1.Traditional Chinese Medicine Treats Sepsis by Regulating PI3K/Akt Pathway: A Review
Zhu LIU ; Jiawei WANG ; Jing YAN ; Jinchan PENG ; Mingyao XU ; Liqun LI ; Sheng XIE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):314-322
Sepsis is a systemic inflammatory response syndrome caused by the invasion of pathogenic microorganisms such as bacteria. In addition to the manifestations of systemic inflammatory response syndrome and primary infection lesions, critical cases often have manifestations of organ hypoperfusion. The morbidity and mortality of sepsis have remained high in recent years, which seriously affect the quality of life of the patients. The pathogenesis of sepsis is complicated, in which uncontrollable inflammation is a key mechanism. The phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway plays a key role in mediating inflammation in sepsis. The available therapies of sepsis mainly include resuscitation, anti-infection, vasoactive drugs, intensive insulin therapy, and organ support, which show limited effects of reducing the mortality. Therefore, finding new therapeutic drugs is a key problem to be solved in the clinical treatment of sepsis. In recent years, studies have shown that traditional Chinese medicine (TCM) can regulate the PI3K/Akt pathway via multiple pathways, multiple effects, and multiple targets to inhibit inflammation and curb the occurrence and development of sepsis, which has gradually become a hot spot in the prevention and treatment of sepsis. Moreover, studies have suggested that TCM has unique advantages in the treatment of sepsis. TCM can regulate the PI3K/Akt signaling pathway to inhibit inflammation, reduce oxidative stress, and control apoptosis in the prevention and treatment of sepsis. Despite the research progress, a systematic review remains to be performed regarding the TCM treatment of sepsis by regulating the PI3K/Akt signaling pathway. After reviewing relevant papers published in recent years, this study systematically summarizes the relationship between PI3K/Akt pathway and sepsis and the role of TCM in the treatment of sepsis, aiming to provide new ideas for the potential treatment of sepsis and the development of new drugs.
2.The Impairment Attention Capture by Topological Change in Children With Autism Spectrum Disorder
Hui-Lin XU ; Huan-Jun XI ; Tao DUAN ; Jing LI ; Dan-Dan LI ; Kai WANG ; Chun-Yan ZHU
Progress in Biochemistry and Biophysics 2025;52(1):223-232
ObjectiveAutism spectrum disorder (ASD) is a neurodevelopmental condition characterized by difficulties with communication and social interaction, restricted and repetitive behaviors. Previous studies have indicated that individuals with ASD exhibit early and lifelong attention deficits, which are closely related to the core symptoms of ASD. Basic visual attention processes may provide a critical foundation for their social communication and interaction abilities. Therefore, this study explores the behavior of children with ASD in capturing attention to changes in topological properties. MethodsOur study recruited twenty-seven ASD children diagnosed by professional clinicians according to DSM-5 and twenty-eight typically developing (TD) age-matched controls. In an attention capture task, we recorded the saccadic behaviors of children with ASD and TD in response to topological change (TC) and non-topological change (nTC) stimuli. Saccadic reaction time (SRT), visual search time (VS), and first fixation dwell time (FFDT) were used as indicators of attentional bias. Pearson correlation tests between the clinical assessment scales and attentional bias were conducted. ResultsThis study found that TD children had significantly faster SRT (P<0.05) and VS (P<0.05) for the TC stimuli compared to the nTC stimuli, while the children with ASD did not exhibit significant differences in either measure (P>0.05). Additionally, ASD children demonstrated significantly less attention towards the TC targets (measured by FFDT), in comparison to TD children (P<0.05). Furthermore, ASD children exhibited a significant negative linear correlation between their attentional bias (measured by VS) and their scores on the compulsive subscale (P<0.05). ConclusionThe results suggest that children with ASD have difficulty shifting their attention to objects with topological changes during change detection. This atypical attention may affect the child’s cognitive and behavioral development, thereby impacting their social communication and interaction. In sum, our findings indicate that difficulties in attentional capture by TC may be a key feature of ASD.
3.Treatment Choices for Tenosynovial Giant Cell Tumor: Surgery or Observation?
