We also detected the blood glucose concentration of type 2 diabetic db/db model mice after short or long-term treatment. The results show that the yield of ihFGF-21 was 4 times higher than that of shFGF-21. The yield was 20 mg/L for ihFGF-21 vs. 6 mg/L for shFGF-21. The purity of ihFGF-21 was above 95%, while shFGF-21 was 90%. Compared with the traditional method of extracting inclusion bodies, the production cycle was about three times shortened by application of hollow fiber membrane filtration column technology, but the bioactivity did not significantly differ. This method provides an efficient and cost-effective strategy to the pilot and industrial production of hFGF-21.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Bacteria
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Diabetes Mellitus, Experimental
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Fibroblast Growth Factors
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			Genetic Vectors
		                        			;
		                        		
		                        			Glucose
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Hep G2 Cells
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Hypoglycemic Agents
		                        			;
		                        		
		                        			isolation & purification
		                        			;
		                        		
		                        			Inclusion Bodies
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Recombinant Fusion Proteins
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			Small Ubiquitin-Related Modifier Proteins
		                        			;
		                        		
		                        			biosynthesis
		                        			
		                        		
		                        	
4.The synergistic effect of FGF-21 and insulin on regulating glucose metabolism and its mechanism.
Dan YU ; Cuiyu SUN ; Guopeng SUN ; Guiping REN ; Xianlong YE ; Shenglong ZHU ; Wenfei WANG ; Pengfei XU ; Shujie LI ; Qiang WU ; Zeshan NIU ; Tian SUN ; Mingyao LIU ; Deshan LI
Acta Pharmaceutica Sinica 2014;49(7):977-84
		                        		
		                        			
		                        			Previous studies proposed that the synergistic effect of fibroblast growth factor-21 (FGF-21) and insulin may be due to the improvement of insulin sensitivity by FGF-21. However, there is no experimental evidence to support this. This study was designed to elucidate the mechanism of synergistic effect of FGF-21 and insulin in the regulation of glucose metabolism. The synergistic effect of FGF-21 and insulin on regulating glucose metabolism was demonstrated by investigating the glucose absorption rate by insulin resistance HepG2 cell model and the blood glucose chances in type 2 diabetic db/db mice after treatments with different concentrations of FGF-21 or/and insulin; The synergistic metabolism was revealed through detecting GLUT1 and GLUT4 transcription levels in the liver by real-time PCR method. The experimental results showed that FGF-21 and insulin have a synergistic effect on the regulation of glucose metabolism. The results of real-time PCR showed that the effective dose of FGF-21 could up-regulate the transcription level of GLUT1 in a dose-dependent manner, but had no effect on the transcription level of GLUT4. Insulin (4 u) alone could up-regulate the transcription level of GLUT4, yet had no effect on that of GLUT1. Ineffective dose 0.1 mg kg(-1) FGF-21 alone could not change the transcription level of GLUT1 or GLUT4. However, when the ineffective dose 0.1 mg x kg(-1) FGF-21 was used in combination with insulin (4 u) significantly increased the transcription levels of both GLUT1 and GLUT4, the transcription level of GLUT1 was similar to that treated with 5 time concentration of FGF-21 alone; the transcription level of GLUT4 is higher than that treated with insulin (4 u) alone. In summary, in the presence of FGF-21, insulin increases the sensitivity of FGF-21 through enhancing GLUT1 transcription. Vice versa, FGF-21 increases the sensitivity of insulin by stimulating GLUT4 transcription in the presence of insulin. FGF-21 and insulin exert a synergistic effect on glucose metabolism through mutual sensitization.
		                        		
