1.Establishment and Validation of a Platinum Resistance Recurrence Prediction Model for Advanced Epithelial Ovarian Cancer
Yaping JIANG ; Haohan WANG ; Xianling NING ; Zujiao YANG ; Wenyan WANG ; Zhoumei LIU ; Xielan YANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):374-380
Objective:To analyze the influencing factors of platinum resistant recurrence in advanced epithelial ovarian cancer(AEOC),establish a nomogram model to predict platinum-resistant recurrence of AEOC,and inter-nally validate it.Methods:The clinicopathological data of 577 AEOC patients who achieved complete remission af-ter initial treatment in the Department of Gynecology,Yunnan Cancer Hospital from June 1,2013 to December 31,2021 were collected.According to whether the platinum free interval(PFI)was less than 6 months,the patients were divided into platinum-resistant recurrence group(130 cases)and non-platinum-resistant group(447 cases,including patients with platinum-sensitive recurrence and no recurrence after 6 months of follow-up).Multivariate Logistic regression analysis was used to screen for the independent risk factors affecting the recurrence of plati-num-resistant patients.Based on the independent risk factors,a nomogram prediction model was established,and Bootstrap method was used for internal verification.The area under the ROC curve(AUC),calibration curve and decision curve(DCA)were used to evaluate the performance of the model.Results:①There were statistically sig-nificant differences in age,bilateral ovarian invasion,FIGO staging,menopause,neoadjuvant chemotherapy(NACT),chemotherapy interval(TTC),platelet count(PLT),platelet count/lymphocyte count ratio(PLR),fibrino-gen/lymphocyte count ratio(FLR),prognostic nutritional index(PNI),albumin(ALB),CA125 level,ascites volume,residual lesions,perioperative chemotherapy frequency,and CA125 half-life between the two groups(P<0.05).②Multivariate Logistic regression analysis showed that bilateral ovarian invasion,FIGO stage Ⅳ,TTC>16 days,ini-tial ascites volume>1000ml,perioperative chemotherapy frequency>9 times,surgery with R2 resection,CA125 half-life>52 days were independent risk factors for recurrence of platinum-resistant AEOC patients(OR>1,P<0.05).③The AUC of the nomogram model constructed based on the above 7 indicators was 0.791(95%Cl 0.747-0.835),and the calibration curve and ideal curve fitted well.DCA showed that the net benefit interval of the model was 0.037-0.800.Conclusions:The nomogram prediction model based on independent risk factors for the recurrence of platinum-resistance of AEOC patients has good discrimination,calibration and clinical appli-cability,which can better predict the recurrence risk of platinum-resistance in AEOC patients after the initial treat-ment.
2.Interpretation of T/WSJD 14.9-2024 Ergonomic Guidelines for the Prevention of Work-related Musculoskeletal Disorders: Part 9: Bus Driving Work
Wenyan HUANG ; Yaling ZOU ; Jie ZHANG ; Ning JIA ; Zhongxu WANG
China Occupational Medicine 2024;51(4):439-442
Bus drivers, as an important occupational group in urban public transportation system, are prone to suffer from work-related musculoskeletal disorders (WMSDs) due to prolonged fixed postures and repetitive movements. The T/WSJD 14.9-2024 Ergonomic Guidelines for the Prevention of Work-related Musculoskeletal Disorders: Part 9: Bus Driving Work is a recommended standard developed to prevent WMSDs among bus drivers. This standard, guided by the principles of T/WSJD 14.1-2020 Ergonomic Principle for the Prevention of Work-related Musculoskeletal Disorders: Part 1: General Principles, is based on a preliminary work of comprehensive review of domestic and international research, workplace on-site surveys and questionnaires, data analysis, and factor identification. It defines the scope of application, identifies relevant risk factors and potential affected body parts, and offers ergonomic solutions in the form of intervention examples. The issuance of this guideline as a organization standard will facilitate the promotion and implementation of intervention measures.
