1.Mechanism of Action of Kaixinsan in Ameliorating Alzheimer's Disease
Xiaoming HE ; Xiaotong WANG ; Dongyu MIN ; Xinxin WANG ; Meijia CHENG ; Yongming LIU ; Yetao JU ; Yali YANG ; Changbin YUAN ; Changyang YU ; Li ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):20-29
		                        		
		                        			
		                        			ObjectiveTo investigate the mechanism of action of Kaixinsan in the treatment of Alzheimer's disease (AD) based on network pharmacology, molecular docking, and animal experimental validation. MethodsThe Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and the Encyclopedia of Traditional Chinese Medicine(ETCM) databases were used to obtain the active ingredients and targets of Kaixinsan. GeneCards, Online Mendelian Inheritance in Man(OMIM), TTD, PharmGKB, and DrugBank databases were used to obtain the relevant targets of AD. The intersection (common targets) of the active ingredient targets of Kaixinsan and the relevant targets of AD was taken, and the network interaction analysis of the common targets was carried out in the STRING database to construct a protein-protein interaction(PPI) network. The CytoNCA plugin within Cytoscape was used to screen out the core targets, and the Metascape platform was used to perform gene ontology(GO) functional enrichment analysis and Kyoto encyclopedia of genes and genomes(KEGG) pathway enrichment analysis. The “drug-active ingredient-target” interaction network was constructed with the help of Cytoscape 3.8.2, and AutoDock Vina was used for molecular docking. Scopolamine (SCOP) was utilized for modeling and injected intraperitoneally once daily. Thirty-two male C57/BL6 mice were randomly divided into blank control (CON) group (0.9% NaCl, n=8), model (SCOP) group (3 mg·kg-1·d-1, n=8), positive control group (3 mg·kg-1·d-1 of SCOP+3 mg·kg-1·d-1 of Donepezil, n=8), and Kaixinsan group (3 mg·kg-1·d-1 of SCOP+6.5 g·kg-1·d-1 of  Kaixinsan, n=8). Mice in each group were administered with 0.9% NaCl, Kaixinsan, or Donepezil by gavage twice a day for 14 days. Morris water maze experiment was used to observe the learning memory ability of mice. Hematoxylin-eosin (HE) staining method was used to observe the pathological changes in the CA1 area of the mouse hippocampus. Enzyme linked immunosorbent assay(ELISA) was used to determine the serum acetylcholine (ACh) and acetylcholinesterase (AChE) contents of mice. Western blot method was used to detect the protein expression levels of signal transducer and activator of transcription 3(STAT3) and nuclear transcription factor(NF)-κB p65 in the hippocampus of mice. ResultsA total of 73 active ingredients of Kaixinsan were obtained, and 578 potential targets (common targets) of Kaixinsan for the treatment of AD were screened out. Key active ingredients included kaempferol, gijugliflozin, etc.. Potential core targets were STAT3, NF-κB p65, et al. GO functional enrichment analysis obtained 3 124 biological functions, 254 cellular building blocks, and 461 molecular functions. KEGG pathway enrichment obtained 248 pathways, mainly involving cancer-related pathways, TRP pathway, cyclic adenosine monophosphate(cAMP) pathway, and NF-κB pathway. Molecular docking showed that the binding of the key active ingredients to the target targets was more stable. Morris water maze experiment indicated that Kaixinsan could improve the learning memory ability of SCOP-induced mice. HE staining and ELISA results showed that Kaixinsan had an ameliorating effect on central nerve injury in mice. Western blot test indicated that Kaixinsan had a down-regulating effect on the levels of NF-κB p65 phosphorylation and STAT3 phosphorylation in the hippocampal tissue of mice in the SCOP model. ConclusionKaixinsan can improve the cognitive impairment function in SCOP model mice and may reduce hippocampal neuronal damage and thus play a therapeutic role in the treatment of AD by regulating NF-κB p65, STAT3, and other targets involved in the NF-κB signaling pathway. 
		                        		