Hairong XU ; Jing CHEN ; Xiaohui NIU
Cancer Research on Prevention and Treatment 2025;52(1):1-6
Tenosynovial giant cell tumor (TGCT) is a rare mesenchymal tumor that clinically presents as nodular-type or diffuse-type (D-TGCT). D-TGCT is more aggressive, has a higher surgical recurrence rate, and can potentially lead to severe joint destruction. The traditional treatment is primarily through surgical intervention. Recent advancements in understanding the molecular mechanisms of the disease and the development of new drugs have significantly changed TGCT treatment strategies. Drug therapy and active surveillance have become important treatment options for unresectable or high-recurrence-risk TGCT. Imaging examinations and patient-reported outcome tools play a crucial role in evaluating efficacy and guiding treatment decisions. Comprehensive management by a multidisciplinary team and utilizing individualized treatment plans can significantly improve the quality of life and treatment outcomes of patients. Future research should explore the molecular mechanisms of TGCT, enhance multidisciplinary collaboration, and emphasize long-term management to improve treatment efficacy and patient prognosis.
4.Determination method of plasma concentrations of 7 anti-tumor drugs and its application
Jinxiu LYU ; Nan YAN ; Wenjun XU ; Jing ZHAO ; Hua ZHU ; Pengzhou HANG
China Pharmacy 2025;36(4):475-481
OBJECTIVE To establish a method for simultaneous determination of 7 anti-tumor drugs (irinotecan, capecitabine, paclitaxel, docetaxel, tamoxifen, letrozole and methotrexate) in human plasma and apply it to the clinic. METHODS After precipitating with a methanol-acetonitrile mixture (1∶ 1, V/V) containing 0.1% formic acid, liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine the plasma concentration, using deuterium isotopes of each analyte as internal standards. The chromatography was performed on the Agilent Eclipse Plus C18 column with a gradient elution of water (containing 0.1% formic acid+0.04% 5 mmol/L ammonium formate) as mobile phase A and acetonitrile (containing 0.1% formic acid) as mobile phase B. The flow rate was 0.6 mL/min, and the column temperature was set at 40 ℃ . The sample size was 10 μL, and the analysis lasted for 5.5 min. Electrospray ionization was used in positive and negative ion mode, and multiple reaction monitoring mode was used. The ion pairs used for quantitative analysis were m/z 587.1→167.1 (irinotecan), m/z 360.1→244.1 (capecitabine), m/z 876.4→308.0 (paclitaxel), m/z 830.3→304.2 (docetaxel), m/z 372.1→129.1 (tamoxifen), m/z 284.1→242.1 (letrozole), and m/z 455.0→ 308.0 (methotrexate). A total of 97 patients with malignant tumors in our hospital were selected to measure the plasma concentrations of 7 anti-tumor drugs using the above method. RESULTS The linear ranges of irinotecan, capecitabine, paclitaxel, docetaxel, tamoxifen, letrozole and methotrexate were 2-1 000 ng/mL (r=0.994 3), 20-10 000 ng/mL (r=0.997 5), 2-1 000 ng/mL (r=0.997 9), 1-500 ng/mL (r=0.995 8), 1-500 ng/mL (r=0.995 2), 1-500 ng/mL (r=0.996 4), 10-5 000 (r=0.997 7), respectively. The quantitative lower limits were 2, 20, 2, 1, 1, 1 and 10 ng/mL; RSDs of intra-assay precision were 0.08%-14.86% (n=6). RSDs of inter-batch precision were 1.51%-11.55% (n=3), and the accuracies were 89.17%-114.93% (n=6). The matrix effects ranged from 89.89%-119.74% (n=6). RSDs of the stability tests were 1.98%-14.88% (n=6). The results of E-mail:hangpengzhou@163.com clinical application showed, the average plasma concentrations of irinotecan, capecitabine, paclitaxel and docetaxel were 704.09, 909.40, 36.45, 150.43 ng/mL, respectively. The values of the coefficient of variation were 25.24%, 62.65%, 122.69%, and 92.27%. CONCLUSIONS The established LC-MS/MS method is simple and rapid, and can be used for the simultaneous determination of 7 commonly used anti-tumor drugs in the plasma of patients with malignancy.