3.Establishment and Validation of a Platinum Resistance Recurrence Prediction Model for Advanced Epithelial Ovarian Cancer
Yaping JIANG ; Haohan WANG ; Xianling NING ; Zujiao YANG ; Wenyan WANG ; Zhoumei LIU ; Xielan YANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):374-380
Objective:To analyze the influencing factors of platinum resistant recurrence in advanced epithelial ovarian cancer(AEOC),establish a nomogram model to predict platinum-resistant recurrence of AEOC,and inter-nally validate it.Methods:The clinicopathological data of 577 AEOC patients who achieved complete remission af-ter initial treatment in the Department of Gynecology,Yunnan Cancer Hospital from June 1,2013 to December 31,2021 were collected.According to whether the platinum free interval(PFI)was less than 6 months,the patients were divided into platinum-resistant recurrence group(130 cases)and non-platinum-resistant group(447 cases,including patients with platinum-sensitive recurrence and no recurrence after 6 months of follow-up).Multivariate Logistic regression analysis was used to screen for the independent risk factors affecting the recurrence of plati-num-resistant patients.Based on the independent risk factors,a nomogram prediction model was established,and Bootstrap method was used for internal verification.The area under the ROC curve(AUC),calibration curve and decision curve(DCA)were used to evaluate the performance of the model.Results:①There were statistically sig-nificant differences in age,bilateral ovarian invasion,FIGO staging,menopause,neoadjuvant chemotherapy(NACT),chemotherapy interval(TTC),platelet count(PLT),platelet count/lymphocyte count ratio(PLR),fibrino-gen/lymphocyte count ratio(FLR),prognostic nutritional index(PNI),albumin(ALB),CA125 level,ascites volume,residual lesions,perioperative chemotherapy frequency,and CA125 half-life between the two groups(P<0.05).②Multivariate Logistic regression analysis showed that bilateral ovarian invasion,FIGO stage Ⅳ,TTC>16 days,ini-tial ascites volume>1000ml,perioperative chemotherapy frequency>9 times,surgery with R2 resection,CA125 half-life>52 days were independent risk factors for recurrence of platinum-resistant AEOC patients(OR>1,P<0.05).③The AUC of the nomogram model constructed based on the above 7 indicators was 0.791(95%Cl 0.747-0.835),and the calibration curve and ideal curve fitted well.DCA showed that the net benefit interval of the model was 0.037-0.800.Conclusions:The nomogram prediction model based on independent risk factors for the recurrence of platinum-resistance of AEOC patients has good discrimination,calibration and clinical appli-cability,which can better predict the recurrence risk of platinum-resistance in AEOC patients after the initial treat-ment.
4.Establishment and Validation of a Platinum Resistance Recurrence Prediction Model for Advanced Epithelial Ovarian Cancer
Yaping JIANG ; Haohan WANG ; Xianling NING ; Zujiao YANG ; Wenyan WANG ; Zhoumei LIU ; Xielan YANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):374-380
Objective:To analyze the influencing factors of platinum resistant recurrence in advanced epithelial ovarian cancer(AEOC),establish a nomogram model to predict platinum-resistant recurrence of AEOC,and inter-nally validate it.Methods:The clinicopathological data of 577 AEOC patients who achieved complete remission af-ter initial treatment in the Department of Gynecology,Yunnan Cancer Hospital from June 1,2013 to December 31,2021 were collected.According to whether the platinum free interval(PFI)was less than 6 months,the patients were divided into platinum-resistant recurrence group(130 cases)and non-platinum-resistant group(447 cases,including patients with platinum-sensitive recurrence and no recurrence after 6 months of follow-up).Multivariate Logistic regression analysis was used to screen for the independent risk factors affecting the recurrence of plati-num-resistant patients.Based on the independent risk factors,a nomogram prediction model was established,and Bootstrap method was used for internal verification.The area under the ROC curve(AUC),calibration curve and decision curve(DCA)were used to evaluate the performance of the model.Results:①There were statistically sig-nificant differences in age,bilateral ovarian invasion,FIGO staging,menopause,neoadjuvant chemotherapy(NACT),chemotherapy interval(TTC),platelet count(PLT),platelet count/lymphocyte count ratio(PLR),fibrino-gen/lymphocyte count ratio(FLR),prognostic nutritional index(PNI),albumin(ALB),CA125 level,ascites volume,residual lesions,perioperative chemotherapy frequency,and CA125 half-life between the two groups(P<0.05).②Multivariate Logistic regression analysis showed that bilateral ovarian invasion,FIGO stage Ⅳ,TTC>16 days,ini-tial ascites volume>1000ml,perioperative chemotherapy frequency>9 times,surgery with R2 resection,CA125 half-life>52 days were independent risk factors for recurrence of platinum-resistant AEOC patients(OR>1,P<0.05).③The AUC of the nomogram model constructed based on the above 7 indicators was 0.791(95%Cl 0.747-0.835),and the calibration curve and ideal curve fitted well.DCA showed that the net benefit interval of the model was 0.037-0.800.Conclusions:The nomogram prediction model based on independent risk factors for the recurrence of platinum-resistance of AEOC patients has good discrimination,calibration and clinical appli-cability,which can better predict the recurrence risk of platinum-resistance in AEOC patients after the initial treat-ment.
