1.Analyzing Differences in Volatile Components of Citri Reticulatae Pericarpium Before and After Being Stir-fried with Halloysitum Rubrum Based on HS-GC-MS and Intelligent Sensory Technology
Li XIN ; Jiawen WEN ; Wenhui GONG ; Beibei ZHAO ; Shihao YAN ; Huashi CHEN ; Haiping LE ; Jinlian ZHANG ; Yanhua XUE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):157-162
ObjectiveTo analyze the differences in color, odor and volatile components of Citri Reticulatae Pericarpium(CRP) before and after being stir-fried with Halloysitum Rubrum, and to explore the material basis of enhancing the effect of strengthening spleen after processing and the scientific connotation of decoction pieces processed with Halloysitum Rubrum as the auxiliary material. MethodsThe volatile components of the samples before and after processing were identified and relatively quantified by headspace gas chromatography-mass spectrometry(HS-GC-MS), and the volatile components were analyzed by principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA). According to the principle of variable importance in the projection(VIP) value>1.5, volatile differential components before and after processing were screened. And combined with intelligent sensory technologies such as colorimeter and electronic nose, the chroma and odor information of CRP before and after being stir-fried with Halloysitum Rubrum were identified. Pearson correlation analysis was used to explore the correlation between volatile differential components and chroma values. ResultsA total of 112 volatile components were identified from CRP and CRP stir-fried with Halloysitum Rubrum, of which 84 were from CRP and 97 were from CRP stir-fried with Halloysitum Rubrum. And 7 differential components were selected, including α-pinene, β-myrcene, linalool, sabinene, ocimene isomer mixture, A-ocimene, and δ-elemene. After being processed with Halloysitum Rubrum, the brightness value(L*), yellow-blue value(b*) and total chromatic value(E*ab) of CRP were decreased(P<0.01), and red-green value(a*) was increased(P<0.01), the response values of S4, S5, S10 and S13 sensors were significantly increased(P<0.05), and the response values of S3 and S8 sensors were significantly decreased(P<0.05). Correlation analysis showed that α-pinene and β-myrcene were negatively correlated with L* and E*ab, but positively correlated with a*. Sabinene was positively correlated with L* and E*ab. Linalool was positively correlated with L* and E*ab, and negatively correlated with a*. The ocimene isomer mixture was positively correlated with the L*. ConclusionAfter being processed with Halloysitum Rubrum, the appearance color, odor and volatile components of CRP change significantly, and α-pinene, β-myrcene, sabinene, linalool and A-ocimene are the characteristic volatile components before and after processing, which can provide references for the quality evaluation and clinical application of CRP and its processed products.
2.Analyzing Differences in Volatile Components of Citri Reticulatae Pericarpium Before and After Being Stir-fried with Halloysitum Rubrum Based on HS-GC-MS and Intelligent Sensory Technology
Li XIN ; Jiawen WEN ; Wenhui GONG ; Beibei ZHAO ; Shihao YAN ; Huashi CHEN ; Haiping LE ; Jinlian ZHANG ; Yanhua XUE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):157-162
ObjectiveTo analyze the differences in color, odor and volatile components of Citri Reticulatae Pericarpium(CRP) before and after being stir-fried with Halloysitum Rubrum, and to explore the material basis of enhancing the effect of strengthening spleen after processing and the scientific connotation of decoction pieces processed with Halloysitum Rubrum as the auxiliary material. MethodsThe volatile components of the samples before and after processing were identified and relatively quantified by headspace gas chromatography-mass spectrometry(HS-GC-MS), and the volatile components were analyzed by principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA). According to the principle of variable importance in the projection(VIP) value>1.5, volatile differential components before and after processing were screened. And combined with intelligent sensory technologies such as colorimeter and electronic nose, the chroma and odor information of CRP before and after being stir-fried with