1.Survival and toxicity outcomes with radiotherapy technique and timing in the management of Wilms tumor: A systematic review to inform a National Clinical Practice Guideline Development
Warren Bacorro ; Jane Efflyn Lardizabal-Bunyi ; Michelle Rodriguez ; Maria Cecilia Leongson-Cruz
Journal of Medicine University of Santo Tomas 2024;8(2):1429-1442
PURPOSE
Wilms tumor (WT) management has evolved into a multimodality paradigm that includes radiotherapy (RT), usually as an adjuvant or consolidative modality. Protocols are refined to maximize cure and compliance while minimizing acute toxicity and long-term effects. RT technique and timing are two factors that could improve these outcomes. We reviewed the evidence on survival and toxicity outcomes among WT patients with conventional versus advanced RT techniques and early versus delayed RT to inform a Department of Health (DOH) commissioned guideline.
MATERIALS AND METHODSWe systematically searched PubMed, EuropePMC, EBSCOHost, HERDIN, systematic review and clinical trial registries and official websites of scientific societies for relevant publications and grey literature. Eligibility screening, risk-of-bias assessment and data extraction were performed using a single-reviewer approach. Given the study and data heterogeneity, only a qualitative synthesis was performed. Certainty of evidence assessment was done using the GRADE approach.
RESULTSWe screened 314 studies and included seven in the review, including a phase 1/2 trial and six retrospective studies, all from first-world countries (US, France, Netherlands), except one from a newly industrialized country (Brazil). The certainty of evidence on the survival and toxicity outcomes with advanced RT techniques was very low. Moderate-certainty evidence supports that giving RT >14 days after surgery leads to increased mortality.
CONCLUSIONCurrent evidence does not support the routine use of advanced RT techniques; proper contextualization is necessary. Tertiary centers managing WT should strive to administer RT within 14 days after surgery whenever possible.
Wilms Tumor ; Nephroblastoma ; Radiotherapy ; Radiotherapy, Intensity-modulated ; Survival ; Toxicity
2.Safety evaluation of Tibetan medicine Qishiwei Zhenzhu Pills based on serum pharmacochemistry and network pharmacology.
Zhi-Yi YAN ; Yong-Hua ZONG ; Cheng-Fei ZHANG ; Li-Li WU ; Ling-Ling QIN ; Tong-Hua LIU
China Journal of Chinese Materia Medica 2023;48(9):2538-2551
To explore the mechanism of the active ingredients of Qishiwei Zhenzhu Pills in inhibiting the hepatorenal toxicity of the zogta component based on serum pharmacochemistry and network pharmacology, thereby providing references for the clinical safety application of Qishiwei Zhenzhu Pills. The small molecular compounds in the serum containing Qishiwei Zhenzhu Pills of mice were identified by high performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS). Then, by comprehensively using Traditional Chinese Medicines Systems Pharmacology(TCMSP), High-throughput Experiment-and Reference-guided Database(HERB), PubChem, GeneCards, SuperPred, and other databases, the active compounds in the serum containing Qishiwei Zhenzhu Pills were retrieved and their action targets were predicted. The predicted targets were compared with the targets of liver and kidney injury related to mercury toxicity retrieved from the database, and the action targets of Qishiwei Zhenzhu Pills to inhibit the potential mercury toxicity of zogta were screened out. Cytoscape was used to construct the active ingredient in Qishiwei Zhenzhu Pills-containing serum-action target network, and STRING database was used to construct the protein-protein interaction(PPI) network of intersection targets. The Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were carried out on the target genes by the DAVID database. The active ingredient-target-pathway network was constructed, and the key ingredients and targets were screened out for molecular docking verification. The results showed that 44 active compounds were identified from the serum containing Qishiwei Zhenzhu Pills, including 13 possible prototype drug ingredients, and 70 potential targets for mercury toxicity in liver and kidney were identified. Through PPI network topology analysis, 12 key target genes(HSP90AA1, MAPK3, STAT3, EGFR, MAPK1, APP, MMP9, NOS3, PRKCA, TLR4, PTGS2, and PARP1) and 6 subnetworks were obtained. Through GO and KEGG analysis of 4 subnetworks containing key target genes, the interaction network diagram of active ingredient-action target-key pathway was constructed and verified by molecular docking. It was found that taurodeoxycholic acid, N-acetyl-L-leucine, D-pantothenic acid hemicalcium, and other active ingredients may regulate biological functions and pathways related to metabolism, immunity, inflammation, and oxidative stress by acting on major targets such as MAPK1, STAT3, and TLR4, so as to inhibit the potential mercury toxicity of zogta in Qishiwei Zhenzhu Pills. In conclusion, the active ingredients of Qishiwei Zhenzhu Pills may have a certain detoxification effect, thus inhibiting the potential mercury toxicity of zogta and playing a role of reducing toxicity and enhancing effect.
