2.PHF5A Promotes Proliferation and Migration of Non-Small Cell Lung Cancer by Regulating of PI3K/AKT Pathway.
Houhui WANG ; Fanglei LIU ; Chunxue BAI ; Nuo XU
Chinese Journal of Lung Cancer 2023;26(1):10-16
BACKGROUND:
There have been many significant advances in the diagnosis and treatment of non-small cell lung cancer (NSCLC). However, the mechanism underlying the progression of NSCLC is still not clear. Plant homodomain finger-like domain-containing protein 5A (PHF5A) plays an important role in processes of chromatin remodeling, morphological development of tissues and organs and maintenance of stem cell pluripotency. This study aims to investigate the role of PHF5A in the proliferation and migration of NSCLC.
METHODS:
A549 and PC-9 PHF5A overexpression cell lines were constructed. PHF5A expression was decreased in H292 and H1299 cells by using siRNA. Flow cytometry was used to detect the cell cycle. MTT assay and clone formation assay were used to examine the proliferative ability of NSCLC, while migration assay and wound healing assay were performed to evaluate the ability of migration. Western blot analysis was used to measure the expressions of PI3K, p-AKT and the associated downstream factors.
RESULTS:
Up-regulation of PHF5A in A549 and PC-9 cells increased the proliferation rate, while down-regulation of PHF5A in H292 and H1299 cells inhibited the proliferation rate at 24 h, 48 h and 72 h (P<0.05). The metastatic ability was elevated in the PHF5A-overexpresion groups, while reduced in the PHF5A-down-regulation group (P<0.05). In addition, reduced expression of PHF5A induced cell cycle arrest at G1/S phase (P<0.05). Furthermore, decreased expression of PHF5A reduced the expression levels of PI3K, phosphorylation of AKT, c-Myc (P<0.05) and elevated the expression of p21 (P<0.05).
CONCLUSIONS
These results demonstrated that PHF5A may play an important role in progression of NSCLC by regulating the PI3K/AKT signaling pathway.
Humans
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Lung Neoplasms/pathology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Cell Movement/genetics*
;
Gene Expression Regulation, Neoplastic
;
Trans-Activators/genetics*
;
RNA-Binding Proteins/metabolism*
3.High expression of MYBL2 promotes progression and predicts a poor survival outcome of prostate cancer.
Ming YANG ; Xu Dong ZHU ; Yang SHEN ; Qi HE ; Yuan QIN ; Yi Qun SHAO ; Lin YUAN ; He Song YE
Journal of Southern Medical University 2022;42(8):1109-1118
OBJECTIVE:
To explore the correlation of MYB proto-oncogene like 2 (MYBL2) with biological behaviors and clinical prognosis of prostate cancer (PCa).
METHODS:
We detected Mybl2 mRNA expression in 45 pairs of PCa and adjacent tissues using real-time quantitative PCR, and analyzed the correlation of high (23 cases) and low expression (22 cases) of Mybl2 with clinicopathological features and prognosis of the patients using nonparametric test, Kaplan-Meier survival analysis and univariate and multivariate Cox regression. The results were verified by analysis of the data from Cancer Genome Atlas (TCGA) microarray database, and the molecular pathways were identified by gene set enrichment analysis (GSEA). The CIBERPORT algorithm was used to identify the correlations between Mybl2 expression and tumor microenvironment of PCa. We also tested the effects of MYBL2 knockdown on proliferation and invasion of PCa cell lines using cell counting kit-8 and Transwell assays and observed the growth of PC3 cell xenograft with MYBL2 knockdown in nude mice and the expression levels of Ki-67 in the xenograft using immunohistochemistry.
RESULTS:
Mybl2 expression was significantly elevated in PCa tissues in close correlation with Gleason score and clinical and pathological stage of the tumor (P < 0.01) but not with the patients' age. Kaplan-Meier analysis indicated a significant negative correlation of high Mybl2 expression with recurrence-free survival (P < 0.05), but not with the overall survival of the patients. The data from TCGA suggested that clinical and pathological stages were independent prognostic factors for recurrence-free survival, and our data indicated that clinical stage and Gleason score were independent prognostic factors of PCa (P < 0.05). GSEA suggested that Mybl2 expression was related with the pathways involving immune function, cell adhesion, and cytokine secretion; CIBERPORT analysis suggested the involvement of Mybl2 expression with memory B cells and resting mast cells (P < 0.05). In LNCaP and PC-3 cells, MYBL2 knockdown significantly inhibited cell proliferation and invasion (P < 0.05); in the tumor-bearing nude mice, the xenografts derived from PC-3 cells with MYBL2 knockdown exhibited a lowered mean tumor weight and positivity rate for Ki67 (P < 0.05).