Halloysitum Rubrum were identified. Pearson correlation analysis was used to explore the correlation between volatile differential components and chroma values. ResultsA total of 112 volatile components were identified from CRP and CRP stir-fried with Halloysitum Rubrum, of which 84 were from CRP and 97 were from CRP stir-fried with Halloysitum Rubrum. And 7 differential components were selected, including α-pinene, β-myrcene, linalool, sabinene, ocimene isomer mixture, A-ocimene, and δ-elemene. After being processed with Halloysitum Rubrum, the brightness value(L*), yellow-blue value(b*) and total chromatic value(E*ab) of CRP were decreased(P<0.01), and red-green value(a*) was increased(P<0.01), the response values of S4, S5, S10 and S13 sensors were significantly increased(P<0.05), and the response values of S3 and S8 sensors were significantly decreased(P<0.05). Correlation analysis showed that α-pinene and β-myrcene were negatively correlated with L* and E*ab, but positively correlated with a*. Sabinene was positively correlated with L* and E*ab. Linalool was positively correlated with L* and E*ab, and negatively correlated with a*. The ocimene isomer mixture was positively correlated with the L*. ConclusionAfter being processed with Halloysitum Rubrum, the appearance color, odor and volatile components of CRP change significantly, and α-pinene, β-myrcene, sabinene, linalool and A-ocimene are the characteristic volatile components before and after processing, which can provide references for the quality evaluation and clinical application of CRP and its processed products.
3.Expression of IP3R2 and RYR2 mediated Ca2+signals in a mouse model of delayed encephalopathy after acute carbon monoxide poisoning
Jili ZHAO ; Tianyu MENG ; Yarong YUE ; Xin ZHANG ; Wenqian DU ; Xinyu ZHANG ; Hui XUE ; Wenping XIANG
Chinese Journal of Tissue Engineering Research 2025;29(2):254-261
BACKGROUND:Ca2+expression in astrocytes has been found to be closely related to cognitive function,and the Ca2+signaling pathway regulated by inositol 1,4,5-trisphosphate receptors(IP3R2)and ryanodine receptor(RYR)2 receptors has become a hot spot in the study of cognitive disorder-related diseases. OBJECTIVE:To investigate the expression of Ca2+signals mediated by IP3R2 and RYR2 in hippocampal astrocytes in animal models of delayed encephalopathy after acute carbon monoxide poisoning,and to explore the possible pathogenesis of delayed encephalopathy after acute carbon monoxide poisoning. METHODS:C57BL mice with qualified cognitive function were selected by Morris water maze experiment and randomly divided into control group and experimental group.An animal model of delayed encephalopathy after acute carbon monoxide poisoning was established by static carbon monoxide inhalation in the experimental group,and the same amount of air was inhaled in the control group.Behavioral and neuronal changes,astrocyte specific marker glial fibrillary acidic protein,IP3R2,RYR2 receptor and Ca2+concentration in astrocytes of the two groups were detected using Morris water maze,hematoxylin-eosin staining,western blot,immunofluorescence double labeling and Ca2+fluorescence probe at 21 days after modeling. RESULTS AND CONCLUSION:In the Morris water maze,the escape latency of the experimental group was significantly longer than that of the control group(P<0.05).Hematoxylin-eosin staining results showed that in the experimental group,the number of hippocampal pyramidal cells decreased,the cell structure was disordered,and the nucleus was broken and dissolved.Immunofluorescence results showed that IP3R2 and RYR2 were co-expressed with glial fibrillary acidic protein in the hippocampus,and the expressions of IP3R2,RYR2 and glial fibrillary acidic protein were up-regulated in the hippocampus of the experimental group(P<0.05).Western blot analysis showed that the expressions of IP3R2,RYR2,and glial fibrillary acidic protein in the hippocampus of the experimental group were increased(P<0.05).Ca2+concentration in hippocampal astrocytes increased significantly in the experimental group(P<0.05).To conclude,astrocytes may affect Ca2+signals by mediating IP3R2 and RYR2 receptors,then impair the cognitive function of mice with carbon monoxide poisoning,and eventually lead to delayed encephalopathy after acute carbon monoxide poisoning.