5.Clinical Observation on 60 Cases of Knee Osteoarthritis Treated with Heat-Sensitive Moxibustion
Lu TIAN ; Hongwu XIE ; Meihua LIU ; Jing ZHANG ; Shaozhong XU ; Changjun LI ; Zhixiong KOU
Journal of Traditional Chinese Medicine 2025;66(5):492-500
ObjectiveTo explore the central neuroregulation mechanism of heat-sensitive moxibustion for knee osteoarthritis on pain relief. MethodsThirty patients who did not have experience of Deqi (得气) during heat-sensitive moxibustion treatment were assigned to the "non-Deqi group", while another 30 patients who had experience of Deqi were assigned to the "Deqi group". Both groups received moxibustion at the left Heding (EX-LE2) acupoint. In the Deqi group, after the patients experienced sensation of Deqi at the acupoint, moxibustion was applied at approximately 3 cm from the skin for 10 minutes; in the non-Deqi group, moxibustion was also applied at approximately 3 cm from the skin for 10 minutes. Both groups received treatment once daily for 10 consecutive days. Knee joint pain was assessed before and after treatment using the visual analog scale (VAS). Resting-state functional magnetic resonance imaging (rs-fMRI) scans were performed on all participants before the first treatment session and after the final session on the 10th day. The fractional amplitude of low-frequency fluctuations (fALFF) maps before and after treatment were processed using the SPM12 module by MATLAB. ResultsAfter treatment, VAS scores in both groups were significantly lower than before treatment (P<0.05 or P<0.01), with the Deqi group showing significantly lower VAS scores than the non-Deqi group (P<0.01). Compared to before treatment, the Deqi group exhibited significant activation in the prefrontal cortex (t = 6.28), white matter (t = 6.36), and left temporal lobe (t = 9.33), while significant inhibition was observed in the occipital lobe (t = -9.86) and right cerebrum (t = -4.54, P<0.01); in the non-Deqi group, significant changes after treatment were observed in the left occipital lobe (t = -6.42), left medial frontal gyrus (t = -4.35), left middle frontal gyrus (t = -4.74), right superior frontal gyrus (t = -4.82), right superior temporal gyrus (t = -6.61), and right cerebellar posterior lobe (t = -8.64), all of which were in inhibited states (P<0.01). Compared to the non-Deqi group, the Deqi group exhibited significant activation after treatment in the external nucleus (t = 5.77), white matter (t = 3.58), right cerebrum (t = 5.84), left cerebellum (t = 5.35), and left cerebrum (t = 4.32), while significant inhibition was observed in the prefrontal cortex (t = -4.16), occipital lobe (t = -4.87), and precentral gyrus (t = -4.46, P<0.01). ConclusionsHeat-sensitive moxibustion provides better analgesic effects for knee osteoarthritis under state of Deqi. Its central neuroregulation mechanism may be related to the involvement of the frontal lobe, temporal lobe, occipital lobe, external nucleus, white matter, right cerebrum, left cerebellum, left cerebrum, and precentral gyrus in modulating pain signals.
6.Etiology and treatment of urinary retention following mixed hemorrhoid surgery: a review
XIONG Yi ; CHEN Jinlan ; NI Jing ; WANG Cong ; XU Li
Journal of Preventive Medicine 2025;37(3):256-261
Abstract
Postoperative urinary retention is a common complication after mixed hemorrhoid surgery, referring to the inability of urine in the bladder to be normally expelled, leading to urine retention. This condition not only prolongs the postoperative recovery time and increases medical costs, but may also cause problems such as urinary tract infections and bladder dysfunction. The pathogenesis of urinary retention after mixed hemorrhoid surgery is complex, involving multiple factors such as the type of surgery, anesthesia method, individual differences among patients, postoperative pain management and psychological stress. Although there are various clinical treatment methods, their efficacy varies among individuals. This article reviews relevant literature from 2018 to 2024, analyzing the etiology of urinary retention after mixed hemorrhoid surgery. It summarizes the intervention measures and mechanisms of non-pharmacological treatments, such as physical therapy and analgesic techniques, as well as pharmacological treatments, including anticholinesterase drugs, selective α-receptor blockers and analgesics drugs, so as to provide the reference for the prevention and treatment of urinary retention after mixed hemorrhoid surgery.
7.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice.