5.Establishment and Validation of a Platinum Resistance Recurrence Prediction Model for Advanced Epithelial Ovarian Cancer
Yaping JIANG ; Haohan WANG ; Xianling NING ; Zujiao YANG ; Wenyan WANG ; Zhoumei LIU ; Xielan YANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):374-380
Objective:To analyze the influencing factors of platinum resistant recurrence in advanced epithelial ovarian cancer(AEOC),establish a nomogram model to predict platinum-resistant recurrence of AEOC,and inter-nally validate it.Methods:The clinicopathological data of 577 AEOC patients who achieved complete remission af-ter initial treatment in the Department of Gynecology,Yunnan Cancer Hospital from June 1,2013 to December 31,2021 were collected.According to whether the platinum free interval(PFI)was less than 6 months,the patients were divided into platinum-resistant recurrence group(130 cases)and non-platinum-resistant group(447 cases,including patients with platinum-sensitive recurrence and no recurrence after 6 months of follow-up).Multivariate Logistic regression analysis was used to screen for the independent risk factors affecting the recurrence of plati-num-resistant patients.Based on the independent risk factors,a nomogram prediction model was established,and Bootstrap method was used for internal verification.The area under the ROC curve(AUC),calibration curve and decision curve(DCA)were used to evaluate the performance of the model.Results:①There were statistically sig-nificant differences in age,bilateral ovarian invasion,FIGO staging,menopause,neoadjuvant chemotherapy(NACT),chemotherapy interval(TTC),platelet count(PLT),platelet count/lymphocyte count ratio(PLR),fibrino-gen/lymphocyte count ratio(FLR),prognostic nutritional index(PNI),albumin(ALB),CA125 level,ascites volume,residual lesions,perioperative chemotherapy frequency,and CA125 half-life between the two groups(P<0.05).②Multivariate Logistic regression analysis showed that bilateral ovarian invasion,FIGO stage Ⅳ,TTC>16 days,ini-tial ascites volume>1000ml,perioperative chemotherapy frequency>9 times,surgery with R2 resection,CA125 half-life>52 days were independent risk factors for recurrence of platinum-resistant AEOC patients(OR>1,P<0.05).③The AUC of the nomogram model constructed based on the above 7 indicators was 0.791(95%Cl 0.747-0.835),and the calibration curve and ideal curve fitted well.DCA showed that the net benefit interval of the model was 0.037-0.800.Conclusions:The nomogram prediction model based on independent risk factors for the recurrence of platinum-resistance of AEOC patients has good discrimination,calibration and clinical appli-cability,which can better predict the recurrence risk of platinum-resistance in AEOC patients after the initial treat-ment.