		                        		
		                        		
		                        	
5.Effect of FGF-21 on learning and memory ability and antioxidant capacity in brain tissue of D-galactose-induced aging mice.
Yinhang YU ; Guiping REN ; Yaonan LIU ; Susu QU ; Fuliang BAI ; Tong ZHANG ; Wenfei WANG ; Guiyou TIAN ; Xianlong YE ; Deshan LI
Acta Pharmaceutica Sinica 2014;49(7):1000-6
		                        		
		                        			
		                        			This study aims to investigate the effects of fibroblast growth factor 21 (FGF-21) on learning and memory abilities and antioxidant capacity of D-galactose-induced aging mice. Kunming mice (37.1 +/- 0.62) g were randomly divided into normal control group, model group and FGF-21 high, medium and low dose groups (n = 8). Each group was injected in cervical part subcutaneously with D-galactose 180 mg x kg(-1) x d(-1) once a day for 8 weeks. At the same time, FGF-21-treated mice were administered with FGF-21 by giving subcutaneous injection in cervical part at the daily doses of 5, 2 and 1 mg x kg(-1) x d(-1). The normal control group was given with normal saline by subcutaneous injection in cervical part. At seventh week of the experiment, the learning and memory abilities of mice were determined by water maze and jumping stand tests. At the end of the experiment, the mice were sacrificed and the cells damage of hippocampus was observed by HE staining in each group. Reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) and total antioxidant capacity (T-AOC) in the brain of mice were determined. The results showed that different doses of FGF-21 could reduce the time reaching the end (P < 0.01 or P < 0.05) and the number of touching blind side (P < 0.01 or P < 0.05) in the water maze comparing with the model group. It could also prolong the latency time (P < 0.05) and decrease the number of errors (P < 0.01 or P < 0.05) in the step down test. The result of HE staining showed that FGF-21 could significantly reduce brain cell damage in the hippocampus. The ROS and MDA levels of three different doses FGF-21 treatment group reduced significantly than that of the model group [(5.58 +/- 1.07), (7.78 +/- 1.92), (9.03 +/- 1.77) vs (12.75 +/- 2.02) pmol (DCF) x min(-1) x mg(-1), P < 0.01 or P < 0.05], [(2.92 +/- 0.71), (4.21 +/- 0.81), (4.41 +/- 0.97) vs (5.62 +/- 0.63) nmol x mg(-1) (protein), P < 0.01]. Comparing with the model group, the activities of SOD, GPx, CAT and T-AOC of the three different doses FGF-21 treatment groups were also improved in a dose-dependent manner. This study demonstrates that FGF-21 can ameliorate learning and memory abilities of D-galactose induced aging mice, improve the antioxidant abilities in brain tissue and delay brain aging. This finding provides a theoretical support for clinical application of FGF-21 as a novel therapeutics for preventing aging.
		                        		
		                        		
		                        		
		                        	
6.Preparation and penetrating effect of the polyarginine-enhanced green fluorescence protein fusion protein.
Nan ZHANG ; Yin BAI ; Jingzhuang ZHAO ; Xianlong YE ; Wenfei WANG ; Guiping REN ; Deshan LI ; Yan JING
Chinese Journal of Biotechnology 2013;29(11):1644-1653
		                        		
		                        			
		                        			The aim of the study is to establish a platform to deliver therapeutic proteins into target cells through a polyarginine-based cell penetrating peptide. To facilitate the expression of therapeutic proteins, a pSUMO (Small Ubiquitin-like Modifier)-R9-EGFP (enhanced green fluorescence protein) prokaryotic expression vector was constructed. After induction, the fusion protein SUMO-R9-EGFP was efficiently expressed. To validate the cell penetrating ability of the fusion protein, HepG2 cells were incubated with the purified R9-EGFP or EGFP protein as control, internalization of the fluorescent proteins was examined by either flow cytometry or confocal microscopy. The result obtained by flow cytometry showed that the R9-EGFP fusion protein could efficiently penetrate into the HepG2 cells in a dose and time-dependent manner. In contrast, the fluorescence was barely detected in the HepG2 cells incubated with EGFP control. The fluorescence intensity of the R9-EGFP treated cells reached plateau phase after 1.5 h. The result obtained by confocal microscopy shows that R9-EGFP efficiently entered into the HepG2 cells and was exclusively located in the cytoplasm, whereas, no fluorescence was detected in the cells incubated with the EGFP control. The heparin inhibition experiment showed that heparin could inhibit penetrating effect of the R9-EGFP protein by about 50%, suggesting that the penetrating ability of the fusion protein is heparin-dependent. In summary, the study has established a platform to deliver therapeutic proteins into target cells through a polyarginine-based penetrating peptide.
		                        		