8.Mechanism of Shengmai Injection Against Cerebral Ischemia Based on Proteomics
Jingtong LIU ; Shaowei HU ; Mengli CHANG ; Jing XU ; Qingqing CAI ; Xinghong LI ; Liying TANG ; Huanhuan WANG ; Hongwei WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):57-67
ObjectiveTo evaluate pharmacological effects of Shengmai injection(SMI)on cerebral ischemia and study its neuroprotective mechanism. MethodsMale specific pathogen-free (SPF) Sprague-Dawley (SD) rats were randomly divided into a sham group, a model group, a low-dose SMI group(3 mL·kg-1), a middle-dose SMI group(6 mL·kg-1), a high-dose SMI group(12 mL·kg-1), and a Ginaton group(4 mL·kg-1)according to the random number table method, with 12 rats in each group. The rat model of cerebral ischemia-reperfusion(MCAO/R)was prepared via the suture method. The administration groups were intraperitoneally injected with corresponding concentrations of SMI or Ginaton injection after reperfusion, which was conducted for 3 consecutive days. The sham group and model group were administered the equivalent volume of physiological saline. The pharmacological effects of SMI on brain injury in MCAO/R rats were evaluated by neurological function scores, cerebral infarction area, hematoxylin-eosin (HE) staining, Nissl staining, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining, and Western blot. The dominant link and key protein of SMI treating cerebral injury were explored using proteomic analysis. The related mechanisms of SMI were further validated using enzyme-linked immunosorbent assay (ELISA), Western blot, and chloride ion fluorescence probe with oxygen-glucose deprivation/reoxygenation(OGD/R)-treated PC12 cells and MCAO/R rats. ResultsCompared with the sham group, the model group showed significantly increased neurological function scores, cerebral infarction area, neuronal apoptosis rate, and expression levels of apoptosis related proteins (P<0.05, P<0.01)and significantly decreased density of Nissl bodies and neurons(P<0.01). Compared with the model group, the SMI groups exhibited significantly decreased neurological function scores, cerebral infarction area, neuronal apoptosis rate, and expression levels of apoptosis related proteins (P<0.05, P<0.01)and significantly increased density of Nissl bodies and neurons (P<0.05). The proteomic analysis results showed that oxidative stress and inflammatory response were important processes of SMI intervening in MCAO/R injury, and the chloride intracellular channel protein 1 (CLIC1) was one of key proteins in its action network. The levels of representative indicators of oxidative stress and inflammatory response in the MCAO/R rats of the SMI groups were significantly reduced, compared with those in the model group(P<0.05, P<0.01), and the expression levels of CLIC1 and downstream NOD-like receptor protein 3 (NLRP3) decreased (P<0.01). In addition, the experimental results based on the OGD/R PC12 cells showed that SMI significantly increased the cell survival rate(P<0.01) and significantly decreased the intracellular chloride ion concentration(P<0.05). ConclusionSMI has neuroprotective effects. Oxidative stress and inflammatory response are key processes of SMI intervening in MCAO/R injury. The potential mechanism is closely related to the regulation of CLIC1.
9.Multidimensional Analysis of Mechanisms of Nuciferine Against Cerebral Ischemia Based on Transcriptomic Data
Yingying QIN ; Peng LI ; Sha CHEN ; Yan LIU ; Jintang CHENG ; Qingxia XU ; Guohua WANG ; Jing ZHOU ; An LIU ; Chang CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):184-191
ObjectiveStudies have shown that nuciferine has anti-cerebral ischemia effect, but the specific mechanism of action has not been elaborated. Based on the transcriptome results, the pharmacological mechanism of nuciferine against cerebral ischemia was analyzed from multiple dimensions including tissue, cell, pathological process, biological process and signaling pathway. MethodsThirty SD rats were randomly divided into the sham group, model group and nuciferine group(40 mg·kg-1) according to weight. Except for the sham group, the model of middle cerebral artery occlusion(MCAO) was established by thread embolization method after 30 min of administration in the other two groups. Twenty-four hours after surgery, transcriptome sequencing was used to detect the gene expression profiles in the cortex penumbra of rat cerebral tissue, and gene ontology(GO) and kyoto encyclopedia of genes and genomes(KEGG) pathway enrichment analysis were performed for differentially expressed genes. The mechanismof nuciferine against cerebral ischemia was analyzed from 5 dimensions of tissue, cell, pathological process, biological process and signaling pathway by the transcriptome-based multi-scale network pharmacology platform(TMNP). ResultsTranscriptome sequencing and gene quantitative analysis showed that 667 genes were significantly reversed by nuciferine. Further enrichment analysis of KEGG and GO suggested that the pathways of nuciferine involved regulating stress response, ion transport, cell proliferation and differentiation, and synaptic function. TMNP research found that at the tissue level, nuciferine could significantly improve the cerebral tissue injury caused by ischemia. At the cellular and pathological levels, nuciferine could play an anti-cerebral ischemia role by improving the state of various nerve cells, mobilizing immune cells, regulating inflammation. And at the level of biological processes and signaling pathways, nuciferine mainly acted on the processes such as vascular remodeling, inflammation-related signaling pathways, and synaptic signaling. ConclusionCombined with the results of transcriptome sequencing, gene quantitative analysis and TMNP, the mechanism of nuciferine against cerebral ischemia may be related to processes such as intervening in stress response and inflammation, affecting vascular remodeling and regulating synaptic function. These results can provide a basis and reference for further study of the pharmacological mechanism of nuciferine against cerebral ischemia.
10.Mechanism of Anmeidan in Improving Learning and Memory in Insomnia Model Rats by Mediating Immunoinflammation via cGAS/STING Signaling Pathway
Bo XU ; Zijing YE ; Ping WANG ; Jing CHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):27-35
ObjectiveTo investigate the mechanism by which Anmeidan improves learning and memory in insomnia rats by regulating the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)/stimulator of interferon genes (STING) signaling pathway to influence immunoinflammation. MethodsSixty SD rats were randomly divided into a blank group, a model group, a suvorexant group (30 mg·kg-1), and Anmeidan low-, medium-, and high-dose groups (4.55, 9.09, and 18.18 g·kg-1), with 10 rats in each group. The insomnia rat model was induced by intraperitoneal injection of p-chlorophenylalanine (PCPA). Anmeidan decoction and normal saline were administered by gavage for 28 days at the corresponding doses. Morris water maze and new object recognition tests were used to assess learning and memory functions. Hematoxylin-eosin (HE) staining and Nissl staining were performed to observe hippocampal cell morphology. Enzyme-linked immunosorbent assay (ELISA) was used to measure the serum levels of interleukin-1 (IL-1), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-12 (IL-12), interleukin-18 (IL-18), and tumor necrosis factor-α (TNF-α). Western blot and Real-time quantitative polymerase chain reaction(Real-time PCR) were used to detect the relative protein and mRNA expression levels of hippocampal cGAS and STING. ResultsCompared with the blank group, the 5-HT content in the model group was significantly reduced (P<0.01). The latency to the upper platform and total distance were significantly increased (P<0.05, P<0.01), while the residence time in the target quadrant and the number of platform crossings were significantly reduced (P<0.01), and the relative recognition index for new objects was significantly lower (P<0.01). The morphology and arrangement of hippocampal neurons were loose and disordered, with a decreased number of intracellular Nissl bodies. The relative expression levels of IL-1, IL-1β, IL-6, IL-8, IL-12, IL-18, TNF-α, cGAS, and STING pathway proteins and mRNA were significantly upregulated (P<0.01). Compared with the model group, the latency to the upper platform in the high-dose Anmeidan group was significantly shortened (P<0.05). In the medium- and high-dose Anmeidan groups and the suvorexant group, the residence time in the target quadrant and the number of platform crossings were significantly increased (P<0.01). The total distance traveled was significantly reduced (P<0.01), and the relative recognition index for new objects was significantly increased (P<0.01). The hippocampal neurons were more neatly arranged, and the number of intracellular Nissl bodies increased. The expression of IL-1, IL-1β, IL-6, IL-8, IL-12, IL-18, TNF-α, and cGAS proteins and mRNA in the medium- and high-dose Anmeidan groups was significantly downregulated (P<0.05, P<0.01). ConclusionAnmeidan improves learning and memory in insomnia rats, possibly by suppressing immunoinflammation through inhibition of the cGAS/STING signaling pathway.


Result Analysis
Print
Save
E-mail