Animals
;
Mice
;
Medicine, Tibetan Traditional
;
Network Pharmacology
;
Molecular Docking Simulation
;
Tandem Mass Spectrometry
;
Toll-Like Receptor 4
;
Medicine, Chinese Traditional
;
Mercury
;
Drugs, Chinese Herbal/toxicity*
3.Effect and mechanism of Xihuang Pills on rats with precancerous lesions of breast.
Yong-Jia ZHANG ; Pan-Wen HUANG ; Yong-Tai ZHANG ; Zhi WANG ; Nian-Ping FENG
China Journal of Chinese Materia Medica 2023;48(13):3546-3555
The purpose of this study was to explore the effect and mechanism of Xihuang Pills on rats with precancerous lesions of the breast. Of 48 healthy female rats, 8 were randomly selected as blank group, and the other 40 were treated with 7,12-dimethylbenzanthracene(DMBA) combined with estrogen and progestin to establish a model of precancerous lesions of the breast. The successfully modeled rats were randomly divided into a model group, a tamoxifen group(1.8 mg·kg~(-1)·d~(-1)), a Xihuang Pills low-dose group(0.3 g·kg~(-1)·d~(-1)), a medium-dose group(0.6 g·kg~(-1)·d~(-1)) and a high-dose group(1.2 g·kg~(-1)·d~(-1)). After 30 days of admi-nistration, the histopathological changes of viscera and breast were observed by haematoxylin and eosin(HE) staining, and the visceral index was calculated. Enzyme linked immunosorbent assay(ELISA) was used to detect the contents of estradiol(E_2) and progesterone(P) in serum. The protein expressions of vascular endothelial growth factor(VEGF) and fibroblast growth factor 2(FGF2) were detected by immunohistochemistry. The protein expressions of VEGF, vascular endothelial growth factor receptor 2(VEGFR2), phosphorylated-vascular endothelial growth factor receptor 2(p-VEGFR2), B-cell lymphoma-2(Bcl-2), and Bcl-2 associated X protein(Bax) were detected by Western blot and the mRNA expressions of VEGF, FGF2, CXC-chemokine receptor 4(CXCR4), cysteine aspartic acid-specific protease(caspase-3), and stromal cell-derived factor 1(SDF-1) were detected by real-time polymerase chain reaction(RT-PCR). HE staining revealed that the model group had some liver and kidney damages and severe hyperplastic mammary tissue, while the Xihuang Pills high-dose group had mild hyperplasia. Compared with the model group, the Xihuang Pills groups had lo-wer ovarian coefficient(P<0.05 or P<0.01) and Xihuang Pills high-dose group had lower uterine coefficient(P<0.01). ELISA results showed that compared with the model group, expressions of E_2 and P in Xihuang Pills high-dose group were significantly decreased(P<0.05 or P<0.01). Immunohistochemistry, Western blot and RT-PCR indicated that compared with the conditions in the model group, the protein and mRNA expressions of VEGF and FGF2 in the Xihuang Pills groups were down-regulated(P<0.05 or P<0.01), and the protein expression of Bcl-2 was lowered(P<0.01); there was a decrease in the protein expressions of VEGFR2 and p-VEGFR2(P<0.01), a down-regulation in the mRNA expressions of CXCR4 and SDF-1(P<0.01), while an increase in the mRNA expression of caspase-3(P<0.01) in both Xihuang Pills medium-dose and high-dose groups; the protein expression of Bax in Xihuang Pills high-dose group was increased(P<0.01). The above results indicated that Xihuang Pills can effectively intervene in precance-rous lesions of the breast, and the mechanism may be related to the regulation of E_2 and P secretion as well as the inhibition of angiogenesis and chemokine receptor expression, thus controlling the occurrence of precancerous lesions of the breast in rats.
Rats
;
Female
;
Animals
;
Rats, Sprague-Dawley
;
bcl-2-Associated X Protein
;
Vascular Endothelial Growth Factor A/metabolism*
;
Caspase 3
;
Vascular Endothelial Growth Factor Receptor-2
;
Fibroblast Growth Factor 2
;
Proto-Oncogene Proteins c-bcl-2
;
9,10-Dimethyl-1,2-benzanthracene/toxicity*
;
Precancerous Conditions
;
Hyperplasia
;
Receptors, Chemokine
;
RNA, Messenger
4.Application of mixture analysis methods in association between metals mixture exposure and DNA oxidative damage.
Yan Hua WANG ; Hui Ge YUAN ; Li Ya ZHANG ; Yang LIN ; Ting WANG ; Huan XU ; Xing ZHAO ; Hua Wei DUAN
Chinese Journal of Preventive Medicine 2023;57(7):1026-1031
Objectives: To study the association between metals mixture exposure and DNA oxidative damage using mixture analysis methods, and to explore the most significant exposure factors that cause DNA oxidative damage. Methods: Workers from steel enterprises were recruited in Shandong Province. Urinary metals were measured by using the inductively coupled plasma mass spectrometry method. The level of urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) was determined by using the ultra-high performance liquid chromatography-mass spectrometry method. Bayesian kernel machine regression (BKMR), elastic net regression and quantile g-computation regression were used to analyze the association between urinary metals and urinary 8-OHdG. Results: A total of 768 subjects aged (36.15±7.40) years old were included in the study. BKMR, elastic net regression and quantile g-computation all revealed an overall positive association between the mixture concentration and increased urinary 8-OHdG. The quantile g-computation results showed that with a 25% increase in metal mixtures, the urinary 8-OHdG level increased by 77.60%. The elastic net regression showed that with a 25% increase in exposure risk score, the urinary 8-OHdG level increased by 26%. The BKMR summarized the contribution of individual exposures to the response, and selenium, zinc, and nickel were significant contributors to the urinary 8-OHdG elevation. Conclusion: Exposure to mixed metals causes elevated levels of DNA oxidative damage, and selenium, zinc, and nickel are significant exposure factors.
Humans
;
Adult
;
Nickel/toxicity*
;
Selenium
;
Bayes Theorem
;
Metals/toxicity*
;
8-Hydroxy-2'-Deoxyguanosine
;
Oxidative Stress/physiology*
;
Zinc
;
DNA Damage
8.Mechanism of Learning and Memory Impairment in Rats Exposed to Arsenic and/or Fluoride Based on Microbiome and Metabolome.
Xiao Li ZHANG ; Sheng Nan YU ; Ruo Di QU ; Qiu Yi ZHAO ; Wei Zhe PAN ; Xu Shen CHEN ; Qian ZHANG ; Yan LIU ; Jia LI ; Yi GAO ; Yi LYU ; Xiao Yan YAN ; Ben LI ; Xue Feng REN ; Yu Lan QIU
Biomedical and Environmental Sciences 2023;36(3):253-268
OBJECTIVE:
Arsenic (As) and fluoride (F) are two of the most common elements contaminating groundwater resources. A growing number of studies have found that As and F can cause neurotoxicity in infants and children, leading to cognitive, learning, and memory impairments. However, early biomarkers of learning and memory impairment induced by As and/or F remain unclear. In the present study, the mechanisms by which As and/or F cause learning memory impairment are explored at the multi-omics level (microbiome and metabolome).
METHODS:
We stablished an SD rats model exposed to arsenic and/or fluoride from intrauterine to adult period.
RESULTS:
Arsenic and/fluoride exposed groups showed reduced neurobehavioral performance and lesions in the hippocampal CA1 region. 16S rRNA gene sequencing revealed that As and/or F exposure significantly altered the composition and diversity of the gut microbiome,featuring the Lachnospiraceae_NK4A136_group, Ruminococcus_1, Prevotellaceae_NK3B31_group, [Eubacterium]_xylanophilum_group. Metabolome analysis showed that As and/or F-induced learning and memory impairment may be related to tryptophan, lipoic acid, glutamate, gamma-aminobutyric acidergic (GABAergic) synapse, and arachidonic acid (AA) metabolism. The gut microbiota, metabolites, and learning memory indicators were significantly correlated.
CONCLUSION
Learning memory impairment triggered by As and/or F exposure may be mediated by different gut microbes and their associated metabolites.
Rats
;
Animals
;
Arsenic/toxicity*
;
Fluorides
;
RNA, Ribosomal, 16S/genetics*
;
Rats, Sprague-Dawley
;
Metabolome
;
Microbiota
9.The toxicity of ZnO and CuO nanoparticles on biological wastewater treatment and its detoxification: a review.
Yuran YANG ; Can ZHANG ; Zhenlun LI
Chinese Journal of Biotechnology 2023;39(3):1026-1039
The wide use of ZnO and CuO nanoparticles in research, medicine, industry, and other fields has raised concerns about their biosafety. It is therefore unavoidable to be discharged into the sewage treatment system. Due to the unique physical and chemical properties of ZnO NPs and CuO NPs, it may be toxic to the members of the microbial community and their growth and metabolism, which in turn affects the stable operation of sewage nitrogen removal. This study summarizes the toxicity mechanism of two typical metal oxide nanoparticles (ZnO NPs and CuO NPs) to nitrogen removal microorganisms in sewage treatment systems. Furthermore, the factors affecting the cytotoxicity of metal oxide nanoparticles (MONPs) are summarized. This review aims to provide a theoretical basis and support for the future mitigating and emergent treatment of the adverse effects of nanoparticles on sewage treatment systems.
Wastewater/toxicity*
;
Sewage/chemistry*
;
Zinc Oxide/chemistry*
;
Waste Disposal, Fluid
;
Nanoparticles/chemistry*
;
Metal Nanoparticles/chemistry*
;
Nitrogen/metabolism*
;
Water Purification
10.Methyl ferulic acid ameliorates ethanol-induced L02 cell steatosis through microRNA-378b-mediated CaMKK2-AMPK pathway.
Ping HUANG ; Xing CHEN ; Rong-Hua MENG ; Jun LU ; Yan ZHANG ; Li LI ; Yong-Wen LI
China Journal of Chinese Materia Medica 2023;48(1):193-201
Alcoholic liver disease(ALD), with its increasing morbidity and mortality, has seriously and extensively affected the health of people worldwide. Methyl ferulic acid(MFA) has been proven to significantly inhibit alcohol-induced lipid production in L02 cells through the AMP-activated protein kinase(AMPK) pathway, but its in-depth mechanism remains unclear. This study aimed to further clarify the mechanism of MFA in improving lipid accumulation in L02 cells through the microRNA-378b(miR-378b)-mediated calcium/calmodulin-dependent protein kinase kinase 2(CaMKK2)-AMPK signaling pathway based on existing researches. L02 cells were induced by 100 mmol·L~(-1) ethanol for 48 h to establish the model of ALD in vitro, and 100, 50, and 25 μmol·L~(-1) concentration of MFA was treated. MiR-378b plasmids(containing the overexpression plasmid-miR-378b mimics, silence plasmid-miR-378b inhibitor, and their respective negative control-miR-378b NCs) were transfected into L02 cells by electroporation to up-regulate or down-regulate the levels of miR-378b in L02 cells. The levels of total cholesterol(TC) and triglyceride(TG) in cells were detected by commercial diagnostic kits and automatic biochemical analyzers. The expression levels of miR-378b in L02 cells were detected by real-time quantitative polymerase chain reaction(qRT-PCR). CaMKK2 mRNA levels were detected by PCR, and protein expressions of related factors involved in lipid synthesis, decomposition, and transport in lipid metabolism were detected by Western blot. The results displayed that ethanol significantly increased TG and TC levels in L02 cells, while MFA decreased TG and TC levels. Ethanol up-regulated the miR-378b level, while MFA effectively inhibited the miR-378b level. The overexpression of miR-378b led to lipid accumulation in ethanol-induced L02 cells, while the silence of miR-378b improved the lipid deposition induced by ethanol. MFA activated the CaMKK2-AMPK signaling pathway by lowering miR-378b, thus improving lipid synthesis, decomposition, and transport, which improved lipid deposition in L02 cells. This study shows that MFA improves lipid deposition in L02 cells by regulating the CaMKK2-AMPK pathway through miR-378b.
Humans
;
Ethanol/toxicity*
;
AMP-Activated Protein Kinases/metabolism*
;
Fatty Liver
;
Triglycerides
;
MicroRNAs/genetics*
;
Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics*


Result Analysis
Print
Save
E-mail