1.Comprehensive analysis of genes related to endometrial receptivity and alternative splicing events in northwest Tibetan cashmere goats
Ji DE ; Langda SUO ; Yuchen WEI ; Bin WANG ; Awangcuoji ; Renqingcuomu ; Jiuzeng CUI ; Lei ZHANG ; Gui BA
Chinese Journal of Tissue Engineering Research 2025;29(7):1429-1436
BACKGROUND:Endometrial receptivity is a key factor in embryo implantation in northwest Tibetan cashmere goats,and the expression of genes related to endometrial receptivity and their variable splicing are still unclear. OBJECTIVE:To analyze and explore genes and variable splicing events related to endometrial receptivity in northwest Tibetan cashmere goats. METHODS:On days 5 and 15 of pregnancy(representing pre receptive endometrium group and receptive endometrium group),three northwest Tibetan cashmere goats were randomly selected.Endometrial tissue was collected and stained with hematoxylin and eosin to observe tissue morphology.Immunohistochemical staining was used to detect the expression of endometrial receptive marker proteins leukemia inhibitory factor and vascular endothelial growth factor.After the total RNA was extracted and the quality test was qualified,transcriptome sequencing was performed to search differentially expressed mRNAs,lncRNAs,circRNAs,and miRNAs,perform functional prediction,and analyze alternative splicing mRNAs and lncRNAs related to endometrial receptivity. RESULTS AND CONCLUSION:(1)Compared with the pre receptive endometrium group,the expression levels of leukemia inhibitory factor and vascular endothelial growth factor proteins in the endometrial tissue of the receptive endometrium group were significantly increased.(2)The sequencing results showed that the differentially expressed genes were mostly mRNA and lncRNA genes,including 250 upregulated mRNAs,193 upregulated lncRNAs,135 downregulated mRNAs,and 123 downregulated lncRNAs,which were significantly enriched in the Wnt,Hedgehog,and Hippo signaling pathways.(3)Alternative splicing event analysis uncovered 8 differentially expressed variable splicing transcripts,which were all mRNA transcripts,including 2 downregulated and 6 upregulated,and were significantly associated with vascular endothelial growth factor receptor signaling,cell motility,and embryonic development.
2.Emergency medical response strategy for the 2025 Dingri, Tibet Earthquake
Chenggong HU ; Xiaoyang DONG ; Hai HU ; Hui YAN ; Yaowen JIANG ; Qian HE ; Chang ZOU ; Si ZHANG ; Wei DONG ; Yan LIU ; Huanhuan ZHONG ; Ji DE ; Duoji MIMA ; Jin YANG ; Qiongda DAWA ; Lü ; JI ; La ZHA ; Qiongda JIBA ; Lunxu LIU ; Lei CHEN ; Dong WU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(04):421-426
This paper systematically summarizes the practical experience of the 2025 Dingri earthquake emergency medical rescue in Tibet. It analyzes the requirements for earthquake medical rescue under conditions of high-altitude hypoxia, low temperature, and low air pressure. The paper provides a detailed discussion on the strategic layout of earthquake medical rescue at the national level, local government level, and through social participation. It covers the construction of rescue organizational systems, technical systems, material support systems, and information systems. The importance of building rescue teams is emphasized. In high-altitude and cold conditions, rapid response, scientific decision-making, and multi-party collaboration are identified as key elements to enhance rescue efficiency. By optimizing rescue organizational structures, strengthening the development of new equipment, and promoting telemedicine technologies, the precision and effectiveness of medical rescue can be significantly improved, providing important references for future similar disaster rescues.
3.Mechanism of Aerobic Exercise in Delaying Brain Aging in Aging Mice by Regulating Tryptophan Metabolism
De-Man ZHANG ; Chang-Ling WEI ; Yuan-Ting ZHANG ; Yu JIN ; Xiao-Han HUANG ; Min-Yan ZHENG ; Xue LI
Progress in Biochemistry and Biophysics 2025;52(6):1362-1372
ObjectiveTo explore the molecular mechanism of aerobic exercise to improve hippocampal neuronal degeneration by regulating tryptophan metabolic pathway. Methods60 SPF-grade C57BL/6J male mice were divided into a young group (2 months old, n=30) and a senile group (12 months old, n=30), and each group was further divided into a control group (C/A group, n=15) and an exercise group (CE/AE group, n=15). An aerobic exercise program was used for 8 weeks. Learning memory ability was assessed by Y-maze, and anxiety-depression-like behavior was detected by absent field experiment. Hippocampal Trp levels were measured by GC-MS. Nissl staining was used to observe the number and morphology of hippocampal neurons, and electron microscopy was used to detect synaptic ultrastructure. ELISA was used to detect the levels of hippocampal Trp,5-HT, Kyn, KATs, KYNA, KMO, and QUIN; Western blot was used to analyze the activities of TPH2, IDO1, and TDO enzymes. ResultsGroup A mice showed significant decrease in learning and memory ability (P<0.05) and increase in anxiety and depressive behaviors (P<0.05); all of AE group showed significant improvement (P<0.05). Hippocampal Trp levels decreased in group A (P<0.05) and increased in AE group (P<0.05). Nidus vesicles were reduced and synaptic structures were degraded in group A (P<0.05), and both were significantly improved in group AE (P<0.05). The levels of Trp, 5-HT, KATs, and KYNA were decreased (P<0.05) and the levels of Kyn, KMO, and QUIN were increased (P<0.05) in group A. The activity of TPH2 was decreased (P<0.05), and the activities of IDO1 and TDO were increased (P<0.05). The AE group showed the opposite trend. ConclusionThe aging process significantly reduces the learning memory ability and increases the anxiety-depression-like behavior of mice, and leads to the reduction of the number of nidus vesicles and degenerative changes of synaptic structure in the hippocampus, whereas aerobic exercise not only effectively enhances the spatial learning memory ability and alleviates the anxiety-depression-like behavior of aging mice, but also improves the morphology and structure of neurons in hippocampal area, which may be achieved by the mechanism of regulating the tryptophan metabolic pathway.
4.Enhancement of tropane alkaloids biosynthesis in Atropa belladonna hariy root by overexpression of HnCYP82M3 and DsTRI genes
De-hui MU ; Yan-hong LIU ; Piao-piao CHEN ; Ai-juan TAN ; Bing-nan MA ; Hang PAN ; Ming-sheng ZHANG ; Wei QIANG
Acta Pharmaceutica Sinica 2024;59(3):775-783
Tropane alkaloids (TAs) are a class of anticholinergic drugs widely used in clinical practice and mainly extracted from plant, among which
5.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.
6.Mechanism of Fucoidan Phlorofucofuroeckol A on Inhibit the Proliferation and Invasion of Colorectal Cancer Cells by Down-regulating TGF-β1/Smads Signaling Pathway
Hong LI ; Wei DONG ; Jie HOU ; De HE
Herald of Medicine 2024;43(4):495-501
Objective To investigate the effect of phlorofucofuroeckol A(PFFE-A)on the proliferation and invasion of colorectal carcinoma cells and its regulation of transforming growth factor-β1(TGF-β1)and mothers against decapentaplegic hom-olog 2/3(Smad2/3)signaling pathway.Methods The cells were processed as follows:the cells were intervened with low,medium and high doses of 50,100,and 150 μmol·L-1 of PFFE-A,respectively and cells in the normal control group were also established.5-Ethynyl-2'-deoxyuridine(EdU)staining was used to detect the cell proliferation.The transwell chamber was used to detect the invasion ability.A xenograft colon cancer nude mice model was used to detect the growth and metastasis ability of the cells in vivo.Real-time quantitative polymerase chain reaction(RT-qPCR)was used to detect the expression of epithelial-to-mes-enchymal transition(EMT)related genes.Western blotting was used to detect the expression levels of TGF-β1 and p-Smad2/3 in cells.Results Compared with normal control group,the proliferation rate,the number of invaded cells,the tumor mass,the pro-portion of tumor metastasis,the expression of N-cadherin mRNA,the expression of TGF-β1 and p-Smad2/3 were significantly de-creased(P<0.05),and the mRNA expression of E-cadherin was significantly increased(P<0.05).All were presented with a sig-nificant dose-dependent(P<0.05).Conclusion PFFE-A could inhibit the EMT process of tumor cells,inhibit the prolifera-tion and invasion of HT29 cells in vitro,and down-regulate the growth and metastasis of HT29 cells in vivo,which may be achieved by down-regulating TGF-β1/Smad2/3 signaling pathway.
7.The evolution and application progress of non-modified drug target discovery CETSA technology
Guang-yuan LIU ; Ya-hui LI ; Wei ZHANG ; De-zhi KONG
Acta Pharmaceutica Sinica 2024;59(1):25-34
Understanding the research methods for drug protein targets is crucial for the development of new drugs, clinical applications of drugs, drug mechanisms, and the pathogenesis of diseases. Cellular thermal shift assay (CETSA), a target research method without modification, has been widely used since its development. Now, there are various CETSA-based technology combinations, such as mass spectrometry-based cellular thermal shift assay (MS-CETSA), isothermal dose response-cellular thermal shift assay (ITDR-CETSA), amplified luminescent proximity homogeneous assay-cellular thermal shift assay (Alpha-CETSA),
8.Effects of Bisphenol A and Its Substitute, Bisphenol F, on the Gut Microbiota in Mice
Ying Li MENG ; Fu Wen TAO ; Jing LI ; Min ZHU ; Bin De ZHONG ; Jing ZHOU ; Xue QIN ; Guo Rong WEI
Biomedical and Environmental Sciences 2024;37(1):19-30
Objective The aim of this study was to assess the impact of bisphenol A (BPA) and its substitute, bisphenol F (BPF), on the colonic fecal community structure and function of mice.Methods We exposed 6-8-week-old male C57BL/6 mice to 5 mg/(kg·day) and 50 μg/(kg·day) of BPA or BPF for 14 days. Fecal samples from the colon were analyzed using 16S rRNA sequencing. Results Gut microbiome community richness and diversity, species composition, and function were significantly altered in mice exposed to BPA or BPF. This change was characterized by elevated levels of Ruminococcaceae UCG-010 and Oscillibacter and decreased levels of Prevotella 9 and Streptococcus. Additionally, pathways related to carbohydrate and amino acid metabolism showed substantial enrichment. Conclusion Mice exposed to different BP analogs exhibited distinct gut bacterial community richness, composition, and related metabolic pathways. Considering the essential role of gut bacteria in maintaining intestinal homeostasis, our study highlights the intestinal toxicity of BPs in vertebrates.
9.Determination of lorlatinib concentration in human plasma by two-dimensional high performance liquid chromatography
Wei LI ; Jing ZHAI ; Ming-Hui LONG ; Yong PAN ; De-Hua LIAO
The Chinese Journal of Clinical Pharmacology 2024;40(9):1327-1330
Objective To establish a method for the determination of lorlatinib in human plasma by two-dimensional high performance liquid chromatography.Methods In the two-dimensional high performance liquid chromatography method,one-dimensional column SX1E-1A(50 mm × 3.5 mm,5 μm)and two-dimensional column SCB-C18(125 mm × 4.6 mm,5 μm)were used with flow rates of 0.8 mL·min-1 and 1.0 mL·min-1,respectively.The column temperature was 40 ℃,The UV detection wavelength was 317 nm,and the sample size was 500 μL.This study investigated the specificity,standard curve and minimum quantification limit,precision and recovery rate,as well as stability of the method.Results The concentration of lolatinib in human plasma showed a good linear relationship in the range of 11.72-1 018.98 ng·mL-1,and the regression equation was y=944.50x-588.90(R2=0.999 7).The minimum limit of quantification was 11.72 ng·mL-1.The extraction recovery rates of the three quality control samples were 97.61%-99.86%,and the intra-day and inter-day precisions were less than 5.29%,indicating that the detection performance of the method was good.Conclusion The method has the characteristics of good stability,high sensitivity and strong anti-interference ability,and is suitable for the determination of loratinib in human plasma.
10.Determination of L-synephrine in rat plasma by UHPLC-MS/MS method in pharmacokinetic study
Wei-Kang CHEN ; De-Hong LIU ; Yang-Bin ZHENG ; Qian-Ying WU ; Yi-Sheng YANG
The Chinese Journal of Clinical Pharmacology 2024;40(15):2256-2260
Objective To establish an ultra-high performance liquid phase tandem triple quadrupole mass spectrometry method for the determination of L-synephrine in rat plasma and to study its pharmacokinetics.Methods The plasma samples were precipitated by acetonitrile vortex,centrifuged,dried by nitrogen,dissolved by mobile phase,and then analyzed.Chromatographic column:Shiseido CAPCELL PAK CR(1∶4)column(2.0 mm × 150.0 mm,5 μm),temperature:25 ℃.Mobile phase:Acetonitrile:0.1%formic acid solution(containing 10 mmoL·L-1 ammonium formate)(73∶27)with flow rate:0.3 mL·min-1 and injection volume was 2 μL.The electrospray ion source ionization and positive ion multiple reaction monitoring mode were used for mass spectrometry detection,and biological sample methodology verification was carried out according to requirements.After intragastric administration with 5 mg·kg-1 dose of L-synephrine,blood samples were collected at different time points to investigate the pharmacokinetic characteristics of L-synephrine in rats.Results L-synephrine showed a good linear relationship in the range of 2-800 ng·mL-1,the lowest limit of quantification of L-synephrine was 2 ng·mL-1.Precision,extraction recovery,matrix effect,accuracy,dilution effect and residual effect all meet the requirements all met the requirements.The main pharmacokinetic parameters:Cmax were(464.83±76.68)ng·L-1,tmax were(0.67±0.26)h,t1/2z were(1.89±0.48)h,AUC0-t were(602.26±42.25)ng·mL-1·h-1,AUC0-∞ were(612.28±41.18)ng·mL-1·h-1.Conclusion The established ultra high performance liquid chromatography-tandem triple quadrupole mass spectrometry method for the determination of L-synephrine in rat plasma is simple and rapid,and can be used for the determination of L-synephrine in plasma.

Result Analysis
Print
Save
E-mail