1.The Mechanism of Exercise Regulating Intestinal Flora in The Prevention and Treatment of Depression
Lei-Zi MIN ; Jing-Tong WANG ; Qing-Yuan WANG ; Yi-Cong CUI ; Rui WANG ; Xin-Dong MA
Progress in Biochemistry and Biophysics 2025;52(6):1418-1434
Depression, a prevalent mental disorder with significant socioeconomic burdens, underscores the urgent need for safe and effective non-pharmacological interventions. Recent advances in microbiome research have revealed the pivotal role of gut microbiota dysbiosis in the pathogenesis of depression. Concurrently, exercise, as a cost-effective and accessible intervention, has demonstrated remarkable efficacy in alleviating depressive symptoms. This comprehensive review synthesizes current evidence on the interplay among exercise, gut microbiota modulation, and depression, elucidating the mechanistic pathways through which exercise ameliorates depressive symptoms via the microbiota-gut-brain (MGB) axis. Depression is characterized by gut microbiota alterations, including reduced alpha and beta diversity, depletion of beneficial taxa (e.g., Bifidobacterium, Lactobacillus, and Coprococcus), and overgrowth of pro-inflammatory and pathogenic bacteria (e.g., Morganella, Klebsiella, and Enterobacteriaceae). Metagenomic analyses reveal disrupted metabolic functions in depressive patients, such as diminished synthesis of short-chain fatty acids (SCFAs), impaired tryptophan metabolism, and dysregulated bile acid conversion. For instance, Bifidobacterium longum deficiency correlates with reduced synthesis of neuroactive metabolites like homovanillic acid, while decreased Coprococcus abundance limits butyrate production, exacerbating neuroinflammation. Furthermore, elevated levels of indole derivatives from Clostridium species inhibit serotonin (5-HT) synthesis, contributing to depressive phenotypes. These dysbiotic profiles disrupt the MGB axis, triggering systemic inflammation, neurotransmitter imbalances, and hypothalamic-pituitary-adrenal (HPA) axis hyperactivity. Exercise exerts profound effects on gut microbiota composition, diversity, and metabolic activity. Longitudinal studies demonstrate that sustained aerobic exercise increases alpha diversity, enriches SCFA-producing genera (e.g., Faecalibacterium prausnitzii, Roseburia, and Akkermansia), and suppresses pathobionts (e.g., Desulfovibrio and Streptococcus). For example, a meta-analysis of 25 trials involving 1 044 participants confirmed that exercise enhances microbial richness and restores the Firmicutes/Bacteroidetes ratio, a biomarker of metabolic health. Notably, endurance training promotes Veillonella proliferation, which converts lactate into propionate, enhancing energy metabolism and delaying fatigue. Exercise also strengthens intestinal barrier integrity by upregulating tight junction proteins (e.g., ZO-1, occludin), thereby reducing lipopolysaccharide (LPS) translocation and systemic inflammation. However, excessive exercise may paradoxically diminish microbial diversity and exacerbate intestinal permeability, highlighting the importance of moderate intensity and duration. Exercise ameliorates depressive symptoms through multifaceted interactions with the gut microbiota, primarily via 4 interconnected pathways. First, exercise mitigates neuroinflammation by elevating anti-inflammatory SCFAs such as butyrate, which suppresses NF-κB signaling to attenuate microglial activation and oxidative stress in the hippocampus. Animal studies demonstrate that voluntary wheel running reduces hippocampal TNF‑α and IL-17 levels in stress-induced depression models, while fecal microbiota transplantation (FMT) from exercised mice reverses depressive behaviors by modulating the TLR4/NF‑κB pathway. Second, exercise regulates neurotransmitter dynamics by enriching GABA-producing Lactobacillus and Bifidobacterium, thereby counteracting neuronal hyperexcitability. Aerobic exercise also enhances the abundance of Lactobacillus plantarum and Streptococcus thermophilus, which facilitate 5-HT and dopamine synthesis. Clinical trials reveal that 12 weeks of moderate exercise increases fecal Coprococcus and Blautia abundance, correlating with improved 5-HT bioavailability and reduced depression scores. Third, exercise normalizes HPA axis hyperactivity by reducing cortisol levels and restoring glucocorticoid receptor sensitivity. In rodent models, chronic stress-induced corticosterone elevation is reversed by probiotic supplementation (e.g., Lactobacillus), which