1.Effects of coal mine dust on lung function in rats
LIU Yang ; LI Meng ; LU Liyuan ; WANG Ru ; YANG He ; ZHANG Huifang
Journal of Preventive Medicine 2025;37(1):96-101
Objective:
To explore the impacts of coal mine dust on lung function in rats, so as to provide the basis for the early prevention and treatment of coal worker's pneumoconiosis.
Methods:
Seventy-two SPF-grade 8-week-old male Sprague-Dawley rats were randomly divided into the coal dust group, the coal-silica dust group, the silica dust group and the control group. The rats in the first three groups of rats were administered 1 mL corresponding dust suspension into the lungs using non-exposure tracheal instillation, while the rats in the control group were administered 1 mL normal saline. Respiratory rate (f), forced vital capacity (FVC), peak expiratory flow (PEF) and dynamic pulmonary compliance (Cdyn) were measured at 1, 3 and 6 months after dust exposure. Lung tissues were collected to measure reactive oxygen species (ROS) and adenosine triphosphate (ATP) levels using corresponding ELISA kits and ATP assay kits, respectively. The relative mRNA expressions of peroxisome proliferators-activated receptor gamma coactivator 1-alpha (PGC-1α) and mitochondrial transcription factor A (TFAM) were detected using real-time fluorescent quantitative polymerase chain reaction assay. The relative protein expressions of PGC-1α and TFAM were detected using Western blotting.
Results:
There was no interaction between dust type and exposure duration on f (P>0.05), but there were interactions on FVC, PEF and Cdyn (all P<0.05). Compared with the control group at 6 months after dust exposure, the f of the rats in the silica dust group were increased, while the FVC and PEF of the rats in the coal-silica dust and silica dust groups were decreased, and Cdyn of the rats in the coal dust, coal-silica dust and silica dust groups were decreased (all P<0.05). There were interactions between dust type and exposure duration on ROS and ATP levels, the relative mRNA and protein expressions of PGC-1α and TFAM (all P<0.05). Compared with the control group at 3 and 6 months after dust exposure, the ROS levels in the rats in the coal dust, coal-silica dust and silica dust groups were increased, while the ATP levels, the relative mRNA and protein expressions of PGC-1α and TFAM were decreased (all P<0.05).
Conclusion
The lung function impairment in rats caused by different types of coal mine dust is related to PGC-1α-mediated mitochondrial biogenesis dysfunction, which leads to increased ROS levels, decreased ATP and TFAM levels.
2.Five new triterpenoid saponins from the kernels of Momordica cochinchinensis
Ru DING ; Jia-qi WANG ; Yi-yang LUO ; Yong-long HAN ; Xiao-bo LI ; Meng-yue WANG
Acta Pharmaceutica Sinica 2025;60(2):442-448
Five saponins were isolated from the kernels of
3.Epidemiological characteristics and influencing factors of atrial fibrillation in Suqian in 2019-2023
Journal of Public Health and Preventive Medicine 2025;36(2):105-109
Objective To analyze epidemiological characteristics and influencing factors of atrial fibrillation (AF) in Suqian in 2019-2023. Methods A total of 1 869 patients with AF admitted to medical institutions in Suqian from January 2019 to December 2023 were selected as the survey subjects. The diagnosis and treatment data of the AF patients were retrospectively analyzed to explore epidemiological characteristics. A total of 2 000 healthy controls during the same period were selected as the control group. The influencing factors of AF were analyzed by univariate and multivariate logistic regression models. Results The incidence of AF in Suqian increased with the increase of year, age and labor intensity. The incidence rate was higher (>50%) in patients with male gender, old age, education level of junior high school and below, city living, heavy physical labor, smoking history, drinking history and underlying diseases (coronary heart disease, stroke, heart failure, hyperuricemia, hyperthyroidism, hypertension, diabetes mellitus, and hyperlipidemia). Multivariate logistic regression analysis showed that hyperuricemia, hyperthyroidism, cognitive dysfunction and anxiety/depression were influencing factors of AF in Suqian (P<0.05). Conclusion From 2019 to 2023, AF risk is relatively high in patients in Suqian, which is closely related to hyperuricemia, hyperthyroidism, cognitive dysfunction and anxiety/depression.
4.Endothelial cell-specific bone morphogenetic protein 2 affects angiogenesis:bioinformatics analysis and experimental validation
Ru YAN ; Kairu WANG ; Feiyan ZHANG ; Shaobin JIA ; Guangzhi CONG
Chinese Journal of Tissue Engineering Research 2025;29(1):103-110
BACKGROUND:Angiogenesis is the main treatment target of cardiovascular diseases.Bone morphogenetic protein 2 can modulate angiogenesis,but the regulatory effect of endothelial cell-specific bone morphogenetic protein 2 on angiogenesis is unclear. OBJECTIVE:To investigate the effect of endothelial-specific bone morphogenetic protein 2 on angiogenesis. METHODS:(1)Bioinformatics analysis:Cellular expression specificity and abundance of bone morphogenetic protein 2 were meta-analyzed by the PanglaoDB single-cell transcriptome database.The endothelial cell transcriptome sequencing dataset of the mouse hindlimb model and endocardial transcriptome dataset of mice overexpressing bone morphogenetic protein 2 were reanalyzed to evaluate the effect of endothelial cell bone morphogenetic protein 2 on the angiogenesis pathway.(2)Validation in vivo:After establishing the mouse hindlimb model,we compared the blood perfusion between the affected and sham limb at 7,14,and 21 days.The expression of the colocation of bone morphogenetic protein 2 and CD31 was explored by immunofluorescence and immunohistochemical staining.(3)Validation in vitro:The cultured human umbilical vein endothelial cells in vitro were divided into a control group,a hypoxia group,and a bone morphogenetic protein 2 inhibitor Noggin intervention group.After being cultured for 24 hours,the angiogenesis of endothelial cells in each group was observed. RESULTS AND CONCLUSION:(1)Endothelial cells are an important cell subgroup expressing bone morphogenetic protein 2.Both in the mouse hindlimb ischemia model and endocardial cells overexpressing bone morphogenetic protein 2,bone morphogenetic protein 2 was significantly up-regulated,and the angiogenesis pathway was significantly activated.(2)In the mouse hindlimb model,bone morphogenetic protein 2-positive blood vessels around neoangiogenesis increased significantly at 7 days of ischemia(P<0.05),and decreased significantly after 2 weeks of ischemia(P<0.001).(3)In umbilical vein endothelial cells cultured in vitro,after hypoxic intervention,the migration and sprouting of endothelial cells increased significantly,and the expression of angiogenesis factors vascular endothelial growth factor and platelet-derived growth factor was significantly increased.Noggin significantly reduced hypoxia-induced endothelial cell angiogenesis(P<0.001)and down-regulated the expression of vascular endothelial growth factor and platelet-derived growth factor(P<0.01).(4)These findings verify that endothelial cell-specific bone morphogenetic protein 2 can regulate angiogenesis,and targeting endothelial cell bone morphogenetic protein 2 is a promising way to improve angiogenesis.
5.Association of Genetically Predicted Obesity and Stool Frequency: Evidence From an Observational and Mendelian Randomization Study
Ke HAN ; Xiangyao WANG ; Shimin CHEN ; Xiaotong NIU ; Yan WANG ; Jingyuan XIANG ; Nan RU ; Miao LIU ; Ningli CHAI ; Enqiang LINGHU
Journal of Neurogastroenterology and Motility 2025;31(2):267-275
Background/Aims:
Obesity is associated with several gastrointestinal (GI) disorders and has been identified as a potential risk factor for various GI symptoms. Bowel frequency is an important indicator of bowel function. However, the causal link between obesity and gastrointestinal motility remains uncertain. This study aims to determine the causal effect of overall and central obesity on stool frequency.
Methods:
Four obesity-related anthropometric indicators–body mass index, body fat percentage, waist circumference (WC), and waist-tohip ratio (WHR)–were investigated. Individual-level baseline information from the UK Biobank was used to explore observational associations between obesity and stool frequency. Additionally, summary-level data from published genome-wide association studies were subjected to two-sample Mendelian randomization (MR) analyses to examine causal associations.
Results:
For all 4 indicators of obesity, higher levels of obesity were associated with more frequent bowel movements after adjusting for demographic characteristics, lifestyle, and dietary factors. After rigorous screening, 482 body mass index single nucleotide polymorphisms (SNPs), 7 body fat percentage SNPs, 48 WC SNPs, and 287 WHR SNPs were identified as instrument variables for MR analysis. The MR results were generally consistent with observational findings, proving that the associations observed in the overall obesity indicators were causal. For central obesity, the association between WHR and stool frequency remained consistent in both analysis phases, whereas WC showed a multidirectional association.
Conclusions
Obesity-related anthropometric indicators were causally associated with increased stool frequency in the overall and central obesity groups. Weight loss could be a potential approach to improve gastrointestinal regularity in individuals with obesity.
6.Association of Genetically Predicted Obesity and Stool Frequency: Evidence From an Observational and Mendelian Randomization Study
Ke HAN ; Xiangyao WANG ; Shimin CHEN ; Xiaotong NIU ; Yan WANG ; Jingyuan XIANG ; Nan RU ; Miao LIU ; Ningli CHAI ; Enqiang LINGHU
Journal of Neurogastroenterology and Motility 2025;31(2):267-275
Background/Aims:
Obesity is associated with several gastrointestinal (GI) disorders and has been identified as a potential risk factor for various GI symptoms. Bowel frequency is an important indicator of bowel function. However, the causal link between obesity and gastrointestinal motility remains uncertain. This study aims to determine the causal effect of overall and central obesity on stool frequency.
Methods:
Four obesity-related anthropometric indicators–body mass index, body fat percentage, waist circumference (WC), and waist-tohip ratio (WHR)–were investigated. Individual-level baseline information from the UK Biobank was used to explore observational associations between obesity and stool frequency. Additionally, summary-level data from published genome-wide association studies were subjected to two-sample Mendelian randomization (MR) analyses to examine causal associations.
Results:
For all 4 indicators of obesity, higher levels of obesity were associated with more frequent bowel movements after adjusting for demographic characteristics, lifestyle, and dietary factors. After rigorous screening, 482 body mass index single nucleotide polymorphisms (SNPs), 7 body fat percentage SNPs, 48 WC SNPs, and 287 WHR SNPs were identified as instrument variables for MR analysis. The MR results were generally consistent with observational findings, proving that the associations observed in the overall obesity indicators were causal. For central obesity, the association between WHR and stool frequency remained consistent in both analysis phases, whereas WC showed a multidirectional association.
Conclusions
Obesity-related anthropometric indicators were causally associated with increased stool frequency in the overall and central obesity groups. Weight loss could be a potential approach to improve gastrointestinal regularity in individuals with obesity.
7.Association of Genetically Predicted Obesity and Stool Frequency: Evidence From an Observational and Mendelian Randomization Study
Ke HAN ; Xiangyao WANG ; Shimin CHEN ; Xiaotong NIU ; Yan WANG ; Jingyuan XIANG ; Nan RU ; Miao LIU ; Ningli CHAI ; Enqiang LINGHU
Journal of Neurogastroenterology and Motility 2025;31(2):267-275
Background/Aims:
Obesity is associated with several gastrointestinal (GI) disorders and has been identified as a potential risk factor for various GI symptoms. Bowel frequency is an important indicator of bowel function. However, the causal link between obesity and gastrointestinal motility remains uncertain. This study aims to determine the causal effect of overall and central obesity on stool frequency.
Methods:
Four obesity-related anthropometric indicators–body mass index, body fat percentage, waist circumference (WC), and waist-tohip ratio (WHR)–were investigated. Individual-level baseline information from the UK Biobank was used to explore observational associations between obesity and stool frequency. Additionally, summary-level data from published genome-wide association studies were subjected to two-sample Mendelian randomization (MR) analyses to examine causal associations.
Results:
For all 4 indicators of obesity, higher levels of obesity were associated with more frequent bowel movements after adjusting for demographic characteristics, lifestyle, and dietary factors. After rigorous screening, 482 body mass index single nucleotide polymorphisms (SNPs), 7 body fat percentage SNPs, 48 WC SNPs, and 287 WHR SNPs were identified as instrument variables for MR analysis. The MR results were generally consistent with observational findings, proving that the associations observed in the overall obesity indicators were causal. For central obesity, the association between WHR and stool frequency remained consistent in both analysis phases, whereas WC showed a multidirectional association.
Conclusions
Obesity-related anthropometric indicators were causally associated with increased stool frequency in the overall and central obesity groups. Weight loss could be a potential approach to improve gastrointestinal regularity in individuals with obesity.
8.The Role and Mechanism of Aerobic Exercise in Enhancing Insulin Sensitivity by Reducing Circulating Glutamate
Xiao-Rui XING ; Qin SUN ; Huan-Yu WANG ; Ruo-Bing FAN ; Ru WANG
Progress in Biochemistry and Biophysics 2025;52(6):1373-1385
ObjectiveTo explore the role and potential mechanism of circulating glutamate in enhancing insulin sensitivity by aerobic exercise. This research may provide a novel strategy for preventing metabolic diseases through precise exercise interventions. MethodsTo investigate the effects of elevated circulating glutamate on insulin sensitivity and its potential mechanisms, 18 male C57BL/6 mice aged 6 to 8 weeks were randomly divided into 3 groups: a control group (C), a group receiving 500 mg/kg glutamate supplementation (M), and a group receiving 1 000 mg/kg glutamate supplementation (H). The intervention lasted for 12 weeks, with treatments administered 6 d per week. Following the intervention, an insulin tolerance test (ITT) and a glucose tolerance test (GTT) were conducted. Circulating glutamate levels were measured using a commercial kit, and the activity of the skeletal muscle InsR/IRS1/PI3K/AKT signaling pathway was analyzed via Western blot. To further investigate the role of circulating glutamate in enhancing insulin sensitivity through aerobic exercise, 30 male C57BL/6 mice were randomly assigned to 3 groups: a control group (CS), an exercise intervention group (ES), and an exercise combined with glutamate supplementation group (EG). The ES group underwent treadmill-based aerobic exercise, while the EG group received glutamate supplementation at a dosage of 1 000 mg/kg in addition to aerobic exercise. The intervention lasted for 10 weeks, with sessions occurring 6 d per week, and the same procedures were followed afterward. To further elucidate the mechanism by which glutamate modulates the InsR/IRS1/PI3K/AKT signaling pathway, C2C12 myotubes were initially subjected to graded glutamate treatment (0, 0.5, 1, 3, 5, 10 mmol/L) to determine the optimal concentration for cellular intervention. Subsequently, the cells were divided into 3 groups: a control group (C), a glutamate intervention group (G), and a glutamate combined with MK801 (an NMDA receptor antagonist) intervention group (GK). The G group was treated with 5 mmol/L glutamate, while the GK group received 50 μmol/L MK801 in addition to 5 mmol/L glutamate. After 24 h of intervention, the activity of the InsR/IRS1/PI3K/AKT signaling pathway was analyzed using Western blot. ResultsCompared to the mice in group C, the circulating glutamate levels, the area under curve (AUC) of ITT, and the AUC of GTT in the mice of group H were significantly increased. Additionally, the expression levels of p-InsRβ, IRS1, p-AKT, and p-mTOR proteins in skeletal muscle were significantly downregulated. Compared to the mice in group CS, the circulating glutamate levels, the AUC of ITT, and the AUC of GTT in the mice of group ES were significantly reduced. Additionally, the expression levels of p-InsRβ, IRS1, p-AKT, and p-mTOR proteins in skeletal muscle of group ES mice were significantly upregulated. There were no significant changes observed in the mice of group EG. Compared to the cells in group 0 mmol/L, the expression levels of p-InsRβ, p-IRS1, p-PI3K, and p-AKT proteins in cells of group 5 mmol/L were significantly downregulated. Compared to the cells in group C, the expression levels of p-InsRβ, p-IRS1, p-PI3K, and p-AKT proteins in the cells of group G were significantly downregulated. No significant changes were observed in the cells of group GK. ConclusionLong-term aerobic exercise can improve insulin sensitivity by lowering circulating levels of glutamate. This effect may be associated with the upregulation of the InsR/IRS1/AKT signaling pathway activity in skeletal muscle. Furthermore, glutamate can weaken the activity of the InsR/IRS1/PI3K/AKT signaling pathway in skeletal muscle, potentially by binding to NMDAR expressed in skeletal muscle.
9.Effect of Carbohydrate Intake Order on Metabolic Profiles of Endurance Exercise Mice in a High-temperature Environment
Huan-Yu WANG ; Guo-Dong ZHOU ; Ru-Wen WANG ; Jun QIU ; Ru WANG
Progress in Biochemistry and Biophysics 2025;52(6):1529-1543
ObjectiveThe primary objective of this study was to investigate the effects of carbohydrate intake order on post-exercise recovery and metabolic regulation under heat stress, particularly in models of exercise induced fatigue. Given the increasing significance of optimizing nutritional strategies to support performance in extreme environmental conditions, this study aimed to provide experimental evidence that contributes to a better understanding of how the sequence in which carbohydrates are consumed impacts exercise recovery, metabolic homeostasis, and fatigue alleviation in a high-temperature environment. MethodsA mouse model of exercise-induced fatigue was established under high-temperature (35°C) to simulate heat stress. The subjects were divided into 3 distinct groups based on their carbohydrate intake order: the “mixed intake” group (HOT_MIX), where all macronutrients (carbohydrates, proteins, and fats) were consumed in a balanced ratio; the “carbohydrate-first intake” group (HOT_CHO), where carbohydrates were consumed first followed by other macronutrients; the “carbohydrate-later intake” group (HOT_PRO), where proteins and fats were consumed prior to carbohydrates. Each group underwent a 7 d intervention period with daily intake according to their designated group. Exercise performance was assessed using rotarod retention time test, and biomarkers of muscle damage, such as lactate dehydrogenase (LDH), creatine kinase (CK), lactate (LD), alanine aminotransferase (ALT), and non-esterified fatty acids (NEFA), were measured. Furthermore, targeted metabolomics analyses were conducted to investigate metabolic shifts in response to different dietary strategies, and KEGG pathway enrichment analysis was employed to explore the biological mechanisms underlying these changes. ResultsThe findings demonstrated that the HOT_PRO group exhibited a significantly improved performance in the rotarod test, with a longer retention time compared to both the HOT_MIX and HOT_CHO groups (P<0.05). Additionally, this group showed significantly reduced levels of muscle damage markers such as LDH and CK, indicating that the carbohydrate-later intake strategy helped alleviate exercise-induced muscle injury. Metabolomic profiling of the HOT_PRO group showed marked increases in alanine, creatine, and flavin adenine dinucleotide (FAD), indicating shifts in amino acid metabolism and oxidative metabolism. Conversely, metabolites such as spermidine, cholesterol sulfate, cholesterol, and serine were significantly reduced in the HOT_PRO group, pointing to alterations in lipid and sterol metabolism. Further analysis of the differential metabolites revealed that these changes were primarily associated with key metabolic pathways, including glycine-serine-threonine metabolism, primary bile acid biosynthesis, taurine and hypotaurine metabolism, and steroid hormone biosynthesis. These pathways are essential for energy production, antioxidant defense, and muscle recovery, suggesting that the carbohydrate-later feeding strategy may promote metabolic homeostasis and improve exercise recovery by enhancing these critical metabolic processes. ConclusionThe results of this study support the hypothesis that consuming carbohydrates after proteins and fats during exercise recovery enhances metabolic homeostasis and accelerates recovery under heat stress. This strategy effectively modulates energy, amino acid, and lipid-related pathways, which are crucial for improving endurance performance and mitigating fatigue in high-temperature environments. The findings suggest that carbohydrate-later intake could be a promising nutritional strategy for athletes and individuals exposed to heat during physical activity. Furthermore, the study provides valuable insights into how different nutrient timing strategies can impact exercise recovery and metabolic regulation, paving the way for more personalized and effective nutritional interventions in extreme environmental conditions.
10.Effects of Different Modes in Hypoxic Training on Metabolic Improvements in Obese Individuals: a Systematic Review With Meta-analysis on Randomized Controlled Trail
Jie-Ping WANG ; Xiao-Shi LI ; Ru-Wen WANG ; Yi-Yin ZHANG ; Feng-Zhi YU ; Ru WANG
Progress in Biochemistry and Biophysics 2025;52(6):1587-1604
This paper aimed to systematically evaluate the effects of hypoxic training at different fraction of inspired oxygen (FiO2) on body composition, glucose metabolism, and lipid metabolism in obese individuals, and to determine the optimal oxygen concentration range to provide scientific evidence for personalized and precise hypoxic exercise prescriptions. A systematic search was conducted in the Cochrane Library, PubMed, Web of Science, Embase, and CNKI databases for randomized controlled trials and pre-post intervention studies published up to March 31, 2025, involving hypoxic training interventions in obese populations. Meta-analysis was performed using RevMan 5.4 software to assess the effects of different fraction of inspired oxygen (FiO2≤14% vs. FiO2>14%) on BMI, body fat percentage, waist circumference, fasting blood glucose, insulin, HOMA-IR, triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C), with subgroup analyses based on oxygen concentration. A total of 22 studies involving 292 participants were included. Meta-analysis showed that hypoxic training significantly reduced BMI (mean difference (MD)=-2.29,95%CI: -3.42 to -1.17, P<0.000 1), body fat percentage (MD=-2.32, 95%CI: -3.16 to -1.47, P<0.001), waist circumference (MD=-3.79, 95%CI: -6.73 to -0.85, P=0.01), fasting blood glucose (MD=-3.58, 95%CI: -6.23 to -0.93, P=0.008), insulin (MD=-1.60, 95%CI: -2.98 to -0.22, P=0.02), TG (MD=-0.18, 95%CI: -0.25 to -0.12, P<0.001), and LDL-C (MD=-0.25, 95%CI: -0.39 to -0.11, P=0.000 3). Greater improvements were observed under moderate hypoxic conditions with FiO2>14%. Changes in HOMA-IR (MD=-0.74, 95%CI: -1.52 to 0.04,P=0.06) and HDL-C (MD=-0.09, 95%CI: -0.21 to 0.02, P=0.11) were not statistically significant. Hypoxic training can significantly improve body composition, glucose metabolism, and lipid metabolism indicators in obese individuals, with greater benefits observed under moderate hypoxia (FiO>14%). As a key parameter in hypoxic exercise interventions, the precise setting of oxygen concentration is crucial for optimizing intervention outcomes.


Result Analysis
Print
Save
E-mail