4.Controllability Analysis of Structural Brain Networks in Young Smokers
Jing-Jing DING ; Fang DONG ; Hong-De WANG ; Kai YUAN ; Yong-Xin CHENG ; Juan WANG ; Yu-Xin MA ; Ting XUE ; Da-Hua YU
Progress in Biochemistry and Biophysics 2025;52(1):182-193
ObjectiveThe controllability changes of structural brain network were explored based on the control and brain network theory in young smokers, this may reveal that the controllability indicators can serve as a powerful factor to predict the sleep status in young smokers. MethodsFifty young smokers and 51 healthy controls from Inner Mongolia University of Science and Technology were enrolled. Diffusion tensor imaging (DTI) was used to construct structural brain network based on fractional anisotropy (FA) weight matrix. According to the control and brain network theory, the average controllability and the modal controllability were calculated. Two-sample t-test was used to compare the differences between the groups and Pearson correlation analysis to examine the correlation between significant average controllability and modal controllability with Fagerström Test of Nicotine Dependence (FTND) in young smokers. The nodes with the controllability score in the top 10% were selected as the super-controllers. Finally, we used BP neural network to predict the Pittsburgh Sleep Quality Index (PSQI) in young smokers. ResultsThe average controllability of dorsolateral superior frontal gyrus, supplementary motor area, lenticular nucleus putamen, and lenticular nucleus pallidum, and the modal controllability of orbital inferior frontal gyrus, supplementary motor area, gyrus rectus, and posterior cingulate gyrus in the young smokers’ group, were all significantly different from those of the healthy controls group (P<0.05). The average controllability of the right supplementary motor area (SMA.R) in the young smokers group was positively correlated with FTND (r=0.393 0, P=0.004 8), while modal controllability was negatively correlated with FTND (r=-0.330 1, P=0.019 2). ConclusionThe controllability of structural brain network in young smokers is abnormal. which may serve as an indicator to predict sleep condition. It may provide the imaging evidence for evaluating the cognitive function impairment in young smokers.
5.Molecular biological research and molecular homologous modeling of Bw.03 subgroup
Li WANG ; Yongkui KONG ; Huifang JIN ; Xin LIU ; Ying XIE ; Xue LIU ; Yanli CHANG ; Yafang WANG ; Shumiao YANG ; Di ZHU ; Qiankun YANG
Chinese Journal of Blood Transfusion 2025;38(1):112-115
[Objective] To study the molecular biological mechanism for a case of ABO blood group B subtype, and perform three-dimensional modeling of the mutant enzyme. [Methods] The ABO phenotype was identified by the tube method and microcolumn gel method; the ABO gene of the proband was detected by sequence-specific primer polymerase chain reaction (PCR-SSP), and the exon 6 and 7 of the ABO gene were sequenced and analyzed. Homologous modeling of Bw.03 glycosyltransferase (GT) was carried out by Modeller and analyzed by PyMOL2.5.0 software. [Results] The weakening B antigen was detected in the proband sample by forward typing, and anti-B antibody was detected by reverse typing. PCR-SSP detection showed B, O gene, and the sequencing results showed c.721 C>T mutation in exon 7 of the B gene, resulting in p. Arg 241 Trp. Compared with the wild type, the structure of Bw.03GT was partially changed, and the intermolecular force analysis showed that the original three hydrogen bonds at 241 position disappeared. [Conclusion] Blood group molecular biology examination is helpful for the accurate identification of ambiguous blood group. Homologous modeling more intuitively shows the key site for the weakening of Bw.03 GT activity. The intermolecular force analysis can explain the root cause of enzyme activity weakening.