enhances endocannabinoid signaling and hippocampal neurogenesis. Furthermore, exercise upregulates brain-derived neurotrophic factor (BDNF) via microbial metabolites like butyrate, promoting histone acetylation and synaptic plasticity. FMT experiments confirm that exercise-induced microbiota elevates prefrontal BDNF expression, reversing stress-induced neuronal atrophy. Fourth, exercise reshapes microbial metabolic crosstalk, diverting tryptophan metabolism toward 5-HT synthesis instead of neurotoxic kynurenine derivatives. Butyrate inhibits indoleamine 2,3-dioxygenase (IDO), a key enzyme in the kynurenine pathway linked to depression. Concurrently, exercise-induced Akkermansia enrichment enhances mucin production, fortifies the gut barrier, and reduces LPS-driven neuroinflammation. Collectively, these mechanisms underscore exercise as a potent modulator of the microbiota-gut-brain axis, offering a holistic approach to alleviating depression through microbial and neurophysiological synergy. Current evidence supports exercise as a potent adjunct therapy for depression, with personalized regimens (e.g., aerobic, resistance, or yoga) tailored to individual microbiota profiles. However, challenges remain in optimizing exercise prescriptions (intensity, duration, and type) and integrating them with probiotics, prebiotics, or FMT for synergistic effects. Future research should prioritize large-scale randomized controlled trials to validate causality, multi-omics approaches to decipher MGB axis dynamics, and mechanistic studies exploring microbial metabolites as therapeutic targets. The authors advocate for a paradigm shift toward microbiota-centric interventions, emphasizing the bidirectional relationship between physical activity and gut ecosystem resilience in mental health management. In conclusion, this review underscores exercise as a multifaceted modulator of the gut-brain axis, offering novel insights into non-pharmacological strategies for depression. By bridging microbial ecology, neuroimmunology, and exercise physiology, this work lays a foundation for precision medicine approaches targeting the gut microbiota to alleviate depressive disorders.
2.Analysis of factors influencing insufficient hyperopia reserve and refractive parameters in preschool children in Hefei
ZHANG Bolin, ZHANG Shanshan, WAN Qianqian, TONG Min, L Pingping, WANG Ke, SHI Huijing
Chinese Journal of School Health 2025;46(6):873-877
Objective:
To investigate the current status of refractive errors and insufficient hyperopia reserve in preschool children aged 3-6 years in Hefei and to analyze influencing factors, so as to provide a scientific basis for formulating targeted myopia prevention policies and comprehensive interventions.
Methods:
In May 2022, a stratified cluster random sampling method was used to select 897 preschool children from 8 kindergartens across four districts (Baohe, Yaohai, Shushan, and Economic and Technological Development Zone) in Hefei, and Children’s Visual Health related Behavior Assessment Scale was used to collect personal information and environmental factors. Pre and post cycloplegic refraction tests were conducted to assess insufficient hyperopic reserve and refractive development levels. Group comparisons were conducted using 2 test, t-test or analysis of variance. Multivariate regression analysis was performed to identify key factors influencing hyperopic reserve, axial length and spherical equivalent in preschool children.
Results:
The detection rates of refractive errors among preschool children were 6.8% for hyperopia, 1.6% for myopia, and 11.1% for astigmatism. Notably, the prevalence of myopia was significantly higher in boys (2.3%) than in girls (0.7%) ( χ 2=3.88, P <0.05). Additionally, 8.8% of the children exhibited insufficient hyperopic reserve. The results of multiple regression analysis showed that preschool children with high myopia in the father, high myopia in the mother, longer daily duration of near work, and longer daily electronic product use time had increased risks of axial growth ( β =0.12, 0.09, 0.15, 0.11), SE reduction ( β =-0.10, -0.07, -0.18, -0.13), and insufficient hyperopic reserve ( OR=1.87, 2.22, 1.40, 1.28) (P <0.05). While, preschool children with longer sleep time and daily outdoor activity duration had lower risks of axial growth ( β =-0.11, -0.10 ), SE reduction ( β =0.39, 0.51), and insufficient hyperopia reserve ( OR =0.54, 0.51) in preschool children ( P <0.05).
Conclusions
The rates of refractive errors and insufficient hyperopia reserve in preschool children in Hefei are relatively low, which are influenced by many factors. Parents, kindergartens and relevant departments should implement early vision monitoring and intervention for preschool children, and cultivate their scientific eye use habits.
3.Effect of comorbidity for patients with non-small cell lung cancer on exercise tolerance and cardiopulmonary function: A propensity score matching study
Xinyu WANG ; Jin LI ; Min GAO ; Xin RAN ; Yiman TONG ; Wei CHEN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(08):1115-1120
Objective To observe the effect of comorbidity for patients with non-small cell lung cancer (NSCLC) on exercise tolerance and cardiopulmonary function. Methods NSCLC patients who underwent cardiopulmonary exercise testing (CPET) before surgery were retrospectively included. According to the Charlson comorbidity index (CCI) score, patients were divided into two groups: a CCI≥3 group and a CCI<3 group. The patients were matched with a ratio of 1 : 1 by propensity score matching according to the age, body mass index, sex, smoking history, exercise habits, pathological stage and type of surgery. After matching, CPET indexes were compared between the two groups to explore the differences in exercise tolerance and cardiopulmonary function. Results A total of 276 patients were included before matching. After matching, 56 patients were enrolled with 28 patients in each group, including 38 (67.9%) males and 18 (32.1%) females with an average age of (70.7±6.8) years. Compared with the CCI<3 group, work rate at peak (WR peak), WR peak/predicted value (WR peak%), kilogram oxygen uptake at anaerobic threshold (VO2/kg AT), VO2/kg peak, VO2/kg peak%, peak carbon dioxide output, the minute ventilation to carbon dioxide production slope, O2 pulse peak and O2 pulse peak% of CCI≥3 group were statistically different (P<0.05). Among them, the rate of postoperative pulmonary complication in the CCI≥3 group was higher than that in the CCI<3 group (60.7% vs. 32.1%, P=0.032). Conclusion In the NSCLC patients, exercise tolerance and cardiopulmonary function decreased in patients with CCI≥3 compared with those with CCI<3. CPET can provide an objective basis for risk assessment in patients with comorbidity scored by CCI for pulmonary resection.
4.Clinical switching patterns and reasons between bevacizumab biosimilar and originator drugs
Min OU ; Yaqin WANG ; Zhimin ZHU ; Fangfang ZHANG ; Qiongni ZHU
China Pharmacy 2025;36(18):2297-2300
OBJECTIVE To analyze clinical switching patterns and reasons between bevacizumab biosimilar and originator drugs. METHODS The data were collected from 1 175 cancer patients treated with bevacizumab at Ruijin Hospital, Shanghai Jiao Tong University School of Medicine from January 1, 2018, to December 31, 2023. The patients were divided into originator group (n=250) and biosimilar group (n=925). The switching rate, switching type and reasons of the two groups were compared. RESULTS There were no statistically significant differences in the switching rate, switching types, and the number of switches between the two groups (P>0.05). Single, one-way switches were the switching type in both groups. The proportion of patients in the biosimilar group who switched due to adverse events was significantly higher than originator group, while the proportion of patients who switched due to treatment costs was significantly lower than originator group (P<0.05). There were no statistically significant differences in the proportions of patients who switched due to efficacy and drug accessibility between the two groups (P>0.05). CONCLUSIONS The switching between bevacizumab biosimilar and the originator drugs mainly involves single, one- way switches. Treatment costs and drug accessibility are the main factors for the switches among users of originator drugs, while drug accessibility and adverse events are the main factors for the switches among users of biosimilar.
5.Bidirectional regulation of distal colon motility in rats with electroacupuncture of different intensities at "Tianshu" (ST25).
Tong LI ; Xiaoyu LIU ; Xiaoyu WANG ; Min LUO ; Zhiyun ZHANG ; Yangshuai SU ; Xianghong JING
Chinese Acupuncture & Moxibustion 2025;45(4):460-472
OBJECTIVE:
To observe the distribution characteristics of sensitization areas on the body surface in the rat models with functional constipation and diarrhea, explore the regulatory patterns of electroacupuncture (EA) of different intensities at "Tianshu" (ST25) on distal colon motility, and clarify the roles of the neurons of different subtypes in the enteric nervous system (ENS) displayed in the regulatory effect.
METHODS:
Of 90 SD male rats of SPF grade, 15 rats were randomized into a normal group, a constipation group and a diarrhea group, 5 rats in each one. The stool form and fecal water content, as well as the distribution of the Evans blue (EB) extravasation on the body surface after the intravenous injection with EB on the tails were observed. Eighteen rats were randomized into a normal +2 mA group, a normal +4 mA group and a normal + 6 mA group, 6 rats in each one. Using physiological signal acquisition system, the area under the curve and the average amplitude of colon peristalsis were recorded and analyzed, and the immediate effect on distal colon peristalsis observed after EA with different intensities at "Tianshu" (ST25). Thirty rats were randomized into a normal group, a constipation group, a diarrhea group, a constipation +2 mA group, and a diarrhea +6 mA group, 6 rats in each one, so as to observe the cumulative effect on colon motility disorder in the rat models of constipation and diarrhea after EA at "Tianshu" (ST25). Twelve rats were randomized into a constipation +2 mA group and a diarrhea +6 mA group, 6 rats in each one, to observe the immediate effect on colon motility disorder in the rat models of constipation and diarrhea after EA at "Tianshu" (ST25). Fifteen rats were randomly divided into a normal group, a constipation group, a diarrhea group, a constipation +2 mA group, and a diarrhea + 6 mA group, 3 rats in each one. Using the whole-mount staining technique, the expression of vesicular acetylcholine transporter (VAChT)-positive neurons and nitric oxide synthase (nNOS)-positive neurons in ENS was detected. According to the group divisions, the functional constipation models were established by intragastric administration of loperamide hydrochloride (10 mg/kg, once daily, for consecutive 7 days), and the functional diarrhea models were prepared by intragastric administration of folium sennae decoction (10 mL/kg, once daily, for consecutive 2 days). The interventions were delivered with EA of different intensities (the electric current of 2, 4 or 6 mA) at bilateral "Tianshu" (ST25), separately, with the continuous wave and the frequency of 10 Hz used.
RESULTS:
Compared with the normal group, the fecal amount was decreased, and the fecal water content was reduced in the rats of the constipation group (P<0.001); and loose stool was presented and the fecal water content increased in rats of the diarrhea group (P<0.001). EB extravasation on the body surface happened in the region from T6 to S2 of the rats in the constipation and diarrhea groups, and it was more concentrated in the lower abdominal and the lower back regions from T10 to L3. Compared with the indexes before EA, in the normal +2 mA group and the normal +4 mA group, the areas under the curve and the average amplitude of the distal colon peristalsis were higher during EA delivery (P<0.01, P<0.05), showing a stimulatory immediate effect; and the post-effect was obtained after EA at 2 mA. Whereas, these two indexes were declined during EA in the rats of the normal +6 mA group (P<0.001), showing an inhibitory immediate effect. After many interventions with EA, when compared with those before EA, the above two indexes rose in the constipation +2 mA group (P<0.05, P<0.01), and they were dropped in the diarrhea +6 mA group (P<0.01, P<0.05). The area under the curve of the colon peristalsis in the constipation +2 mA group was higher than that of the constipation group (P<0.001), and that in the diarrhea +6 mA group was lower compared with that in the diarrhea group (P<0.001). The stimulatory effect of EA on colon motility in the constipation +2 mA group was stronger than that of the normal + 2 mA group (P<0.05), and its inhibitory effect was not different statistically in comparison between the normal +6 mA group and the diarrhea +6 mA group (P>0.05). In ENS of the distal colon, after EA at 2 mA, the proportion of VAChT-positive neurons was higher than that of the activated nNOS-positive neurons (P<0.001); and after EA at 6 mA, the activated nNOS-positive neurons were dominant (P<0.001).
CONCLUSION
In the functional constipation and diarrhea rat models, the sensitization areas on the body surface are centralized in the lower abdominal and the lower back regions of T10 to L3. Electroacupuncture at "Tianshu" (ST25) has a bidirectional regulatory effect on distal colon motility, and this effect is coordinated with the intensity of electroacupuncture, and may be mediated by ENS neurons of different subtypes.
Animals
;
Electroacupuncture
;
Male
;
Rats
;
Colon/innervation*
;
Acupuncture Points
;
Rats, Sprague-Dawley
;
Constipation/physiopathology*
;
Gastrointestinal Motility
;
Humans
;
Diarrhea/physiopathology*
6.An assessment model for efficacy of autologous CD19 chimeric antigen receptor T-cell therapy and relapse or refractory diffuse large B-cell lymphoma risk.
Bin XUE ; Yifan LIU ; Min ZHANG ; Gangfeng XIAO ; Xiu LUO ; Lili ZHOU ; Shiguang YE ; Yan LU ; Wenbin QIAN ; Li WANG ; Ping LI ; Aibin LIANG
Chinese Medical Journal 2025;138(1):108-110
7.Small nucleolar RNA host gene 1 (SNHG1) facilitates gemcitabine chemosensitivity in gallbladder cancer by regulating the miR-23b-3p/phosphatase and tensin homolog (PTEN) pathway.
Hui WANG ; Yixiang GU ; Miaomiao GUO ; Ming ZHAN ; Min HE ; Yang ZHANG ; Linhua YANG ; Yingbin LIU
Chinese Medical Journal 2025;138(21):2783-2792
BACKGROUND:
Growing evidence suggests that long non-coding RNAs (lncRNAs) exert pivotal roles in fostering chemoresistance across diverse tumors. Nevertheless, the precise involvement of lncRNAs in modulating chemoresistance within the context of gallbladder cancer (GBC) remains obscure. This study aimed to uncover how lncRNAs regulate chemoresistance in gallbladder cancer, offering potential targets to overcome drug resistance.
METHODS:
To elucidate the relationship between gemcitabine sensitivity and small nucleolar RNA host gene 1 ( SNHG1 ) expression, we utilized publicly available GBC databases, GBC tissues from Renji Hospital collected between January 2017 and December 2019, as well as GBC cell lines. The assessment of SNHG1, miR-23b-3p, and phosphatase and tensin homolog (PTEN) expression was performed using in situ hybridization, quantitative real-time polymerase chain reaction, and western blotting. The cell counting kit-8 (CCK-8) assay was used to quantify the cell viability. Furthermore, a GBC xenograft model was employed to evaluate the impact of SNHG1 on the therapeutic efficacy of gemcitabine. Receiver operating characteristic (ROC) curve analyses were executed to assess the specificity and sensitivity of SNHG1.
RESULTS:
Our analyses revealed an inverse correlation between the lncRNA SNHG1 and gemcitabine resistance across genomics of drug sensitivity in cancer (GDSC) and Gene Expression Omnibus (GEO) datasets, GBC cell lines, and patients. Gain-of-function investigations underscored that SNHG1 heightened the gemcitabine sensitivity of GBC cells in both in vitro and in vivo settings. Mechanistic explorations illuminated that SNHG1 could activate PTEN -a commonly suppressed tumor suppressor gene in cancers-thereby curbing the development of gemcitabine resistance in GBC cells. Notably, microRNA (miRNA) target prediction algorithms unveiled the presence of miR-23b-3p binding sites within SNHG1 and the 3'-untranslated region (UTR) of PTEN . Moreover, SNHG1 acted as a sponge for miR-23b-3p, competitively binding to the 3'-UTR of PTEN , thereby amplifying PTEN expression and heightening the susceptibility of GBC cells to gemcitabine.
CONCLUSION
The SNHG1/miR-23b-3p/PTEN axis emerges as a pivotal regulator of gemcitabine sensitivity in GBC cells, holding potential as a promising therapeutic target for managing GBC patients.
Humans
;
Deoxycytidine/pharmacology*
;
PTEN Phosphohydrolase/genetics*
;
Gemcitabine
;
RNA, Long Noncoding/metabolism*
;
MicroRNAs/genetics*
;
Gallbladder Neoplasms/genetics*
;
Cell Line, Tumor
;
Animals
;
Mice
;
Drug Resistance, Neoplasm/genetics*
;
Mice, Nude
;
Antimetabolites, Antineoplastic
;
Gene Expression Regulation, Neoplastic
8.Study on anti-depression effect of Suanzaoren Decoction based on liver metabolomics.
Jing LI ; Ya-Nan TONG ; Hong-Tao WANG ; Shao-Hua ZHAO ; Wei-Yan CHEN ; Zhi-Wei LI ; Min-Yan LIU
China Journal of Chinese Materia Medica 2025;50(1):19-31
To explore the anti-depression effect of Suanzaoren Decoction(SZRD), the regulatory effects on endogenous metabolites in the liver of rats with depression induced by chronic unpredictable mild stress(CUMS) were analyzed by using LC-MS metabolomics. The rats were randomly divided into normal control group, model group, low-dose SZRD group, high-dose SZRD group, and positive drug group. The CUMS depression model was replicated by applying a variety of stimuli, such as fasting and water deprivation, ice water swimming, hot water swimming, day and night reversal, tail clamping, and restraint for rats. Modeling and treatment were conducted for 56 days. The behavioral indexes of rats in each group, including body weight, open field test, sucrose preference test, and tail suspension test, were observed. Plasma samples and liver tissue samples were collected, and the contents of 5-hydroxytryptamine(5-HT), dopamine(DA), and norepinephrine(NE) in plasma were measured using enzyme-linked immunosorbent assay(ELISA). Meanwhile, the regulatory effects of SZRD on the liver metabolic profile of CUMS model rats were analyzed by the LC-MS metabolomics method. The results show that SZRD can significantly improve the depression-like behavior of CUMS model rats and increase the neurotransmitter levels of 5-HT, DA, and NE in plasma. A total of 24 different metabolites in the rats' liver are identified using the LC-MS metabolomics method, and SZRD can reverse 13 of these metabolites. Metabolic pathway analysis indicates that nine metabolic pathways are found to be significantly associated with depression, and in the low-dose SZRD group, four pathways can be regulated, including pentose phosphate pathway, purine metabolism, inositol phosphate metabolism, and sphingolipid metabolism. In the high-dose SZRD group, two metabolic pathways can be regulated, including sphingolipid metabolism and glycerol glycerophospholipid metabolism. Sphingolipid metabolism is a metabolic pathway that can be regulated by SZRD at different doses, so it is speculated that it may be the primary pathway through which SZRD can alleviate metabolic disturbances in the liver of CUMS model rats.
Animals
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Metabolomics
;
Depression/metabolism*
;
Male
;
Liver/drug effects*
;
Rats, Sprague-Dawley
;
Antidepressive Agents/administration & dosage*
;
Serotonin/blood*
;
Humans
;
Disease Models, Animal
;
Behavior, Animal/drug effects*
9.Astragali Radix-Curcumae Rhizoma drug pair inhibits growth of osteosarcoma by affecting cell adhesion and angiogenesis via PI3K/Akt/HIF-1α pathway.
Dao-Tong YUAN ; Zhi-Meng ZHANG ; Rui GONG ; Xi-Min JIN ; Can-Ran WANG ; Jie ZHAO
China Journal of Chinese Materia Medica 2025;50(8):2217-2228
This study aims to investigate the optimal ratio of Astragali Radix-Curcumae Rhizoma(AC) for inhibiting the proliferation of 143B osteosarcoma cells, and to investigate the mechanism by which AC inhibits osteosarcoma growth and metastasis through angiogenesis and cell adhesion mediated by the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/hypoxia inducible factor-1α(HIF-1α) pathway. A subcutaneous 143B tumor-bearing nude mouse model was successfully established and randomly divided into the model group, and the AC 1∶1, 2∶1, and 4∶1 groups. Body weight, tumor volume, and tumor weight were recorded. Real-time quantitative polymerase chain reaction(RT-qPCR) and Western blot were used to detect the mRNA and protein expression levels of PI3K, Akt, phosphorylated Akt(p-Akt), HIF-1α, vascular endothelial growth factor A(VEGFA), transforming growth factor-β1(TGF-β1), epithelial cadherin(E-cadherin), neural cadherin(N-cadherin), vimentin, matrix metalloproteinase 2(MMP2), matrix metalloproteinase 9(MMP9), B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), and caspase-3 in the hypoxic core region of the tumor tissue. A cell hypoxia model was established, and the effects of AC-medicated serum(model group, AC 1∶1, 2∶1, and 4∶1 groups) on angiogenesis, proliferation, adhesion, invasion, and migration of 143B osteosarcoma cells were examined through CCK-8, flow cytometry, Transwell assay, cell adhesion assay, and HUVEC tube formation assay. The results showed that compared with the model group, the tumor weight and volume were smallest in the 2∶1 group. The expression levels of PI3K, Akt, p-Akt, HIF-1α, VEGFA, and TGF-β1 were significantly decreased, and the protein expression of E-cadherin was significantly increased, while the protein expression of N-cadherin, vimentin, MMP2, and MMP9 was significantly decreased. Additionally, the protein expression of Bax and caspase-3 was significantly increased, and Bcl-2 protein expression was significantly decreased. In vitro experiments showed that after intervention with AC-medicated serum at a 2∶1 ratio, the cell activity, adhesion, invasion, and migration of 143B cells were significantly reduced, apoptosis was significantly increased, and HUVEC tube formation was significantly decreased. In conclusion, the 2∶1 ratio of AC showed the most effective inhibition of 143B cell growth. AC can inhibit the growth and metastasis of osteosarcoma 143B cells by regulating the PI3K/Akt/HIF-1α signaling pathway, inhibiting angiogenesis and reducing cell adhesion, invasion, and migration.
Osteosarcoma/pathology*
;
Animals
;
Proto-Oncogene Proteins c-akt/genetics*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Humans
;
Mice
;
Cell Adhesion/drug effects*
;
Cell Proliferation/drug effects*
;
Neovascularization, Pathologic/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Cell Line, Tumor
;
Mice, Nude
;
Signal Transduction/drug effects*
;
Astragalus Plant/chemistry*
;
Bone Neoplasms/physiopathology*
;
Male
;
Rhizome/chemistry*
;
Mice, Inbred BALB C
;
Angiogenesis
10.Identification and expression analysis of AP2/ERF family members in Lonicera macranthoides.
Si-Min ZHOU ; Mei-Ling QU ; Juan ZENG ; Jia-Wei HE ; Jing-Yu ZHANG ; Zhi-Hui WANG ; Qiao-Zhen TONG ; Ri-Bao ZHOU ; Xiang-Dan LIU
China Journal of Chinese Materia Medica 2025;50(15):4248-4262
The AP2/ERF transcription factor family is a class of transcription factors widely present in plants, playing a crucial role in regulating flowering, flower development, flower opening, and flower senescence. Based on transcriptome data from flower, leaf, and stem samples of two Lonicera macranthoides varieties, 117 L. macranthoides AP2/ERF family members were identified, including 14 AP2 subfamily members, 61 ERF subfamily members, 40 DREB subfamily members, and 2 RAV subfamily members. Bioinformatics and differential gene expression analyses were performed using NCBI, ExPASy, SOMPA, and other platforms, and the expression patterns of L. macranthoides AP2/ERF transcription factors were validated via qRT-PCR. The results indicated that the 117 LmAP2/ERF members exhibited both similarities and variations in protein physicochemical properties, AP2 domains, family evolution, and protein functions. Differential gene expression analysis revealed that AP2/ERF transcription factors were primarily differentially expressed in the flowers of the two L. macranthoides varieties, with the differentially expressed genes mainly belonging to the ERF and DREB subfamilies. Further analysis identified three AP2 subfamily genes and two ERF subfamily genes as potential regulators of flower development, two ERF subfamily genes involved in flower opening, and two ERF subfamily genes along with one DREB subfamily gene involved in flower senescence. Based on family evolution and expression analyses, it is speculated that AP2/ERF transcription factors can regulate flower development, opening, and senescence in L. macranthoides, with ERF subfamily genes potentially serving as key regulators of flowering duration. These findings provide a theoretical foundation for further research into the specific functions of the AP2/ERF transcription factor family in L. macranthoides and offer important theoretical insights into the molecular mechanisms underlying floral phenotypic differences among its varieties.
Plant Proteins/chemistry*
;
Gene Expression Regulation, Plant
;
Transcription Factors/chemistry*
;
Lonicera/classification*
;
Flowers/metabolism*
;
Phylogeny
;
Gene Expression Profiling
;
Multigene Family


Result Analysis
Print
Save
E-mail