		                        		
		                        		
		                        	
2.Molecular expression and pathological morphologic changes of extraocular muscle in concomitant exotropia
Xiaorui ZHOU ; Zhibin WANG ; Yu DI
International Eye Science 2025;25(1):55-58
		                        		
		                        			
		                        			 Strabismus, a common ocular condition, arises from an imbalance in the extraocular muscle force and deviation of the visual axis due to various factors. Concomitant strabismus is the predominant form of exotropia, with its pathogenesis believed to be associated with hereditary factors, abnormal eye accommodation function, and anomalies in binocular anatomy. Surgical intervention is often necessary for aligning the visual axes of both eyes and facilitating the recovery and establishment of stereoscopic vision. Despite this, the etiology of concomitant exotropia remains incompletely understood. This review consolidates recent research on aberrant molecular expression and pathological morphological changes within extraocular muscles affected by concomitant exotropia, offering insights into disease causation at molecular and pathological levels to underpin future preventive measures and clinical interventions. The discussion encompasses histological changes observed under electron microscopy as well as the impact of heavy chain protein, satellite cells, cadherin, growth factors on extraocular muscle protein expression. 
		                        		
		                        		
		                        		
		                        	
3.Anatomical Importance Between Neural Structure and Bony Landmark in Neuroventral Decompression for Posterior Endoscopic Cervical Discectomy
Xin WANG ; Tao HU ; Chaofan QIN ; Bo LEI ; Mingxin CHEN ; Ke MA ; Qingyan LONG ; Qingshuai YU ; Si CHENG ; Zhengjian YAN
Neurospine 2025;22(1):286-296
		                        		
		                        			 Objective:
		                        			This study aims to investigate the anatomical relationship among the nerve roots, intervertebral space, pedicles, and intradural rootlets of the cervical spine for improving operative outcomes and exploring neuroventral decompression approach in posterior endoscopic cervical discectomy (PECD). 
		                        		
		                        			Methods:
		                        			Cervical computed tomography myelography imaging data from January 2021 to May 2023 were collected, and the RadiAnt DICOM Viewer Software was employed to conduct multiplane reconstruction. The following parameters were recorded: width of nerve root (WN), nerve root-superior pedicle distance (NSPD), nerve root-inferior pedicle distance (NIPD), and the relationship between the intervertebral space and the nerve root (shoulder, anterior, and axillary). Additionally, the descending angles between the spinal cord and the ventral (VRA) and dorsal (DRA) rootlets were measured. 
		                        		
		                        			Results:
		                        			The WN showed a gradual increase from C4 to C7, with measurements notably larger in men compared to women. The NSPD decreased gradually from the C2–3 to the C5–6 levels. However, the NIPD showed an opposite level-related change, notably larger than the NSPD at the C4–5, C5–6, and C7–T1 levels. Furthermore, significant differences in NIPD were observed between different age groups and genders. The incidence of the anterior type exhibited a gradual decrease from the C2–3 to the C5–6 levels. Conversely, the axillary type exhibited an opposite level-related change. Additionally, the VRA and DRA decreased as the level descended, with measurements significantly larger in females. 
		                        		
		                        			Conclusion
		                        			A prediction of the positional relationship between the intervertebral space and the nerve root is essential for the direct neuroventral decompression in PECD to avoid damaging the neural structures. The axillary route of the nerve root offers a safer and more effective pathway for performing direct neuroventral decompression compared to the shoulder approach. 
		                        		
		                        		
		                        		
		                        	
4.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
		                        		
		                        			 Objective:
		                        			Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms. 
		                        		
		                        			Methods:
		                        			By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway. 
		                        		
		                        			Results:
		                        			In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway. 
		                        		
		                        			Conclusion
		                        			In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair. 
		                        		