6.Establishment and Validation of a Platinum Resistance Recurrence Prediction Model for Advanced Epithelial Ovarian Cancer
Yaping JIANG ; Haohan WANG ; Xianling NING ; Zujiao YANG ; Wenyan WANG ; Zhoumei LIU ; Xielan YANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):374-380
Objective:To analyze the influencing factors of platinum resistant recurrence in advanced epithelial ovarian cancer(AEOC),establish a nomogram model to predict platinum-resistant recurrence of AEOC,and inter-nally validate it.Methods:The clinicopathological data of 577 AEOC patients who achieved complete remission af-ter initial treatment in the Department of Gynecology,Yunnan Cancer Hospital from June 1,2013 to December 31,2021 were collected.According to whether the platinum free interval(PFI)was less than 6 months,the patients were divided into platinum-resistant recurrence group(130 cases)and non-platinum-resistant group(447 cases,including patients with platinum-sensitive recurrence and no recurrence after 6 months of follow-up).Multivariate Logistic regression analysis was used to screen for the independent risk factors affecting the recurrence of plati-num-resistant patients.Based on the independent risk factors,a nomogram prediction model was established,and Bootstrap method was used for internal verification.The area under the ROC curve(AUC),calibration curve and decision curve(DCA)were used to evaluate the performance of the model.Results:①There were statistically sig-nificant differences in age,bilateral ovarian invasion,FIGO staging,menopause,neoadjuvant chemotherapy(NACT),chemotherapy interval(TTC),platelet count(PLT),platelet count/lymphocyte count ratio(PLR),fibrino-gen/lymphocyte count ratio(FLR),prognostic nutritional index(PNI),albumin(ALB),CA125 level,ascites volume,residual lesions,perioperative chemotherapy frequency,and CA125 half-life between the two groups(P<0.05).②Multivariate Logistic regression analysis showed that bilateral ovarian invasion,FIGO stage Ⅳ,TTC>16 days,ini-tial ascites volume>1000ml,perioperative chemotherapy frequency>9 times,surgery with R2 resection,CA125 half-life>52 days were independent risk factors for recurrence of platinum-resistant AEOC patients(OR>1,P<0.05).③The AUC of the nomogram model constructed based on the above 7 indicators was 0.791(95%Cl 0.747-0.835),and the calibration curve and ideal curve fitted well.DCA showed that the net benefit interval of the model was 0.037-0.800.Conclusions:The nomogram prediction model based on independent risk factors for the recurrence of platinum-resistance of AEOC patients has good discrimination,calibration and clinical appli-cability,which can better predict the recurrence risk of platinum-resistance in AEOC patients after the initial treat-ment.
7.Establishment and Validation of a Platinum Resistance Recurrence Prediction Model for Advanced Epithelial Ovarian Cancer
Yaping JIANG ; Haohan WANG ; Xianling NING ; Zujiao YANG ; Wenyan WANG ; Zhoumei LIU ; Xielan YANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):374-380
Objective:To analyze the influencing factors of platinum resistant recurrence in advanced epithelial ovarian cancer(AEOC),establish a nomogram model to predict platinum-resistant recurrence of AEOC,and inter-nally validate it.Methods:The clinicopathological data of 577 AEOC patients who achieved complete remission af-ter initial treatment in the Department of Gynecology,Yunnan Cancer Hospital from June 1,2013 to December 31,2021 were collected.According to whether the platinum free interval(PFI)was less than 6 months,the patients were divided into platinum-resistant recurrence group(130 cases)and non-platinum-resistant group(447 cases,including patients with platinum-sensitive recurrence and no recurrence after 6 months of follow-up).Multivariate Logistic regression analysis was used to screen for the independent risk factors affecting the recurrence of plati-num-resistant patients.Based on the independent risk factors,a nomogram prediction model was established,and Bootstrap method was used for internal verification.The area under the ROC curve(AUC),calibration curve and decision curve(DCA)were used to evaluate the performance of the model.Results:①There were statistically sig-nificant differences in age,bilateral ovarian invasion,FIGO staging,menopause,neoadjuvant chemotherapy(NACT),chemotherapy interval(TTC),platelet count(PLT),platelet count/lymphocyte count ratio(PLR),fibrino-gen/lymphocyte count ratio(FLR),prognostic nutritional index(PNI),albumin(ALB),CA125 level,ascites volume,residual lesions,perioperative chemotherapy frequency,and CA125 half-life between the two groups(P<0.05).②Multivariate Logistic regression analysis showed that bilateral ovarian invasion,FIGO stage Ⅳ,TTC>16 days,ini-tial ascites volume>1000ml,perioperative chemotherapy frequency>9 times,surgery with R2 resection,CA125 half-life>52 days were independent risk factors for recurrence of platinum-resistant AEOC patients(OR>1,P<0.05).③The AUC of the nomogram model constructed based on the above 7 indicators was 0.791(95%Cl 0.747-0.835),and the calibration curve and ideal curve fitted well.DCA showed that the net benefit interval of the model was 0.037-0.800.Conclusions:The nomogram prediction model based on independent risk factors for the recurrence of platinum-resistance of AEOC patients has good discrimination,calibration and clinical appli-cability,which can better predict the recurrence risk of platinum-resistance in AEOC patients after the initial treat-ment.