		                        		
		                        		
		                        			Cell-Penetrating Peptides
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Genetic Vectors
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Green Fluorescent Proteins
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Hep G2 Cells
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Peptides
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Protein Transport
		                        			;
		                        		
		                        			Recombinant Fusion Proteins
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
7.Anti-tumor efficacy of P53 with 9R cell-penetrating peptides.
Yuan LIU ; Rui CHEN ; Nan ZHANG ; Xianlong YE ; Yin BAI ; Yuquan WEI ; Guiping REN ; Deshan LI
Chinese Journal of Biotechnology 2013;29(7):955-964
		                        		
		                        			
		                        			To enhance the penetration of P53 into tumor cells by fusion it with the cell penetrating peptide 9R. The fusion gene of 9R-p53 was cloned into the expression vector. The fusion protein, CPPs-P53, was expressed and purified. We detected the rate of cell growth inhibition and apoptosis by MTT and Annexin-V-FITC/PI double stained method respectively for measuring its effect on tumor cells. CPPs-P53 and P53 were successfully expressed and purified, the purity of both proteins reached up to 90%. MTT assay showed that the cell growth inhibition by CPPs-P53 was more efficient than P53, and the rate of cell growth inhibition is dose-dependent. The apoptosis experiment showed that P53 could induce apoptosis of tumor cells. Compared with the P53, CPPs-P53 had a more significant effect in inducing cell apoptosis (**P < 0.01). The CPPs-P53 shows more significant effects than P53 in inhibiting cell growth and inducing apoptosis on tumor cells.
		                        		
		                        		
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell-Penetrating Peptides
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Tumor Suppressor Protein p53
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
8.Therapeutic effect of fibroblast growth factor 21 on hypertension induced by insulin resistance.
Shenglong ZHU ; Guiping REN ; Zhenyu ZHANG ; Wenfei WANG ; Xianlong YE ; Miaomiao HAN ; Jingzhuang ZHAO ; Tongyu XU ; Mingyao LIU ; Deshan LI
Acta Pharmaceutica Sinica 2013;48(9):1409-14
		                        		
		                        			
		                        			This study is to evaluate the therapeutic effect of fibroblast growth factor 21 (FGF21) on hypertension induced by insulin resistance in rats and to provide mechanistic insights into its therapeutic effect. Male Sprague-Dawley (SD) rats were fed with high-fructose (10%) water to develop mild hypertensive models within 4 weeks, then randomized into 4 groups: model control, FGF21 0.25, 0.1 and 0.05 micromol x kg(-1) x d(-1) groups. Five age-matched normal SD rats administrated with saline were used as normal controls. The rats in each group were treated once a day for 4 weeks. Body weight was measured weekly, systolic blood pressure (SBP) was measured noninvasively using a tail-cuff method, insulin sensitivity was assessed using oral glucose tolerance test (OGTT) and HOMA-IR assay. At the end of the treatment, blood samples were collected, and blood glucose, serum cholesterol, serum triglyceride and serum insulin were measured. The results showed that blood pressure of the rats treated with different doses of FGF21 returned to normal levels [(122.2 +/- 3.5) mmHg, P < 0.01] after 4-week treatment, whereas, SBP of untreated (model control) rats maintained a high level [(142.5 +/- 4.5) mmHg] throughout the treatment. The observation of blood pressure in 24 h revealed that SBP of FGF21 treated-rats maintained at (130 +/- 4.5) mmHg vs. (143 +/- 5.5) mmHg for model control (P < 0.01). FGF21 treatment groups improved serum lipids obviously, total cholesterol (TC) and triglyceride (TG) levels decreased significantly to normal levels. The serum NO levels of three different doses FGF21 treatment group were significantly higher than that of the model control group [(7.32 +/- 0.11), (7.24 +/- 0.13), (6.94 +/- 0.08) vs. (6.56 +/- 0.19) micromol x L(-1), P < 0.01], and the degree of improvement showed obvious dose-dependent manner, indicating that FGF21 can significant increase serum NO in fructose-induced hypertension rat model and improve endothelial NO release function. The results of OGTT and HOMA-IR showed that insulin resistance state was significantly relieved in a dose-dependent manner. Thus, this study demonstrates that FGF21 significantly ameliorates blood pressure in fructose-induced hypertension model by relieving insulin resistance. This finding provides a theoretical support for clinical application of FGF21 as a novel therapeutics for treatment of essential hypertension.
		                        		