		                        		
		                        		
		                        	
5.Anatomical Importance Between Neural Structure and Bony Landmark in Neuroventral Decompression for Posterior Endoscopic Cervical Discectomy
Xin WANG ; Tao HU ; Chaofan QIN ; Bo LEI ; Mingxin CHEN ; Ke MA ; Qingyan LONG ; Qingshuai YU ; Si CHENG ; Zhengjian YAN
Neurospine 2025;22(1):286-296
		                        		
		                        			 Objective:
		                        			This study aims to investigate the anatomical relationship among the nerve roots, intervertebral space, pedicles, and intradural rootlets of the cervical spine for improving operative outcomes and exploring neuroventral decompression approach in posterior endoscopic cervical discectomy (PECD). 
		                        		
		                        			Methods:
		                        			Cervical computed tomography myelography imaging data from January 2021 to May 2023 were collected, and the RadiAnt DICOM Viewer Software was employed to conduct multiplane reconstruction. The following parameters were recorded: width of nerve root (WN), nerve root-superior pedicle distance (NSPD), nerve root-inferior pedicle distance (NIPD), and the relationship between the intervertebral space and the nerve root (shoulder, anterior, and axillary). Additionally, the descending angles between the spinal cord and the ventral (VRA) and dorsal (DRA) rootlets were measured. 
		                        		
		                        			Results:
		                        			The WN showed a gradual increase from C4 to C7, with measurements notably larger in men compared to women. The NSPD decreased gradually from the C2–3 to the C5–6 levels. However, the NIPD showed an opposite level-related change, notably larger than the NSPD at the C4–5, C5–6, and C7–T1 levels. Furthermore, significant differences in NIPD were observed between different age groups and genders. The incidence of the anterior type exhibited a gradual decrease from the C2–3 to the C5–6 levels. Conversely, the axillary type exhibited an opposite level-related change. Additionally, the VRA and DRA decreased as the level descended, with measurements significantly larger in females. 
		                        		
		                        			Conclusion
		                        			A prediction of the positional relationship between the intervertebral space and the nerve root is essential for the direct neuroventral decompression in PECD to avoid damaging the neural structures. The axillary route of the nerve root offers a safer and more effective pathway for performing direct neuroventral decompression compared to the shoulder approach. 
		                        		
		                        		
		                        		
		                        	
6.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
		                        		
		                        			 Objective:
		                        			Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms. 
		                        		
		                        			Methods:
		                        			By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway. 
		                        		
		                        			Results:
		                        			In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway. 
		                        		
		                        			Conclusion
		                        			In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair. 
		                        		
		                        		
		                        		
		                        	
7.Electrical stimulation induces miR-741-3p to regulate Radil and promote Schwann cell migration
Qing LIU ; Bo GAO ; Xiao YANG ; Yu JIANG ; Pei WANG
Chinese Journal of Tissue Engineering Research 2025;29(19):4038-4043
		                        		
