1.Regulation of Signaling Pathways Related to Myocardial Infarction by Traditional Chinese Medicine: A Review
Wenjun WU ; Chidao ZHANG ; Jingjing WEI ; Xue LI ; Bin LI ; Xinlu WANG ; Mingjun ZHU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):321-330
The pathological changes of myocardial infarction (MI) are mainly characterized by progressive myocardial ischemic necrosis, decline in cardiac diastolic function, thinning of the ventricular wall, and enlargement of the ventricles. The clinical manifestations include myocardial ischemia, heart failure, arrhythmia, shock, and even sudden cardiac death, rendering MI one of the most perilous cardiovascular diseases. Currently, the clinical treatment for MI primarily involves interventional procedures and drug therapy. However, due to their significant side effects and high complication rates associated with these treatments, they fail to ensure a satisfactory quality of life and long-term prognosis for patients. On the other hand, traditional Chinese medicine has demonstrated remarkable potential in improving patient prognosis while reducing side effects. Research has elucidated that various signaling pathways such as nuclear transcription factor-κB (NF-κB), adenosine 5̒-monophosphate-activated protein kinase (AMPK), transforming growth factor-β (TGF-β)/Smads, mitogen-activated protein kinase (MAPK), Wnt/β-catenin (β-catenin), and phosphatidylinositol 3-kinase (PI3K)/protein kinase B(Akt) play crucial roles in regulating the occurrence and development of MI. Effectively modulating these signaling pathways through its therapeutic interventions, traditional Chinese medicine can enhance MI management by inhibiting apoptosis, providing anti-inflammatory properties, alleviating oxidative stress levels, and resisting myocardial ischemia. Due to its notable efficacy and favorable safety, it has become an area of focus in clinical practice.
2.A Fitting Method for Photoacoustic Pump-probe Imaging Based on Phase Correction
Zhuo-Jun XIE ; Hong-Wen ZHONG ; Run-Xiang LIU ; Bo WANG ; Ping XUE ; Bin HE
Progress in Biochemistry and Biophysics 2025;52(2):525-532
ObjectivePhotoacoustic pump-probe imaging can effectively eliminate the interference of blood background signal in traditional photoacoustic imaging, and realize the imaging of weak phosphorescence molecules and their triplet lifetimes in deep tissues. However, background differential noise in photoacoustic pump-probe imaging often leads to large fitting results of phosphorescent molecule concentration and triplet lifetime. Therefore, this paper proposes a novel triplet lifetime fitting method for photoacoustic pump-probe imaging. By extracting the phase of the triplet differential signal and the background noise, the fitting bias caused by the background noise can be effectively corrected. MethodsThe advantages and feasibility of the proposed algorithm are verified by numerical simulation, phantom and in vivo experiments, respectively. ResultsIn the numerical simulation, under the condition of noise intensity being 10% of the signal amplitude, the new method can optimize the fitting deviation from 48.5% to about 5%, and has a higher exclusion coefficient (0.88>0.79), which greatly improves the fitting accuracy. The high specificity imaging ability of photoacoustic pump imaging for phosphorescent molecules has been demonstrated by phantom experiments. In vivo experiments have verified the feasibility of the new fitting method proposed in this paper for fitting phosphoometric lifetime to monitor oxygen partial pressure content during photodynamic therapy of tumors in nude mice. ConclusionThis work will play an important role in promoting the application of photoacoustic pump-probe imaging in biomedicine.
3.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
4.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
5.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
6.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
7.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
8.Mechanism of Kaixuan Jiedu Core Prescription in Regulating PTGS2 to Improve Skin Lesions in Psoriasis Mouse Models
Xue XIAO ; Liping KANG ; Dan DAI ; Yidi MA ; Bin YANG ; Ping SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):49-59
ObjectiveTo identify the active constituents of Kaixuan Jiedu core prescription (KXJD) and investigate its effective components and therapeutic targets in the treatment of common psoriasis
9.Exploration of Kaixuan Jiedu Core Prescription's Efficacy in Alleviating Psoriasis Through Modulation of Ferroptosis Pathways: An Integrative Approach Involving Bioinformatics and Experimental Validation
Haoruo YANG ; Xue XIAO ; Jiaqi LI ; Ningxin ZHANG ; Bin YANG ; Ping SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):69-78
ObjectiveTo use bioinformatics technology to screen the molecular patterns and diagnostic biomarkers of ferroptosis closely related to psoriasis, observe the therapeutic effect of Kaixuan Jiedu core prescription on psoriasis and explore its potential mechanism through animal experiments. MethodsPsoriasis microarray data from GEO were analyzed to identify differentially expressed genes (DEGs). Intersection with a ferroptosis gene set yielded psoriasis ferroptosis-related genes (FRGs), which underwent correlation, consensus clustering, enrichment, and immune infiltration analyses. Core diagnostic FRGs (Hub-FRGs) were identified using random forest (RF), support vector machine (SVM), LASSO regression, Nomogram, and ROC analyses. In vivo, imiquimod (5% cream) induced psoriasis in mice (except controls). Drug treatment groups received respective doses, while control and model groups received saline via daily gavage for 7 days. Back skin changes were recorded and PASI scored. Hematoxylin-eosin (HE) staining assessed histopathology. The levels of ferrous ion (Fe2+), malondialdehyde (MDA), 4-hydroxynonenal (4-HNE) and free fatty acid (FFA) in skin tissue were detected. The level of reactive oxygen species (ROS) in skin tissue was detected by immunofluorescence. Immunohistochemistry was used to detect the expression of ChaC glutathione-specific γ-glutamyl transferase 1 (CHAC1), arachidonic acid 12-lipoxygenase β (ALOX12B), trimotif protein 21 (TRIM21), proliferation marker (Ki67) and nuclear transcription factor-κB (NF-κB) protein. ResultsAnalysis of GSE30999 identified 2 100 DEGs and 24 FRGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment revealed 1 000 biological functions and 75 pathways. After cluster analysis, combined with three machine learning algorithms, Nomogram and ROC curve analysis, the core Hub-FRGs (CHAC1, ALOX12 B, TRIM21) were obtained. Immunoinfiltration showed inactive memory CD4+T cells and activated dendritic cells abundance significantly correlated with Hub-FRGs. In vivo, model group vs. control showed significantly increased PASI/Baker scores (P<0.05), epidermal hyperkeratosis, inflammatory infiltration, and elevated levels of Fe2+, MDA, 4-HNE, FFA, ROS, CHAC1, ALOX12B, TRIM21, Ki67, and NF-κB (P<0.05). Drug groups vs. model group exhibited significantly reduced scores (P<0.05), alleviated skin lesions, and decreased levels of Fe2+, MDA, 4-HNE, FFA, ROS, Hub-FRGs, Ki67, and NF-κB (P<0.05). ConclusionKaixuan Jiedu core prescription can significantly improve the skin pathological injury of psoriasis mice, showing good therapeutic and repair effects, and its mechanism may be related to regulating the expression of ferroptosis genes CHAC1, ALOX12B and TRIM21, which are closely related to the pathogenesis of psoriasis.
10.Mechanism of Kaixuan Jiedu Core Prescription in Regulating PTGS2 to Improve Skin Lesions in Psoriasis Mouse Models
Xue XIAO ; Liping KANG ; Dan DAI ; Yidi MA ; Bin YANG ; Ping SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):49-59
ObjectiveTo identify the active constituents of Kaixuan Jiedu core prescription (KXJD) and investigate its effective components and therapeutic targets in the treatment of common psoriasis

Result Analysis
Print
Save
E-mail