6.Influence of corneal fluorescein sodium staining on test results of iTrace visual function analyzer
Xin YIN ; Qingyan LIU ; Xiao SHAO ; Min XUE ; Yao LU ; Shuying MA ; Chunsheng SHI
International Eye Science 2025;25(4):680-684
AIM: To investigate the impact of corneal fluorescein sodium(NaF)staining on the examination results of iTrace visual function analyzer(iTrace).METHODS: Prospective cohort study. Totally 100 patients(100 eyes)with ametropia who visited the outpatient department of Anhui Eye Hospital from April to November 2024 were recruited. They were divided into an experimental group and a control group, with 50 patients(50 eyes, and only the right eyes were selected for inclusion)in each group. In the experimental group, corneal staining was performed using fluorescein sodium staining test strips, while in the control group, 1 drop of 0.9% normal saline was instilled into the eyes. The iTrace examination was conducted before the intervention and at 5, 10, and 20 min after the intervention. The total corneal higher-order aberrations, spherical aberration, coma aberration, trefoil aberration, best sphere value(RO value), asphericity factor(Q value), and corneal vertical refractive power difference(IS value)at each time of examination were recorded and compared.RESULTS: There was no statistically significant difference in the baseline levels between the two groups(all P>0.05). Intra-group comparison revealed that the total higher-order aberrations, spherical aberration, coma aberration, and trefoil aberration measured 5 min after NaF staining in the experimental group were significantly increased compared with those before staining(all P<0.05). Inter-group comparison showed that the changes(differences from the baseline)in the total corneal higher-order aberrations, spherical aberration, coma aberration, and trefoil aberration measured by iTrace 5 min after the intervention in the experimental group were significantly greater than those in the control group(all P<0.05). There was no statistically significant difference in the changes(differences from the baseline)of various iTrace parameters measured at 10 and 20 min after the intervention between the two groups(all P>0.05). There was no statistical significance in the RO value, Q value, and IS value in the two groups(all P>0.05).CONCLUSION: Corneal NaF staining can cause a short-term increase in the wavefront aberration values(total corneal higher-order aberrations, spherical aberration, coma aberration, trefoil aberration)measured by iTrace, and it gradually disappears with the passage of time. However, it has no impact on the measurement of corneal topography parameters(RO value, Q value, IS value).
7.Study on the modeling method of general model of Yaobitong capsule intermediates quality analysis based on near infrared spectroscopy
Le-ting SI ; Xin ZHANG ; Yong-chao ZHANG ; Jiang-yan ZHANG ; Jun WANG ; Yong CHEN ; Xue-song LIU ; Yong-jiang WU
Acta Pharmaceutica Sinica 2025;60(2):471-478
The general models for intermediates quality analysis in the production process of Yaobitong capsule were established by near infrared spectroscopy (NIRS) combined with chemometrics, realizing the rapid determination of notoginsenoside R1, ginsenoside Rg1, ginsenoside Re, ginsenoside Rb1, ginsenoside Rd and moisture. The spray-dried fine powder and total mixed granule were selected as research objects. The contents of five saponins were determined by high performance liquid chromatography and the moisture content was determined by drying method. The measured contents were used as reference values. Meanwhile, NIR spectra were collected. After removing abnormal samples by Monte Carlo cross validation (MCCV), Monte Carlo uninformative variables elimination (MC-UVE) and competitive adaptive reweighted sampling (CARS) were used to select feature variables respectively. Based on the feature variables, quantitative models were established by partial least squares regression (PLSR), extreme learning machine (ELM) and ant lion optimization least squares support vector machine (ALO-LSSVM). The results showed that CARS-ALO-LSSVM model had the optimum effect. The correlation coefficients of the six index components were greater than 0.93, and the relative standard errors were controlled within 6%. ALO-LSSVM was more suitable for a large number of samples with rich information, and the prediction effect and stability of the model were significantly improved. The general models with good predicting effect can be used for the rapid quality determination of Yaobitong capsule intermediates.
8.Research progress of antifungal drugs from natural sources
Shao-jie CHU ; Yan ZHENG ; Shuang-shuang SU ; Xue-song WU ; Hong YAN ; Shao-xin CHEN ; Hong-bo WANG
Acta Pharmaceutica Sinica 2025;60(1):48-57
As the number of patients with compromised immune function increases and fungal resistance develops, so does the risk of contracting deadly fungi in humans. Both fungi and humans are eukaryotes, so identifying unique targets for antifungal drug development is difficult. In addition, the existing antifungal drugs are limited by toxicity, drug interaction and drug resistance in practical application, which leads to the increasing incidence and fatal rate of fungal infections. Therefore, it is urgent to develop new antifungal drugs. The semi-synthetic technology using microbial fermentation products from natural sources as lead compounds has become the most used method in structural modification of antifungal drugs due to its advantages of few reaction steps and easy operation. This paper will introduce the current status of natural antifungal drugs in clinical use, as well as the latest progress in the research and development of new semi-synthetic antifungal drugs, and summarize their mechanism of action, structural modifications, advantages and disadvantages, so as to provide reference for the subsequent development of new antifungal drugs.
9.Alanine transferase test results and exploration of threshold adjustment strategies for blood donors in Shenzhen, China
Xin ZHENG ; Yuanye XUE ; Haobiao WANG ; Litiao WU ; Ran LI ; Yingnan DANG ; Tingting CHEN ; Xiaoxuan XU ; Xuezhen ZENG ; Jinfeng ZENG
Chinese Journal of Blood Transfusion 2025;38(4):488-494
[Objective] To conduct a retrospective statistical comparison of alanine aminotransferase (ALT) test values in blood donors prior to blood collection, aiming to analyze the objective characteristics of the population with elevated ALT levels (ALT>50 U/L) and provide reference data for adjusting the screening eligibility threshold for ALT. [Methods] The preliminary ALT screening data of 30 341 blood donor samples collected prior to blood donation from three smart blood donation sites at the Shenzhen Blood Center between 2022 and 2023 were extracted and compared with data from a health examination department of a tertiary hospital in Shenzhen (representing the general population, n=24 906). Both datasets were categorized and statistically described. A retrospective analysis was conducted to examine the associations between ALT test results and factors such as donors' gender, age, ethnicity, donation site, donation season, and frequency of blood donation. [Results] The ALT levels in both blood donors and the general population were non-normally distributed. The 95th percentile of ALT values was calculated as 61.4 U/L (male: 67.8 U/L, female: 39.3 U/L) for blood donors and 58.1 U/L (male: 63.7 U/L, female: 51.2 U/L) for the general population. The non-compliance rates (ALT>50 U/L) were 7.65% (2 321/30 341) in blood donors and 7.08% (1 763/24 906) in the general population. There were significant differences (P<0.05) in the ALT failure rate among blood donors based on gender, age, and donation site, but no significant differences (P>0.05) during the blood donation season. There was no statistically significant difference (P>0.05) in the positive rates of four serological markers (HBsAg, anti HCV, HIV Ag/Ab, anti TP) for blood screening pathogens between ALT unqualified and qualified individuals (2.05% vs 1.5%). If the ALT qualification threshold was raised from 50 U/L to 90 U/L, the non qualification rates of male and female blood donors would decrease from 9.82% (2 074/21 125) to 2.23% (471/21 125) and from 2.70% (249/9 216) to 0.75% (69/9 216), respectively. Among the 154 blood donors who donated blood more than 3 times, 88.31% of the 248 ALT test results were in the range of 50-90 U/L. Among them, 9 cases had ALT>130 U/L, and ALT was converted to qualified in subsequent blood donations. [Conclusion] There are differences in the ALT failure rate among blood donors of different genders and ages, and different blood donation sites and operators can also affect the ALT detection values of blood donors. The vast majority of blood donors with ALT failure are caused by transient and non pathological factors. With the widespread use of blood virus nucleic acid testing, appropriately increasing the ALT qualification threshold for blood donors can expand the qualified population and alleviate the shortage of blood sources, and the risk of blood safety will not increase.
10.PDGF-C: an Emerging Target in The Treatment of Organ Fibrosis
Chao YANG ; Zi-Yi SONG ; Chang-Xin WANG ; Yuan-Yuan KUANG ; Yi-Jing CHENG ; Ke-Xin REN ; Xue LI ; Yan LIN
Progress in Biochemistry and Biophysics 2025;52(5):1059-1069
Fibrosis, the pathological scarring of vital organs, is a severe and often irreversible condition that leads to progressive organ dysfunction. It is particularly pronounced in organs like the liver, kidneys, lungs, and heart. Despite its clinical significance, the full understanding of its etiology and complex pathogenesis remains incomplete, posing substantial challenges to diagnosing, treating, and preventing the progression of fibrosis. Among the various molecular players involved, platelet-derived growth factor-C (PDGF-C) has emerged as a crucial factor in fibrotic diseases, contributing to the pathological transformation of tissues in several key organs. PDGF-C is a member of the PDGFs family of growth factors and is synthesized and secreted by various cell types, including fibroblasts, smooth muscle cells, and endothelial cells. It acts through both autocrine and paracrine mechanisms, exerting its biological effects by binding to and activating the PDGF receptors (PDGFRs), specifically PDGFRα and PDGFRβ. This binding triggers multiple intracellular signaling pathways, such as JAK/STAT, PI3K/AKT and Ras-MAPK pathways. which are integral to the regulation of cell proliferation, survival, migration, and fibrosis. Notably, PDGF-C has been shown to promote the proliferation and migration of fibroblasts, key effector cells in the fibrotic process, thus accelerating the accumulation of extracellular matrix components and the formation of fibrotic tissue. Numerous studies have documented an upregulation of PDGF-C expression in various fibrotic diseases, suggesting its significant role in the initiation and progression of fibrosis. For instance, in liver fibrosis, PDGF-C stimulates hepatic stellate cell activation, contributing to the excessive deposition of collagen and other extracellular matrix proteins. Similarly, in pulmonary fibrosis, PDGF-C enhances the migration of fibroblasts into the damaged areas of lungs, thereby worsening the pathological process. Such findings highlight the pivotal role of PDGF-C in fibrotic diseases and underscore its potential as a therapeutic target for these conditions. Given its central role in the pathogenesis of fibrosis, PDGF-C has become an attractive target for therapeutic intervention. Several studies have focused on developing inhibitors that block the PDGF-C/PDGFR signaling pathway. These inhibitors aim to reduce fibroblast activation, prevent the excessive accumulation of extracellular matrix components, and halt the progression of fibrosis. Preclinical studies have demonstrated the efficacy of such inhibitors in animal models of liver, kidney, and lung fibrosis, with promising results in reducing fibrotic lesions and improving organ function. Furthermore, several clinical inhibitors, such as Olaratumab and Seralutinib, are ongoing to assess the safety and efficacy of these inhibitors in human patients, offering hope for novel therapeutic options in the treatment of fibrotic diseases. In conclusion, PDGF-C plays a critical role in the development and progression of fibrosis in vital organs. Its ability to regulate fibroblast activity and influence key signaling pathways makes it a promising target for therapeutic strategies aiming at combating fibrosis. Ongoing research into the regulation of PDGF-C expression and the development of PDGF-C/PDGFR inhibitors holds the potential to offer new insights and approaches for the diagnosis, treatment, and prevention of fibrotic diseases. Ultimately, these efforts may lead to the development of more effective and targeted therapies that can mitigate the impact of fibrosis and improve patient outcomes.

Result Analysis
Print
Save
E-mail