		                        			
		                        			BACKGROUND:More and more animal experiments and clinical studies have confirmed that electrical stimulation can promote the repair of peripheral nerve injury,but the specific mechanism is not yet fully understood. OBJECTIVE:To investigate the effect of electrical stimulation-induced miR-741-3p regulating Radil on Schwann cell migration. METHODS:(1)Twelve male SD rats were randomly divided into electrical stimulation group and control group.The electrical stimulation group received continuous electrical stimulation for 7 days after sciatic nerve compression injury,while the control group was not treated after sciatic nerve compression.The injured nerves were taken on day 7 after operation.The expression difference of miR-741-3p between the two groups was verified by fluorescence in situ hybridization.(2)The target genes of miR-741-3p were predicted by miRDB,TargetScan,and miRWalk databases.(3)Schwann cells were transfected with miR-741-3p mimetic and its control,miR-741-3p inhibitor and its control,Radil siRNA and its control,miR-741-3p inhibitor+Radil siRNA and miR-741-3p inhibitor+siRNA control.The transfection efficiency was detected by RT-PCR.The migration ability of Schwann cells was detected by Transwell chamber. RESULTS AND CONCLUSION:(1)The fluorescence intensity of miR-741-3p in the electrical stimulation group was lower than that in the control group.(2)The results of database prediction showed that 69 genes might be the target genes of miR-741-3p.Radil was one of the predicted target genes,which was mainly involved in cell adhesion and migration.(3)Compared with the miR-741-3p inhibitor control group,the number of Schwann cell migration increased in the miR-741-3p inhibitor group(P<0.05).Compared with the miR-741-3p mimic control group,the number of Schwann cell migration in the miR-741-3p mimic group decreased(P<0.05).Compared with the siRNA control group,the number of Schwann cell migration was decreased in the Radil siRNA group(P<0.05).(4)Compared with miR-741-3p inhibitor control group,the expression level of Radil was increased in miR-741-3p inhibitor group.Compared with miR-741-3p mimic control group,the expression level of Radil was decreased in miR-741-3p mimic group.(5)Compared with miR-741-3p inhibitor+siRNA control group,the number of Schwann cell migration was reduced in miR-741-3p inhibitor+Radil siRNA group(P<0.05).The results showed that electrical stimulation promoted the migration of Schwann cells by down-regulating miR-741-3p and targeting Radil gene.
		                        		
		                        		
		                        		
		                        	
8.Investigation of parasitic infection in food on market in Qingpu District of Shanghai during 2015‒2023
Chengcheng WANG ; Changpo LIN ; Yanli DAI ; Zhicheng ZHANG ; Qunqun LIU ; Yadong MA ; Xueqin YU
Shanghai Journal of Preventive Medicine 2025;37(3):260-264
		                        		
		                        			
		                        			ObjectiveTo understand the status of parasitic infection in the food sold on market in Qingpu District of Shanghai, and to provide an evidence for the development of prevention and control strategies for parasitic infection applicable to Qingpu District. MethodsAquatic products, meat products and other foodstuffs sold on online shops, at farm product markets, supermarkets/foodstores and restaurants were sampled in Qingpu District, Shanghai, during 2015‒2023, based on the administrative division of Qingpu District. The parasitic infection in the food samples were examined using pressing method and digestion for detecting metacercariae in freshwater products and pickled products, using dissection microscopy for Anisakis larvae in seawater products, Taenia cysticercus and Trichinella encysted larvae in meat products. ResultsA total of 1 079 samples of food products were examined during 2015‒2023, with a total parasite infection rate of 13.44%. The total parasite infection rate of freshwater fish products was 3.40% (16/471), and the difference of parasite infection rates between different freshwater fish species was statistically significant (χ2=229.609, P=0.001). The total infection rate of Clonorchis sinensis was 3.18% (15/471), which had been detected in Pseudorasbora parva, Cyprinidae rhodeus, and Carassius auratus, with a positive rate of 77.78% (7/9), 50.00% (5/10) and 3.90% (3/77), respectively. Metorchis orientalis was detected in in Pseudorasbora parva, with a positive rate of 33.33% (3/9). The positive rate of Gnathostoma spinigerum (third-stage larvae) was 0.81%. Paragonimus metacercariae were not detected in the freshwater shrimps and crabs. The infection rate of seawater fish products was 26.46%. The difference of parasite infection rate in seawater fishes was statistically significant (χ2=109.181, P=0.001). A total of 53 pork and beef samples were tested, none was detected with Trichinella larva cysts, Taenia solium metacercariae, and Taenia saginata metacercariae. The total infection rate of pickled yellow mud snail products was 58.11% (43/74). Paragonimus metacercariae was not detected in any of the pickled aquatic product samples. ConclusionThere are different degrees of parasitic infection in freshwater products, seawater products and pickled aquatic products in Qingpu District of Shanghai. The risk of parasite infection from raw or undercooked foods is high. Health education on healthy dietary practices such as throughly cooked food should be strengthened for local residents. 
		                        		