		                        		
		                        		
		                        	
9.The long lasting effect of the murine fibroblast growth factor-21 on blood glucose control of diabetic animals.
Jingzhuang ZHAO ; Guopeng SUN ; Xianlong YE ; Jinnan LI ; Guiping REN ; Wenfei WANG ; Mingyao LIU ; Deshan LI
Acta Pharmaceutica Sinica 2013;48(3):352-8
		                        		
		                        			
		                        			Insulin is the most common medicine used for diabetic patients, unfortunately, its effective time is short, even the long-acting insulin cannot obtain a satisfactory effect. Fibroblast growth factor (FGF)-21 is a recently discovered glucose mediator and expected to be a potential anti-diabetic drug that does not rely on insulin. In this study, db/db mice were used as the type 2 diabetic model to examine whether mFGF-21 has the long-term blood lowering effect on the animal model. The results showed that mFGF-21 could stably maintain the blood glucose at normal level for a long-term in a dose-dependent manner. Administration of mFGF-21 once a day with three doses (0.125, 0.25 and 0.5 mg x kg(-1)) could maintain blood glucose of the model animals at normal level for at least 24 h. Administration of mFGF-21 every two days with the same doses could maintain blood glucose of the model animals at normal level for at least 48 h, although it took longer time for blood glucose to reach to normal level depending on doses used (twenty injections for 0.125 mg x kg(-1) and 0.25 mg x kg(-1) doses, ten injections for 0.5 mg x kg(-1) dose). Surprisingly, the blood glucose of the treated model animals still maintained at normal level for 24 h after the experiment terminated. Glycosylated hemoglobin level of the animals treated with mFGF-21, which represented long-term glucose status, decreased significantly compared to the control group and the insulin group. The results suggest that FGF-21 has potential to become a long-acting and potent anti-diabetic drug.
		                        		
		                        		
		                        		
		                        	
10.Therapeutic effect of fibroblast growth factor 21 on NAFLD in MSG-iR mice and its mechanism.
Shenglong ZHU ; Zhenyu ZHANG ; Guiping REN ; Xianlong YE ; Lei MA ; Dan YU ; Miaomiao HAN ; Jingzhuang ZHAO ; Tianyuan ZHANG ; Deshan LI
Acta Pharmaceutica Sinica 2013;48(12):1778-84
		                        		
		                        			
		                        			This study is to evaluate the therapeutic effect of fibroblast growth factor 21 (FGF21) on NAFLD in MSG-IR mice and to provide mechanism insights into its therapeutic effect. The MSG-IR mice with insulin resistance were treated with high dose (0.1 micromol.kg-1d-1) and low dose (0.025 micromol.kg-1d-1) of FGF21 once a day for 5 weeks. Body weight was measured weekly. At the end of the experiment, serum lipids, insulin and aminotransferases were measured. Hepatic steatosis was observed. The expression of key genes regulating energy metabolism were detected by real-time PCR. The results showed that after 5 weeks treatment, both doses of FGF21 reduced body weight (P<0.01), corrected dyslipidemia (P<0.01), reversed steatosis and restored the liver morphology in the MSG model mice and significantly ameliorated insulin resistance. Additionally, real-time PCR showed that FGF21 significantly reduced transcription levels of fat synthetic genes, decreased fat synthesis and promoted lipolysis and energy metabolism by up-regulating key genes of lipolysis, thereby liver fat accumulation was reduced and liver function was restored to normal levels. In conclusion, FGF21 significantly reduces body weight of the MSG-IR mice, ameliorates insulin resistance, reverses hepatic steatosis. These findings provide a theoretical support for clinical application of FGF21 as a novel therapeutics for treatment of NAFLD.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail