1.Principles, technical specifications, and clinical application of lung watershed topography map 2.0: A thoracic surgery expert consensus (2024 version)
Wenzhao ZHONG ; Fan YANG ; Jian HU ; Fengwei TAN ; Xuening YANG ; Qiang PU ; Wei JIANG ; Deping ZHAO ; Hecheng LI ; Xiaolong YAN ; Lijie TAN ; Junqiang FAN ; Guibin QIAO ; Qiang NIE ; Mingqiang KANG ; Weibing WU ; Hao ZHANG ; Zhigang LI ; Zihao CHEN ; Shugeng GAO ; Yilong WU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):141-152
With the widespread adoption of low-dose CT screening and the extensive application of high-resolution CT, the detection rate of sub-centimeter lung nodules has significantly increased. How to scientifically manage these nodules while avoiding overtreatment and diagnostic delays has become an important clinical issue. Among them, lung nodules with a consolidation tumor ratio less than 0.25, dominated by ground-glass shadows, are particularly worthy of attention. The therapeutic challenge for this group is how to achieve precise and complete resection of nodules during surgery while maximizing the preservation of the patient's lung function. The "watershed topography map" is a new technology based on big data and artificial intelligence algorithms. This method uses Dicom data from conventional dose CT scans, combined with microscopic (22-24 levels) capillary network anatomical watershed features, to generate high-precision simulated natural segmentation planes of lung sub-segments through specific textures and forms. This technology forms fluorescent watershed boundaries on the lung surface, which highly fit the actual lung anatomical structure. By analyzing the adjacent relationship between the nodule and the watershed boundary, real-time, visually accurate positioning of the nodule can be achieved. This innovative technology provides a new solution for the intraoperative positioning and resection of lung nodules. This consensus was led by four major domestic societies, jointly with expert teams in related fields, oriented to clinical practical needs, referring to domestic and foreign guidelines and consensus, and finally formed after multiple rounds of consultation, discussion, and voting. The main content covers the theoretical basis of the "watershed topography map" technology, indications, operation procedures, surgical planning details, and postoperative evaluation standards, aiming to provide scientific guidance and exploration directions for clinical peers who are currently or plan to carry out lung nodule resection using the fluorescent microscope watershed analysis method.
2.Dynamic Evaluation of Vinorelbine-Induced Phlebitis of Dorsalis Pedis Vein in a Rat Model
Meng JIANG ; Shulan HAO ; Liguo TONG ; Qiming ZHONG ; Zhenfei GAO ; Yonghui WANG ; Xixing WANG ; Haijie JI
Laboratory Animal and Comparative Medicine 2025;45(3):251-258
ObjectiveTo dynamically observe the clinical symptoms and pathological changes in a rat model of vinorelbine-induced phlebitis via injection into the dorsalis pedis vein. MethodsTwenty-eight 11-week-old male SPF-grade SD rats were randomly divided into a model group (n=20) and a control group (n=8). The model group received a single injection of 0.1 mL vinorelbine solution (4 mg/mL) via the right hind limb dorsalis pedis vein, while the control group received an equal volume of normal saline via the same method. The occurrence and grading of phlebitis in both groups were observed and recorded daily. The volume of the injured limb was measured by the drainage method to calculate the swelling rate. The weight-bearing ratio of the injured limb was assessed using a bipedal balance pain meter, and the skin temperature of the injured limb was measured by infrared thermal imaging. These measurements were conducted for 9 consecutive days. Starting from day 1, three rats from the model group were euthanized every other day. A 1-cm segment of the vein extending proximally from the injection site was collected. Pathological changes in the vein tissue were examined by hematoxylin-eosin staining, and ultrastructural changes of the vascular endothelium were observed using scanning electron microscopy. ResultsCompared to the control group, the injected hindlimb of model rats showed redness and swelling on day 1, with the swelling rate peaking at (81.89±15.75) % on day 3 (P<0.001), then gradually alleviating and decreasing to (15.41±0.33) % by day 9 (P<0.01). Pain was observed in the affected limbs of model rats on day 1 and worsened markedly on day 3, with the weight-bearing ratio decreasing to (36.35±4.91)% (P<0.001). Meanwhile, the skin temperature of the lesion site increased, reaching (36.36±0.40) ℃ on day 5 (P<0.001). Both pain and fever returned to near normal levels by day 9. Phlebitis grading in the model group showed that 75.0% of rats were grade Ⅱ on day 1; grade Ⅲ and Ⅳ each accounted for 37.5% on day 3; from days 5 to 9, most rats exhibited cord-like veins, predominantly grade III. Venous tissue showed peripheral edema and inflammatory cell infiltration on day 1, which gradually progressed to intimal rupture, vessel wall thickening, and even lumen narrowing from day 3 to 9. The venous intima exhibited destruction of tight junctions between endothelial cells and adhesion of blood cells, progressing to roughened, wrinkled, and protruding intimal surfaces. ConclusionThe vinorelbine-induced phlebitis of dorsal foot vein in rat model is characterized by local redness, swelling, warmth, and pain from days 3 to 5, which largely resolve by day 9, although cord-like veins can still be observed. With disease progression, venous tissue develops edema, vessel wall thickening, and lumen narrowing. The venous intima shows rupture, roughening, and in some cases, complete loss.
3.Dynamic Evaluation of Vinorelbine-Induced Phlebitis of Dorsalis Pedis Vein in a Rat Model
Meng JIANG ; Shulan HAO ; Liguo TONG ; Qiming ZHONG ; Zhenfei GAO ; Yonghui WANG ; Xixing WANG ; Haijie JI
Laboratory Animal and Comparative Medicine 2025;45(3):251-258
ObjectiveTo dynamically observe the clinical symptoms and pathological changes in a rat model of vinorelbine-induced phlebitis via injection into the dorsalis pedis vein. MethodsTwenty-eight 11-week-old male SPF-grade SD rats were randomly divided into a model group (n=20) and a control group (n=8). The model group received a single injection of 0.1 mL vinorelbine solution (4 mg/mL) via the right hind limb dorsalis pedis vein, while the control group received an equal volume of normal saline via the same method. The occurrence and grading of phlebitis in both groups were observed and recorded daily. The volume of the injured limb was measured by the drainage method to calculate the swelling rate. The weight-bearing ratio of the injured limb was assessed using a bipedal balance pain meter, and the skin temperature of the injured limb was measured by infrared thermal imaging. These measurements were conducted for 9 consecutive days. Starting from day 1, three rats from the model group were euthanized every other day. A 1-cm segment of the vein extending proximally from the injection site was collected. Pathological changes in the vein tissue were examined by hematoxylin-eosin staining, and ultrastructural changes of the vascular endothelium were observed using scanning electron microscopy. ResultsCompared to the control group, the injected hindlimb of model rats showed redness and swelling on day 1, with the swelling rate peaking at (81.89±15.75) % on day 3 (P<0.001), then gradually alleviating and decreasing to (15.41±0.33) % by day 9 (P<0.01). Pain was observed in the affected limbs of model rats on day 1 and worsened markedly on day 3, with the weight-bearing ratio decreasing to (36.35±4.91)% (P<0.001). Meanwhile, the skin temperature of the lesion site increased, reaching (36.36±0.40) ℃ on day 5 (P<0.001). Both pain and fever returned to near normal levels by day 9. Phlebitis grading in the model group showed that 75.0% of rats were grade Ⅱ on day 1; grade Ⅲ and Ⅳ each accounted for 37.5% on day 3; from days 5 to 9, most rats exhibited cord-like veins, predominantly grade III. Venous tissue showed peripheral edema and inflammatory cell infiltration on day 1, which gradually progressed to intimal rupture, vessel wall thickening, and even lumen narrowing from day 3 to 9. The venous intima exhibited destruction of tight junctions between endothelial cells and adhesion of blood cells, progressing to roughened, wrinkled, and protruding intimal surfaces. ConclusionThe vinorelbine-induced phlebitis of dorsal foot vein in rat model is characterized by local redness, swelling, warmth, and pain from days 3 to 5, which largely resolve by day 9, although cord-like veins can still be observed. With disease progression, venous tissue develops edema, vessel wall thickening, and lumen narrowing. The venous intima shows rupture, roughening, and in some cases, complete loss.
4.Investigating the role of low-level ST6Gal-Ⅰ-mediated CD36 desialylation in ITP based on the MEG-01 cell model
Na FAN ; Lei ZHONG ; Wen LIU ; Anqi TONG ; Jing LIANG
Chinese Journal of Blood Transfusion 2025;38(9):1162-1166
Objective: To investigate the correlation among α2, 6-sialyltransferase (ST6Gal-Ⅰ), CD36 desialylation, and caveolin-1 (Cav-1) in phorbol ester (PMA)-induced MEG-01 cell model, as well as their potential mechanism in immune thrombocytopenia (ITP). Methods: MEG-01 cells were treated with 10 ng/mL PMA for 48 hours (control group: 0.1% DMSO). Flow cytometry was used to detect cell surface markers: desialylation (CD41
RCA
) and α2, 6-sialylation (CD41
SNA
). Western blot was performed to analyze the protein expressions of ST6Gal-Ⅰ, CD36, and Cav-1. Results: Flow cytometry analysis revealed that, compared with the control group (set as 100%), the proportion of CD41
RCA
positive cells in the MEG-01 cells after PMA intervention significantly increased to (127.79±2.01)%, while the proportion of CD41
SNA
positive cells significantly decreased to (78.09±1.76)% (both P<0.05). Western blot analysis results showed that, compared with the control group, PMA intervention significantly downregulated the expression of ST6Gal-Ⅰ protein (0.602±0.023 vs 0.768±0.068) and Cav-1 protein (1.012±0.028 vs 1.253±0.068) (both P<0.05), while significantly upregulating the expression of CD36 protein (0.936±0.033 vs 0.694±0.070, P<0.05). Conclusion: PMA can significantly inhibit the expression of ST6Gal-Ⅰ, accompanied by increased desialylation (β-galactose exposure), elevated CD36, and downregulated Cav-1. These changes suggest that the increased exposure of CD36 antigen and the disorder of membrane microenvironment may be involved in the pathological process of ITP, providing a new direction for mechanism research.
5.Multi-omics Analysis of NUDT19 Across Cancer Types and Its Functional Role in Leukemia
Xiao-Jin LI ; Shuai FENG ; Zhong-Tao YUAN ; Tong-Hua YANG
Progress in Biochemistry and Biophysics 2025;52(10):2627-2649
ObjectiveRecent studies have highlighted the critical role of NUDT19 in the initiation, progression, and prognosis of specific cancer types. However, its involvement in pan-cancer analysis has not been fully characterized. This study aims to systematically explore the expression patterns, clinical significance, and immune-related functions of NUDT19 in various cancer types through multi-omics analysis, further revealing its potential role in cancer, particularly its functional and therapeutic target value in leukemia. MethodsTo achieve this goal, various bioinformatics approaches were employed to evaluate the expression patterns, clinical significance, and immune-related functions of NUDT19 in tumors and normal tissues. Additionally, we analyzed the mutation characteristics of NUDT19 and its relationship with epigenetic modifications. Using the single-cell analysis tool SingleCellBase, we explored the distribution of NUDT19 across different cell subpopulations in tumors. To validate these findings, qRT-PCR was used to measure NUDT19 expression levels in specific tumor cell lines, and we established acute myeloid leukemia (AML) cell lines (HL-60 and THP-1) to conduct NUDT19 knockdown and overexpression experiments, assessing its effects on leukemia cell proliferation, apoptosis, and invasion. ResultsPan-cancer analysis revealed the dysregulated expression of NUDT19 across multiple cancer types, which was closely associated with poor prognosis, clinical staging, and diagnostic markers. Furthermore, NUDT19 was significantly correlated with tumor biomarkers, immune-related genes, and immune cell infiltration in different cancers. Mutation analysis showed that multiple mutations in NUDT19 were significantly associated with epigenetic changes. Single-cell analysis revealed the heterogeneity of NUDT19 expression in cancer cells, suggesting its potentially diverse functional roles in different cell subpopulations. qRT-PCR experiments confirmed the significant upregulation of NUDT19 in various tumor cell lines. In AML cell lines, NUDT19 knockdown led to reduced cell proliferation and invasion, with increased apoptosis, while NUDT19 overexpression significantly enhanced cell proliferation and invasion while reducing apoptosis. ConclusionThis study demonstrates the diverse roles of NUDT19 in various cancer types, with a particularly prominent functional role in leukemia. NUDT19 is not only associated with tumor initiation and progression but may also influence cancer progression through the regulation of immune microenvironment and epigenetic mechanisms. Our research highlights the potential of NUDT19 as a therapeutic target, particularly for targeted therapies in malignancies such as leukemia, with significant clinical application prospects.
6. Mechanism of ellagic acid improving cognitive dysfunction in APP/PS double transgenic mice based on PI3K/AKT/GSK-3β signaling pathway
Li-Li ZHONG ; Xin LU ; Ying YU ; Qin-Yan ZHAO ; Jing ZHANG ; Tong-Hui LIU ; Xue-Yan NI ; Li-Li ZHONG ; Yan-Ling CHE ; Dan WU ; Hong LIU
Chinese Pharmacological Bulletin 2024;40(1):90-98
Aim To investigate the effect of ellagic acid (EA) on cognitive function in APP/PS 1 double- transgenic mice, and to explore the regulatory mechanism of ellagic acid on the level of oxidative stress in the hippocampus of double-transgenic mice based on the phosphatidylinositol 3-kinase/protein kinase B/glycogen synthase kinase-3 (PI3K/AKT/GSK-3 β) signaling pathway. Methods Thirty-two SPF-grade 6-month-old APP/PS 1 double transgenic mice were randomly divided into four groups, namely, APP/PS 1 group, APP/PS1 + EA group, APP/PS1 + LY294002 group, APP/PS 1 + EA + LY294002 group, with eight mice in each group, and eight SPF-grade C57BL/6J wild type mice ( Wild type) were selected as the blank control group. The APP/PS 1 + EA group was given 50 mg · kg
7.Stability study of umbilical cord mesenchymal stem cells formulation in large-scale production
Wang-long CHU ; Tong-jing LI ; Yan SHANGGUAN ; Fang-tao HE ; Jian-fu WU ; Xiu-ping ZENG ; Tao GUO ; Qing-fang WANG ; Fen ZHANG ; Zhen-zhong ZHONG ; Xiao LIANG ; Jun-yuan HU ; Mu-yun LIU
Acta Pharmaceutica Sinica 2024;59(3):743-750
Umbilical cord mesenchymal stem cells (UC-MSCs) have been widely used in regenerative medicine, but there is limited research on the stability of UC-MSCs formulation during production. This study aims to assess the stability of the cell stock solution and intermediate product throughout the production process, as well as the final product following reconstitution, in order to offer guidance for the manufacturing process and serve as a reference for formulation reconstitution methods. Three batches of cell formulation were produced and stored under low temperature (2-8 ℃) and room temperature (20-26 ℃) during cell stock solution and intermediate product stages. The storage time intervals for cell stock solution were 0, 2, 4, and 6 h, while for intermediate products, the intervals were 0, 1, 2, and 3 h. The evaluation items included visual inspection, viable cell concentration, cell viability, cell surface markers, lymphocyte proliferation inhibition rate, and sterility. Additionally, dilution and culture stability studies were performed after reconstitution of the cell product. The reconstitution diluents included 0.9% sodium chloride injection, 0.9% sodium chloride injection + 1% human serum albumin, and 0.9% sodium chloride injection + 2% human serum albumin, with dilution ratios of 10-fold and 40-fold. The storage time intervals after dilution were 0, 1, 2, 3, and 4 h. The reconstitution culture media included DMEM medium, DMEM + 2% platelet lysate, 0.9% sodium chloride injection, and 0.9% sodium chloride injection + 1% human serum albumin, and the culture duration was 24 h. The evaluation items were viable cell concentration and cell viability. The results showed that the cell stock solution remained stable for up to 6 h under both low temperature (2-8 ℃) and room temperature (20-26 ℃) conditions, while the intermediate product remained stable for up to 3 h under the same conditions. After formulation reconstitution, using sodium chloride injection diluted with 1% or 2% human serum albumin maintained a viability of over 80% within 4 h. It was observed that different dilution factors had an impact on cell viability. After formulation reconstitution, cultivation in medium with 2% platelet lysate resulted in a cell viability of over 80% after 24 h. In conclusion, the stability of cell stock solution within 6 h and intermediate product within 3 h meets the requirements. The addition of 1% or 2% human serum albumin in the reconstitution diluent can better protect the post-reconstitution cell viability.
8.Targeting Ferroptosis to Enhance Radiosensitivity of Glioblastoma
Xi-Zhong JIANG ; Shi-Yu QIAO ; Tong JIANG ; Ying YAN ; Ying XU ; Tong WU
Progress in Biochemistry and Biophysics 2024;51(6):1284-1291
Glioblastoma (GBM), one of the most common malignant tumors in the central nervous system (CNS), is characterized by diffuse and invasive growth as well as resistance to various combination therapies. GBM is the most prevalent type with the highest degree of malignancy and the worst prognosis. While current clinical treatments include surgical resection, radiotherapy, temozolomide chemotherapy, novel molecular targeted therapy, and immunotherapy, the median survival time of GBM patients is only about one year. Radiotherapy is one of the important treatment modalities for GBM, which relies on ionizing radiation to eradicate tumor cells. Approximately 60% to 70% of patients need to receive radiotherapy as postoperative radiotherapy or neoadjuvant radiotherapy during the treatment process. However, during radiotherapy, the radioresistant effect caused by DNA repair activation and cell apoptosis inhibition impedes the therapeutic effect of malignant glioblastoma.Ferroptosis was first proposed by Dr. Brent R. Stockwell in 2012. It is an iron-dependent mode of cell death induced by excessive lipid peroxidation. Although the application of ferroptosis in tumor therapy is still in the exploratory stage, it provides a completely new idea for tumor therapy as a novel form of cell death. Ferroptosis has played a significant role in the treatment of GBM. Specifically, research has revealed the key processes of ferroptosis occurrence, including intracellular iron accumulation, reactive oxygen species (ROS) generation, lipid peroxidation, and a decrease in the activity of the antioxidant system. Among them, glutathione peroxidase 4(GPX4) in the cytoplasm and mitochondria, ferroptosis suppressor protein 1 (FSP1) on the plasma membrane, and dihydroorotate dehydrogenase (DHODH) in the mitochondria constitute an antioxidant protection system against ferroptosis. In iron metabolism, nuclear receptor coactivator 4 (NCOA4) can mediate ferritin autophagy to regulate intracellular iron balance based on intracellular iron content. Heme oxygenase1 (HMOX1) catalyzes heme degradation to release iron and regulate ferroptosis. Radiation can trigger ferroptosis by generating ROS, inhibiting the signaling axis of the antioxidant system, depleting glutathione, upregulating acyl-CoA synthase long chain family member 4 (ACSL4), and inducing autophagy. Interestingly, some articles has documented that exposure to low doses of radiation (6 Gy for 24 h or 8 Gy for 4-12 h) can induce the expression of SLC7A11 and GPX4 in breast cancer and lung cancer cells, leading to radiation resistance, while radiation-induced ferroptosis occurs after 48 h. In contrast, high doses of ionizing radiation (20 Gy and 50 Gy) increase lipid peroxidation after 24 h. This suggests that radiation-induced oxidative stress is a double-edged sword that can regulate ferroptosis in both directions, and the ultimate fate of cells after radiation exposure——developing resistance and achieving homeostasis or undergoing ferroptosis——depends on the degree and duration of membrane lipid damage caused by the radiation dose. In addition, during the process of radiotherapy, methods such as inducing iron overload, damaging the antioxidant system, and disrupting mitochondrial function are used to target ferroptosis, thereby enhancing the radiosensitivity of glioblastoma. By promoting the occurrence of ferroptosis in tumor cells as a strategy to improve radiotherapy sensitivity, we can enhance the killing effect of ionizing radiation on tumor cells, thus providing more treatment options for patients with glioblastoma. In this paper, we reviewed ferroptosis and its mechanism, analyzed the molecular mechanism of radiation-induced ferroptosis, and discussed the effective strategies to regulate ferroptosis in enhancing the sensitivity of radiotherapy, with a view to providing an important reference value for improving the current status of glioblastoma treatment.
9.Current status of cognition and skin care behavior in adolescent patients with acne: A survey in China.
Jing TIAN ; Hong SHU ; Qiufang QIAN ; Zhong SHEN ; Chunyu ZHAO ; Li SONG ; Ping LI ; Xiuping HAN ; Hua QIAN ; Jinping CHEN ; Hua WANG ; Lin MA ; Yuan LIANG
Chinese Medical Journal 2024;137(4):476-477
10.Effect of loading angle and fabrication materials on stress distribution with periodontal splint in compromised periodontal tissues: a finite element study
Ming FANG ; Yuchen LIU ; Sheng ZHONG ; Dongmei LI ; Tong YANG ; Shizhu BAI
Chinese Journal of Stomatology 2024;59(11):1120-1125
Objective:To evaluate the effect of polyetheretherketone (PEEK) periodontal splints and splints made from other materials under static loading on stress distributions in periodontal tissues, cement layer, and splints themselves.Methods:A finite element model based on cone-beam CT imaging data of a 25-year-old male patient (treated at the Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University in October 2021 for a cracked maxillary molar) with a healthy and intact mandibular dentition and periodontal health was constructed. The finite element model included anterior mandible dentition, mandibular bone model without bone resorption (WBR group), a periodontally compromised mandible model (control group), and three types of periodontal splints: a PEEK periodontal splint (0.7 mm thick, Young′s modulus: 4.1 MPa), a fiber-reinforced resin (FRC) splint (1.0 mm thick, Young′s modulus: 37.0 MPa), and a titanium splint (1.2 mm thick, Young′s modulus: 110.0 MPa). The bone resorption models fixed with different periodontal splints constituted the experimental groups (PEEK group, FRC group and titanium group). Loading of 100 N was applied on the midpoint of the incisal edge of tooth 41. The direction was set at 0°, which was parallel to the long axis of the tooth and downward. The buccal to lingual and downward angles were 30°and 60°, respectively, perpendicular to the long axis of the tooth and 90° to the lingual side. The finite element analysis software was utilized to analyze the stress distribution characteristics of the periodontal tissues, adhesive layer, and the splint itself in the anterior mandibular teeth among the different group.Results:Under the different loading simulation, in the control group, the maximal von Mises stresses of periodontal ligament and bone were 15.7-50.2 MPa and 38.8-130.3 MPa, respectively, and in the WBR group, the maximal von Mises stresses of periodontal ligament and bone were 3.6-6.4 MPa and 16.5-42.7 MPa, respectively. Under the same loading conditions, the magnitude of maximal von Mises stresses in periodontal tissues in the PEEK group was 4.6-6.2 MPa, and the magnitude of stresses in the periodontal ligament of 41 teeth in the WBR group was similar to that in the PEEK group, but higher than that in the FRC and titanium groups. The maximal von Mises stresses of each group is primarily distributed in the periodontal ligament and alveolar bone at the cervical area of the tooth. The higher the elastic modulus of the splint, the higher its own maximal von Mises stresses, and the smaller the maximal principal stresses transmitted to the adhesive layer. In the PEEK group and titanium group, the stress distribution area in the adhesive layer and the splint was near the splint connection adjacent to tooth 41.Conclusions:Periodontal splints fabricated from three types of materials, are effective in distributing stress within the periodontal tissues of the abutment teeth. Compared to FRC and titanium group, the higher PEEK splint stress value was obtained, and the smaller the stress value was transmitted to its adhesive layer.

Result Analysis
Print
Save
E-mail