		                        		
		                        		
		                        	
9.The Mechanisms of Neurotransmitters and Their Receptors in Exercise Central Fatigue
Lu-Lu GUAN ; Bo-Te QI ; Du-Shuo FENG ; Jing-Wang TAN ; Meng CAO ; Yu ZOU
Progress in Biochemistry and Biophysics 2025;52(6):1321-1336
		                        		
		                        			
		                        			Exercise fatigue is a complex physiological and psychological phenomenon that includes peripheral fatigue in the muscles and central fatigue in the brain. Peripheral fatigue refers to the loss of force caused at the distal end of the neuromuscular junction, whereas central fatigue involves decreased motor output from the primary motor cortex, which is associated with modulations at anatomical sites proximal to nerves that innervate skeletal muscle. The central regulatory failure reflects a progressive decline in the central nervous system’s capacity to recruit motor units during sustained physical activity. Emerging evidence highlights the critical involvement of central neurochemical regulation in fatigue development, particularly through neurotransmitter-mediated modulation. Alterations in neurotransmitter release and receptor activity could influence excitatory and inhibitory signal pathways, thus modulating the perception of fatigue and exercise performance. Increased serotonin (5-HT) could increase perception of effort and lethargy, reduce motor drive to continue exercising, and contribute to exercise fatigue. Decreased dopamine (DA) and noradrenaline (NE) neurotransmission can negatively impact arousal, mood, motivation, and reward mechanisms and impair exercise performance. Furthermore, the serotonergic and dopaminergic systems interact with each other; a low 5-HT/DA ratio enhances motor motivation and improves performance, and a high 5-HT/DA ratio heightens fatigue perception and leads to decreased performance. The expression and activity of neurotransmitter receptors would be changed during prolonged exercise to fatigue, affecting the transmission of nerve signals. Prolonged high-intensity exercise causes excess 5-HT to overflow from the synaptic cleft to the axonal initial segment and activates the 5-HT1A receptor, thereby inhibiting the action potential of motor neurons and affecting the recruitment of motor units. During exercise to fatigue, the DA secretion is decreased, which blocks the binding of DA to D1 receptor in the caudate putamen and inhibits the activation of the direct pathway of the basal ganglia to suppress movement, meanwhile the binding of DA to D2 receptor is restrained in the caudate putamen, which activates the indirect pathway of the basal ganglia to influence motivation. Furthermore, other neurotransmitters and their receptors, such as adenosine (ADO), glutamic acid (Glu), and γ‑aminobutyric acid (GABA) also play important roles in regulating neurotransmitter balance and fatigue. The occurrence of central fatigue is not the result of the action of a single neurotransmitter system, but a comprehensive manifestation of the interaction between multiple neurotransmitters. This review explores the important role of neurotransmitters and their receptors in central motor fatigue, reveals the dynamic changes of different neurotransmitters such as 5-HT, DA, NE, and ADO during exercise, and summarizes the mechanisms by which these neurotransmitters and their receptors regulate fatigue perception and exercise performance through complex interactions. Besides, this study presents pharmacological evidence that drugs such as agonists, antagonists, and reuptake inhibitors could affect exercise performance by regulating the metabolic changes of neurotransmitters. Recently, emerging interventions such as dietary bioactive components intake and transcranial electrical stimulation may provide new ideas and strategies for the prevention and alleviation of exercise fatigue by regulating neurotransmitter levels and receptor activity. Overall, this work offers new theoretical insights into the understanding of exercise central fatigue, and future research should further investigate the relationship between neurotransmitters and their receptors and exercise fatigue. 
		                        		