CONCLUSION
Mybl2 is an oncogene related with multiple pathological indicators of PCa and can serve as a potential prognostic marker as well as a therapeutic target for patients with PCa.
Animals
;
Cell Cycle Proteins/genetics*
;
Cell Proliferation
;
Humans
;
Kaplan-Meier Estimate
;
Male
;
Mice
;
Mice, Nude
;
Prognosis
;
Prostatic Neoplasms/pathology*
;
Trans-Activators/genetics*
;
Tumor Microenvironment
4.UPF1 increases amino acid levels and promotes cell proliferation in lung adenocarcinoma via the eIF2α-ATF4 axis.
Lei FANG ; Huan QI ; Peng WANG ; Shiqing WANG ; Tianjiao LI ; Tian XIA ; Hailong PIAO ; Chundong GU
Journal of Zhejiang University. Science. B 2022;23(10):863-875
Up-frameshift 1 (UPF1), as the most critical factor in nonsense-mediated messenger RNA (mRNA) decay (NMD), regulates tumor-associated molecular pathways in many cancers. However, the role of UPF1 in lung adenocarcinoma (LUAD) amino acid metabolism remains largely unknown. In this study, we found that UPF1 was significantly correlated with a portion of amino acid metabolic pathways in LUAD by integrating bioinformatics and metabolomics. We further confirmed that UPF1 knockdown inhibited activating transcription factor 4 (ATF4) and Ser51 phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), the core proteins in amino acid metabolism reprogramming. In addition, UPF1 promotes cell proliferation by increasing the amino-acid levels of LUAD cells, which depends on the function of ATF4. Clinically, UPF1 mRNA expression is abnormal in LUAD tissues, and higher expression of UPF1 and ATF4 was significantly correlated with poor overall survival (OS) in LUAD patients. Our findings reveal that UPF1 is a potential regulator of tumor-associated amino acid metabolism and may be a therapeutic target for LUAD.
Activating Transcription Factor 4/genetics*
;
Adenocarcinoma of Lung
;
Amino Acids
;
Cell Proliferation
;
Eukaryotic Initiation Factor-2
;
Humans
;
Lung Neoplasms
;
RNA Helicases/metabolism*
;
RNA, Messenger/metabolism*
;
Trans-Activators/metabolism*
5.The role and mechanism of tumor metastasis-associated gene 1 in radiosensitivity of HeLa cells.
Fang Zhou SUN ; Jin Song WANG ; Chun Xiao LI ; Ting WANG ; Jing Yao ZHANG ; Yan Tong ZHOU ; Hai Juan WANG ; Hai Li QIAN
Chinese Journal of Oncology 2022;44(9):962-967
Objective: To determine the effect of tumor metastasis-associated gene 1 (MTA1) on the sensitivity of HeLa cells to radiotherapy, and to clarify its molecular mechanism. Methods: The transcriptome differences between MTA1 knocked down Hela cells and control cells were analyzed, and the differentially expressed genes (DEGs) was used to perform Gene-Set Enrichment Analysis (GSEA) and Gene Ontology (GO) cluster analysis. Flow cytometry was used to detect apoptosis in MTA1-overexpressed HeLa cells and control cells before and after 10 Gy X-ray irradiation. Cloning formation assay and real-time cellular analysis (RTCA) were used to monitor the cell proliferation before and after 2 Gy X-ray irradiation. To dissect the underlying molecular mechanisms of MTA1 affecting the sensitivity of radiotherapy, the proteins encoded by the DEGs were selected to construct a protein-protein interaction network, the expression of γ-H2AX was detected by immunofluorescence assay, and the expression levels of γ-H2AX, β-CHK2, PARP and cleaved caspase 3 were measured by western blot. Results: By transcriptome sequencing analysis, we obtained 649 DEGs, of which 402 genes were up-regulated in MTA1 knockdown HeLa cells and 247 genes were down-regulated. GSEA results showed that DEGs associated with MTA1 were significantly enriched in cellular responses to DNA damage repair processes. The results of flow cytometry showed that the apoptosis rate of MTA1 over-expression group (15.67±0.81)% after 10 Gy X-ray irradiation was significantly lower than that of the control group [(40.27±2.73)%, P<0.001]. After 2 Gy X-ray irradiation, the proliferation capacity of HeLa cells overexpressing MTA1 was higher than that of control cells (P=0.024). The numbers of colon in MTA1 over-expression group before and after 2 Gy X-ray irradiation were (176±7) and (137±7) respectively, higher than (134±4) and (75±4) in control HeLa cells (P<0.05). The results of immunofluorescence assay showed that there was no significant expression of γ-H2AX in MTA1 overexpressed and control HeLa cells without X-ray irradiation. Western blot results showed that the expression level of β-CHK2 in MTA1-overexpressing HeLa cells (1.04±0.06) was higher than that in control HeLa cells (0.58±0.25, P=0.036) after 10 Gy X-ray irradiation. The expression levels of γ-H2AX, PARP, and cleaved caspase 3 were 0.52±0.13, 0.52±0.22, and 0.63±0.18, respectively, in HeLa cells overexpressing MTA1, which were lower than 0.87±0.06, 0.78±0.12 and 0.90±0.12 in control cells (P>0.05). Conclusions: This study showed that MTA1 is significantly associated with radiosensitivity in cervical cancer HeLa cells. MTA1 over-expression obviously reduces the sensitivity of cervical cancer cells to X-ray irradiation. Mechanism studies initially indicate that MTA1 reduces the radiosensitivity of cervical cancer cells by inhibiting cleaved caspase 3 to suppress apoptosis and increasing β-CHK2 to promote DNA repair.
Apoptosis/genetics*
;
Caspase 3/metabolism*
;
Female
;
HeLa Cells
;
Humans
;
Poly(ADP-ribose) Polymerase Inhibitors
;
Radiation Tolerance/genetics*
;
Repressor Proteins/metabolism*
;
Trans-Activators/metabolism*
;
Uterine Cervical Neoplasms/radiotherapy*
6.Identification of TCF3-ZNF384 fusion by transcriptome sequencing in B cell acute lymphoblastic leukemia and its laboratory and clinical characteristics.
Qisheng WU ; Fang WANG ; Junfang YANG ; Xue CHEN ; Xiaoli MA ; Panxiang CAO ; Yang ZHANG ; Daijing NIE ; Jiaqi CHEN ; Xiaosu ZHOU ; Jiancheng FANG ; Mingyue LIU ; Min ZHANG ; Ping WU ; Tong WANG ; Hongxing LIU
Chinese Journal of Medical Genetics 2021;38(4):351-354
OBJECTIVE:
To detect fusion gene with pathological significance in a patient with refractory and relapsed acute B cell lymphoblastic leukemia (B-ALL) and to explore its laboratory and clinical characteristics.
METHODS:
Transcriptome sequencing was used to detect potential fusion transcripts. Other laboratory results and clinical data of the patient were also analyzed.
RESULTS:
The patient was found to harbor TCF3 exon 17-ZNF384 exon 7 in-frame fusion transcript. The minimal residual disease (MRD) has remained positive after multiple chemotherapy protocols including CD19-, CD22- targeted chimeric antigen receptor T cells immunotherapy. The patient eventually achieved complete remission and sustained MRD negativity after allogeneic hemopoietic stem cell transplantation (allo-HSCT).
CONCLUSION
Transcriptome sequencing can effectively detect potential fusion genes with clinical significance in leukemia. TCF3-ZNF384 positive B-ALL has unique laboratory and clinical characteristics, may not well respond to chemotherapy and immunotherapy, and is more likely to relapse. Timely allo-HSCT treatment may help such patients to achieve long-term disease-free survival. TCF3-ZNF384 positive B-ALL is not uncommon in pediatric patients but has not been effectively identified.
B-Lymphocytes
;
Basic Helix-Loop-Helix Transcription Factors/genetics*
;
Child
;
Hematopoietic Stem Cell Transplantation
;
Humans
;
Laboratories
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy*
;
Trans-Activators/genetics*
;
Transcriptome
7.Tripterygium wilfordii multiglycoside-induced hepatotoxicity via inflammation and apoptosis in zebrafish.
Xiu-Ying DUAN ; Rui-Jiao MA ; Chung-Der HSIAO ; Zhen-Zhou JIANG ; Lu-Yong ZHANG ; Yun ZHANG ; Ke-Chun LIU
Chinese Journal of Natural Medicines (English Ed.) 2021;19(10):750-757
Tripterygium wilfordii multiglycoside (GTW) is a commonly used compound for the treatment of rheumatoid arthritis (RA) and immune diseases in clinical practice. However, it can induce liver injury and the mechanism of hepatotoxicity is still not clear. This study was designed to investigate GTW-induced hepatotoxicity in zebrafish larvae and explore the mechanism involved. The 72 hpf (hours post fertilization) zebrafish larvae were administered with different concentrations of GTW for three days and their mortality, malformation rate, morphological changes in the liver, transaminase levels, and histopathological changes in the liver of zebrafish larvae were detected. The reverse transcription-polymerase chain reaction (RT-PCR) was used to examine the levels of microRNA-122 (miR-122) and genes related to inflammation, apoptosis, cell proliferation and liver function. The results showed that GTW increased the mortality of zebrafish larvae, while significant malformations and liver damage occurred. The main manifestations were elevated levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), significant liver atrophy, vacuoles in liver tissue, sparse cytoplasm, and unclear hepatocyte contours. RT-PCR results showed that the expression of miR-122 significantly decreased by GTW; the mRNA levels of inflammation-related genes il1β, il6, tnfα, il10, cox2 and ptges significantly increased; the mRNA level of tgfβ significantly decreased; the mRNA levels of apoptosis-related genes, caspase-8 and caspase-9, significantly increased; the mRNA level of bcl2 significantly decreased; the mRNA levels of cell proliferation-related genes, top2α and uhrf1, significantly reduced; the mRNA levels of liver function-related genes, alr and cyp3c1, significantly increased; and the mRNA level of cyp3a65 significantly decreased. In zebrafish, GTW can cause increased inflammation, enhanced apoptosis, decreased cell proliferation, and abnormal expression of liver function-related genes, leading to abnormal liver structure and function and resulting in hepatotoxicity.
Animals
;
Apoptosis
;
Chemical and Drug Induced Liver Injury/genetics*
;
Inflammation/genetics*
;
Trans-Activators
;
Tripterygium
;
Zebrafish/genetics*
;
Zebrafish Proteins
8.The Role of HBx Gene Mutations in PLA R Positive Hepatitis-B-associated Membranous Nephropathy.
Hui DONG ; Yan XU ; Ting XU ; Jing Yi SUN ; Quan Dong BU ; Yan Fei WANG ; Lin CHE ; Long ZHAO ; Wei JIANG
Biomedical and Environmental Sciences 2020;33(4):269-272
Adult
;
Female
;
Gene Expression
;
Glomerulonephritis, Membranous
;
etiology
;
genetics
;
pathology
;
Hepatitis B
;
complications
;
Hepatitis B virus
;
genetics
;
metabolism
;
Humans
;
Male
;
Middle Aged
;
Mutation
;
Receptors, Phospholipase A2
;
genetics
;
metabolism
;
Trans-Activators
;
genetics
;
metabolism
;
Viral Regulatory and Accessory Proteins
;
genetics
;
metabolism
9.MRTF-A Regulates the Proliferation and Migration of Non-small Cell Lung Cancer Cells of A549 through HOTAIR.
Kun ZHANG ; Yubin ZHOU ; Gang FENG ; Fuchun ZENG
Chinese Journal of Lung Cancer 2019;22(2):82-89
BACKGROUND:
Non-small cell lung cancer (NSCLC) is a kind of lung cancer, because its high incidence has been concerned. Therefore, it has great significance to reveal the pathogenesis of NSCLC. As a transcriptional regulatory factor, MATF-A plays an important role in the development of multiple tumors, can regulate the migration process of a variety of tumor cells. HOTAIR is a long non-coding RNA (LncRNA) found in recent years, which expresses abnormally in multiple tumors and is involved in the proliferation and migration of multiple tumors. The aim of this study is to explore the role of MRTF-A through HOTAIR to regulate the proliferation and migration of NSCLC cell A549 cell.
METHODS:
We constructed the overexpression plasmid and interfering plasmid of MRTF-A, and detected the effect of MRTF-A on the proliferation and migration of A549 cells by CCK8 and wound healing methods respectively. Then, we designed the siRNA of HOTAIR to detect its effect on the proliferation and migration of A549 cells. Through qRT-PCR, we detected the effect of MRTF-A on HOTAIR expression. Finally, we constructed HOTAIR's promoter, and detect the effect of MRTF-A on HOTAIR promoter activity by luciferase reporter gene test.
RESULTS:
Overexpression of MRTF-A promotes the proliferation and migration of A549 cells, while silent MRTF-A inhibits its proliferation and migration. Next, we found that interfered HOTAIR expression inhibited the proliferation of A549 cells. We found that MRTF-A could influence the expression of HOTAIR and regulate the activity of HOTAIR promoter.
CONCLUSIONS
MRTF-A regulates the proliferation and migration of A549 cell through HOTAIR.
A549 Cells
;
Carcinoma, Non-Small-Cell Lung
;
genetics
;
metabolism
;
physiopathology
;
Cell Movement
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Promoter Regions, Genetic
;
RNA, Long Noncoding
;
genetics
;
metabolism
;
Trans-Activators
;
genetics
;
metabolism
10.Transcription and regulation of hepatitis B virus genes in host sperm cells.
Ying ZHONG ; Dong-Ling LIU ; Mohamed Morsi M AHMED ; Peng-Hao LI ; Xiao-Ling ZHOU ; Qing-Dong XIE ; Xiao-Qing XU ; Ting-Ting HAN ; Zhi-Wei HOU ; Ji-Hua HUANG ; Lan XU ; Tian-Hua HUANG
Asian Journal of Andrology 2018;20(3):284-289
To investigate whether transcription of hepatitis B virus (HBV) gene occurs in human sperm, total RNA was extracted from sperm of patients with chronic HBV infection (test-1), from donor sperm transfected with a plasmid containing the full-length HBV genome (test-2), and from nontransfected donor sperm (control), used as the template for reverse transcription-polymerase chain reaction (RT-PCR). Positive bands for HBV DNA were observed in the test groups but not in the control. Next, to identify the role of host genes in regulating viral gene transcription in sperm, total RNA was extracted from 2-cell embryos derived from hamster oocytes fertilized in vitro by HBV-transfected (test) or nontransfected (control) human sperm and successively subjected to SMART-PCR, suppression subtractive hybridization, T/A cloning, bacterial amplification, microarray hybridization, sequencing and the Basic Local Alignment Search Tool (BLAST) search to isolate differentially expressed genes. Twenty-nine sequences showing significant identity to five human gene families were identified, with chorionic somatomammotropin hormone 2 (CSH2), eukaryotic translation initiation factor 4 gamma 2 (EIF4G2), pterin-4 alpha-carbinolamine dehydratase 2 (PCBD2), pregnancy-specific beta-1-glycoprotein 4 (PSG4) and titin (TTN) selected to represent target genes. Using real-time quantitative RT-PCR (qRT-PCR), when CSH2 and PCBD2 (or EIF4G2, PSG4 and TTN) were silenced by RNA interference, transcriptional levels of HBV s and x genes significantly decreased (or increased) (P < 0.05). Silencing of a control gene in sperm did not significantly change transcription of HBV s and x genes (P > 0.05). This study provides the first experimental evidence that transcription of HBV genes occurs in human sperm and is regulated by host genes.
Animals
;
Connectin/genetics*
;
Cricetinae
;
Eukaryotic Initiation Factor-4G/genetics*
;
Gene Expression Regulation/genetics*
;
Gene Silencing
;
Growth Hormone/genetics*
;
Hepatitis B Surface Antigens/genetics*
;
Hepatitis B virus/genetics*
;
Hepatitis B, Chronic/virology*
;
Humans
;
Hydro-Lyases/metabolism*
;
Male
;
Pregnancy-Specific beta 1-Glycoproteins/genetics*
;
RNA, Viral/analysis*
;
Spermatozoa/virology*
;
Trans-Activators/genetics*
;
Transcription, Genetic
;
Transfection
;
Viral Regulatory and Accessory Proteins

Result Analysis
Print
Save
E-mail