8.Establishment and Validation of a Platinum Resistance Recurrence Prediction Model for Advanced Epithelial Ovarian Cancer
Yaping JIANG ; Haohan WANG ; Xianling NING ; Zujiao YANG ; Wenyan WANG ; Zhoumei LIU ; Xielan YANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):374-380
Objective:To analyze the influencing factors of platinum resistant recurrence in advanced epithelial ovarian cancer(AEOC),establish a nomogram model to predict platinum-resistant recurrence of AEOC,and inter-nally validate it.Methods:The clinicopathological data of 577 AEOC patients who achieved complete remission af-ter initial treatment in the Department of Gynecology,Yunnan Cancer Hospital from June 1,2013 to December 31,2021 were collected.According to whether the platinum free interval(PFI)was less than 6 months,the patients were divided into platinum-resistant recurrence group(130 cases)and non-platinum-resistant group(447 cases,including patients with platinum-sensitive recurrence and no recurrence after 6 months of follow-up).Multivariate Logistic regression analysis was used to screen for the independent risk factors affecting the recurrence of plati-num-resistant patients.Based on the independent risk factors,a nomogram prediction model was established,and Bootstrap method was used for internal verification.The area under the ROC curve(AUC),calibration curve and decision curve(DCA)were used to evaluate the performance of the model.Results:①There were statistically sig-nificant differences in age,bilateral ovarian invasion,FIGO staging,menopause,neoadjuvant chemotherapy(NACT),chemotherapy interval(TTC),platelet count(PLT),platelet count/lymphocyte count ratio(PLR),fibrino-gen/lymphocyte count ratio(FLR),prognostic nutritional index(PNI),albumin(ALB),CA125 level,ascites volume,residual lesions,perioperative chemotherapy frequency,and CA125 half-life between the two groups(P<0.05).②Multivariate Logistic regression analysis showed that bilateral ovarian invasion,FIGO stage Ⅳ,TTC>16 days,ini-tial ascites volume>1000ml,perioperative chemotherapy frequency>9 times,surgery with R2 resection,CA125 half-life>52 days were independent risk factors for recurrence of platinum-resistant AEOC patients(OR>1,P<0.05).③The AUC of the nomogram model constructed based on the above 7 indicators was 0.791(95%Cl 0.747-0.835),and the calibration curve and ideal curve fitted well.DCA showed that the net benefit interval of the model was 0.037-0.800.Conclusions:The nomogram prediction model based on independent risk factors for the recurrence of platinum-resistance of AEOC patients has good discrimination,calibration and clinical appli-cability,which can better predict the recurrence risk of platinum-resistance in AEOC patients after the initial treat-ment.
9.Establishment and Validation of a Platinum Resistance Recurrence Prediction Model for Advanced Epithelial Ovarian Cancer
Yaping JIANG ; Haohan WANG ; Xianling NING ; Zujiao YANG ; Wenyan WANG ; Zhoumei LIU ; Xielan YANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):374-380
Objective:To analyze the influencing factors of platinum resistant recurrence in advanced epithelial ovarian cancer(AEOC),establish a nomogram model to predict platinum-resistant recurrence of AEOC,and inter-nally validate it.Methods:The clinicopathological data of 577 AEOC patients who achieved complete remission af-ter initial treatment in the Department of Gynecology,Yunnan Cancer Hospital from June 1,2013 to December 31,2021 were collected.According to whether the platinum free interval(PFI)was less than 6 months,the patients were divided into platinum-resistant recurrence group(130 cases)and non-platinum-resistant group(447 cases,including patients with platinum-sensitive recurrence and no recurrence after 6 months of follow-up).Multivariate Logistic regression analysis was used to screen for the independent risk factors affecting the recurrence of plati-num-resistant patients.Based on the independent risk factors,a nomogram prediction model was established,and Bootstrap method was used for internal verification.The area under the ROC curve(AUC),calibration curve and decision curve(DCA)were used to evaluate the performance of the model.Results:①There were statistically sig-nificant differences in age,bilateral ovarian invasion,FIGO staging,menopause,neoadjuvant chemotherapy(NACT),chemotherapy interval(TTC),platelet count(PLT),platelet count/lymphocyte count ratio(PLR),fibrino-gen/lymphocyte count ratio(FLR),prognostic nutritional index(PNI),albumin(ALB),CA125 level,ascites volume,residual lesions,perioperative chemotherapy frequency,and CA125 half-life between the two groups(P<0.05).②Multivariate Logistic regression analysis showed that bilateral ovarian invasion,FIGO stage Ⅳ,TTC>16 days,ini-tial ascites volume>1000ml,perioperative chemotherapy frequency>9 times,surgery with R2 resection,CA125 half-life>52 days were independent risk factors for recurrence of platinum-resistant AEOC patients(OR>1,P<0.05).③The AUC of the nomogram model constructed based on the above 7 indicators was 0.791(95%Cl 0.747-0.835),and the calibration curve and ideal curve fitted well.DCA showed that the net benefit interval of the model was 0.037-0.800.Conclusions:The nomogram prediction model based on independent risk factors for the recurrence of platinum-resistance of AEOC patients has good discrimination,calibration and clinical appli-cability,which can better predict the recurrence risk of platinum-resistance in AEOC patients after the initial treat-ment.
10.Molecular characteristics of Shiga toxin-producing Escherichia coli in a dairy farm and market-sold raw livestock meats in Suzhou City
Feifei HUANG ; Bo WANG ; Ning ZHANG ; Xiaolong WANG ; Wenyan ZOU
Journal of Preventive Medicine 2022;34(10):1031-1037
Objective:
To investigate the prevalence and molecular characteristics of Shiga toxin-producing Escherichia coli (STEC) in a large dairy farm and market-sold raw livestock meats in Suzhou City, so as to provide the evidence for evaluating human health risks of STEC.
Methods:
Bovine stool samples and breeding environmental samples were collected from a large dairy farm in Suzhou City, and beef, pork and mutton samples were collected from markets in Suzhou City. STEC strains were isolated and virulence genes were characterized in STEC strains using quantitative fluorescence PCR assay. The sensitivity to common antibiotics was tested using the broth microdilution plate method, and the genotypes of STEC were characterized using pulsed-field gel electrophoresis (PFGE).
Results:
A total of 624 samples were collected, including 110 adult cow stool samples, 170 calf stool samples, 60 farm environmental samples, 126 beef samples, 100 minced beef samples, 15 pork samples, 15 minced pork samples, 18 mutton samples and 10 ground mutton samples. A total of 12 non-O157 STEC strains were isolated, with a detection rate of 1.92%, and the detection rates of non-O157 STEC strains were 4.12%, 1.59% and 3.00% in calf stool samples, beef samples and minced beef samples, respectively, while non-O157 STEC strains were not detected in adult cow stool samples, environmental samples, pork samples, minced pork samples, mutton samples, or minced mutton samples. Among the 12 STEC strains, there were 4 strains carrying stx1 gene, 4 strains carrying stx2 gene and 4 strains carrying stx1 and stx2 genes. The 12 STEC strains showed the highest prevalence of resistance to ampicillin, ampicillin/sulbactam, cefotaxime and cefazoline (all were 41.67%), and were sensitive to imithiomycin, polymyxin, azithromycin, cefoxitin and ciprofloxacin, and there were 5 strains with multidrug resistance (41.67%). The 12 STEC strains were characterized with 11 genotypes and had no unique gene fingerprint patterns, with the Dice similarity coefficient ranging from 61.3% to 92.7%.
Conclusions
The detection of non-O157 STEC strains is high in calf stools, and non-O157 STEC strains show a level of resistance to common antibiotics and present molecular polymorphisms. The monitoring and management of STEC strains should be strengthened.


Result Analysis
Print
Save
E-mail