		                        		
		                        		
		                        	
10.The Role and Mechanism of Aerobic Exercise in Enhancing Insulin Sensitivity by Reducing Circulating Glutamate
Xiao-Rui XING ; Qin SUN ; Huan-Yu WANG ; Ruo-Bing FAN ; Ru WANG
Progress in Biochemistry and Biophysics 2025;52(6):1373-1385
		                        		
		                        			
		                        			ObjectiveTo explore the role and potential mechanism of circulating glutamate in enhancing insulin sensitivity by aerobic exercise. This research may provide a novel strategy for preventing metabolic diseases through precise exercise interventions. MethodsTo investigate the effects of elevated circulating glutamate on insulin sensitivity and its potential mechanisms, 18 male C57BL/6 mice aged 6 to 8 weeks were randomly divided into 3 groups: a control group (C), a group receiving 500 mg/kg glutamate supplementation (M), and a group receiving 1 000 mg/kg glutamate supplementation (H). The intervention lasted for 12 weeks, with treatments administered 6 d per week. Following the intervention, an insulin tolerance test (ITT) and a glucose tolerance test (GTT) were conducted. Circulating glutamate levels were measured using a commercial kit, and the activity of the skeletal muscle InsR/IRS1/PI3K/AKT signaling pathway was analyzed via Western blot. To further investigate the role of circulating glutamate in enhancing insulin sensitivity through aerobic exercise, 30 male C57BL/6 mice were randomly assigned to 3 groups: a control group (CS), an exercise intervention group (ES), and an exercise combined with glutamate supplementation group (EG). The ES group underwent treadmill-based aerobic exercise, while the EG group received glutamate supplementation at a dosage of 1 000 mg/kg in addition to aerobic exercise. The intervention lasted for 10 weeks, with sessions occurring 6 d per week, and the same procedures were followed afterward. To further elucidate the mechanism by which glutamate modulates the InsR/IRS1/PI3K/AKT signaling pathway, C2C12 myotubes were initially subjected to graded glutamate treatment (0, 0.5, 1, 3, 5, 10 mmol/L) to determine the optimal concentration for cellular intervention. Subsequently, the cells were divided into 3 groups: a control group (C), a glutamate intervention group (G), and a glutamate combined with MK801 (an NMDA receptor antagonist) intervention group (GK). The G group was treated with 5 mmol/L glutamate, while the GK group received 50 μmol/L MK801 in addition to 5 mmol/L glutamate. After 24 h of intervention, the activity of the InsR/IRS1/PI3K/AKT signaling pathway was analyzed using Western blot. ResultsCompared to the mice in group C, the circulating glutamate levels, the area under curve (AUC) of ITT, and the AUC of GTT in the mice of group H were significantly increased. Additionally, the expression levels of p-InsRβ, IRS1, p-AKT, and p-mTOR proteins in skeletal muscle were significantly downregulated. Compared to the mice in group CS, the circulating glutamate levels, the AUC of ITT, and the AUC of GTT in the mice of group ES were significantly reduced. Additionally, the expression levels of p-InsRβ, IRS1, p-AKT, and p-mTOR proteins in skeletal muscle of group ES mice were significantly upregulated. There were no significant changes observed in the mice of group EG. Compared to the cells in group 0 mmol/L, the expression levels of p-InsRβ, p-IRS1, p-PI3K, and p-AKT proteins in cells of group 5 mmol/L were significantly downregulated. Compared to the cells in group C, the expression levels of p-InsRβ, p-IRS1, p-PI3K, and p-AKT proteins in the cells of group G were significantly downregulated. No significant changes were observed in the cells of group GK. ConclusionLong-term aerobic exercise can improve insulin sensitivity by lowering circulating levels of glutamate. This effect may be associated with the upregulation of the InsR/IRS1/AKT signaling pathway activity in skeletal muscle. Furthermore, glutamate can weaken the activity of the InsR/IRS1/PI3K/AKT signaling pathway in skeletal muscle, potentially by binding to NMDAR expressed in skeletal muscle. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail