1.Mechanism of Aerobic Exercise in Delaying Brain Aging in Aging Mice by Regulating Tryptophan Metabolism
De-Man ZHANG ; Chang-Ling WEI ; Yuan-Ting ZHANG ; Yu JIN ; Xiao-Han HUANG ; Min-Yan ZHENG ; Xue LI
Progress in Biochemistry and Biophysics 2025;52(6):1362-1372
		                        		
		                        			
		                        			ObjectiveTo explore the molecular mechanism of aerobic exercise to improve hippocampal neuronal degeneration by regulating tryptophan metabolic pathway. Methods60 SPF-grade C57BL/6J male mice were divided into a young group (2 months old, n=30) and a senile group (12 months old, n=30), and each group was further divided into a control group (C/A group, n=15) and an exercise group (CE/AE group, n=15). An aerobic exercise program was used for 8 weeks. Learning memory ability was assessed by Y-maze, and anxiety-depression-like behavior was detected by absent field experiment. Hippocampal Trp levels were measured by GC-MS. Nissl staining was used to observe the number and morphology of hippocampal neurons, and electron microscopy was used to detect synaptic ultrastructure. ELISA was used to detect the levels of hippocampal Trp,5-HT, Kyn, KATs, KYNA, KMO, and QUIN; Western blot was used to analyze the activities of TPH2, IDO1, and TDO enzymes. ResultsGroup A mice showed significant decrease in learning and memory ability (P<0.05) and increase in anxiety and depressive behaviors (P<0.05); all of AE group showed significant improvement (P<0.05). Hippocampal Trp levels decreased in group A (P<0.05) and increased in AE group (P<0.05). Nidus vesicles were reduced and synaptic structures were degraded in group A (P<0.05), and both were significantly improved in group AE (P<0.05). The levels of Trp, 5-HT, KATs, and KYNA were decreased (P<0.05) and the levels of Kyn, KMO, and QUIN were increased (P<0.05) in group A. The activity of TPH2 was decreased (P<0.05), and the activities of IDO1 and TDO were increased (P<0.05). The AE group showed the opposite trend. ConclusionThe aging process significantly reduces the learning memory ability and increases the anxiety-depression-like behavior of mice, and leads to the reduction of the number of nidus vesicles and degenerative changes of synaptic structure in the hippocampus, whereas aerobic exercise not only effectively enhances the spatial learning memory ability and alleviates the anxiety-depression-like behavior of aging mice, but also improves the morphology and structure of neurons in hippocampal area, which may be achieved by the mechanism of regulating the tryptophan metabolic pathway. 
		                        		
		                        		
		                        		
		                        	
2.Study on Kinetic and Static Tasks With Different Resistance Coefficients in Post-stroke Rehabilitation Training Based on Functional Near-infrared Spectroscopy
Ling-Di FU ; Jia-Xuan DOU ; Ting-Ting YING ; Li-Yong YIN ; Min TANG ; Zhen-Hu LIANG
Progress in Biochemistry and Biophysics 2025;52(7):1890-1903
		                        		
		                        			
		                        			ObjectiveFunctional near-infrared spectroscopy (fNIRS), a novel non-invasive technique for monitoring cerebral activity, can be integrated with upper limb rehabilitation robots to facilitate the real-time assessment of neurological rehabilitation outcomes. The rehabilitation robot is designed with 3 training modes: passive, active, and resistance. Among these, the resistance mode has been demonstrated to yield superior rehabilitative outcomes for patients with a certain level of muscle strength. The control modes in the resistance mode can be categorized into dynamic and static control. However, the effects of different control modes in the resistance mode on the motor function of patients with upper limb hemiplegia in stroke remain unclear. Furthermore, the effects of force, an important parameter of different control modes, on the activation of brain regions have rarely been reported. This study investigates the effects of dynamic and static resistance modes under varying resistance levels on cerebral functional alterations during motor rehabilitation in post-stroke patients. MethodsA cohort of 20 stroke patients with upper limb dysfunction was enrolled in the study, completing preparatory adaptive training followed by 3 intensity-level tasks across 2 motor paradigms. The bilateral prefrontal cortices (PFC), bilateral primary motor cortices (M1), bilateral primary somatosensory cortices (S1), and bilateral premotor and supplementary motor cortices (PM) were examined in both the resting and motor training states. The lateralization index (LI), phase locking value (PLV), network metrics were employed to examine cortical activation patterns and topological properties of brain connectivity. ResultsThe data indicated that both dynamic and static modes resulted in significantly greater activation of the contralateral M1 area and the ipsilateral PM area when compared to the resting state. The static patterns demonstrated a more pronounced activation in the contralateral M1 in comparison to the dynamic patterns. The results of brain network analysis revealed significant differences between the dynamic and resting states in the contralateral PFC area and contralateral M1 area (F=4.709, P=0.038), as well as in the contralateral PM area and ipsilateral M1 area (F=4.218, P=0.049). Moreover, the findings indicated a positive correlation between the activation of the M1 region and the increase in force in the dynamic mode, which was reversed in the static mode. ConclusionBoth dynamic and static resistance training modes have been demonstrated to activate the corresponding brain functional regions. Dynamic resistance modes elicit greater oxygen changes and connectivity to the region of interest (ROI) than static resistance modes. Furthermore, the effects of increasing force differ between the two modes. In patients who have suffered a stroke, dynamic modes may have a more pronounced effect on the activation of exercise-related functional brain regions. 
		                        		
		                        		
		                        		
		                        	
3.Molecular Mechanisms of RNA Modification Interactions and Their Roles in Cancer Diagnosis and Treatment
Jia-Wen FANG ; Chao ZHE ; Ling-Ting XU ; Lin-Hai LI ; Bin XIAO
Progress in Biochemistry and Biophysics 2025;52(9):2252-2266
		                        		
		                        			
		                        			RNA modifications constitute a crucial class of post-transcriptional chemical alterations that profoundly influence RNA stability and translational efficiency, thereby shaping cellular protein expression profiles. These diverse chemical marks are ubiquitously involved in key biological processes, including cell proliferation, differentiation, apoptosis, and metastatic potential, and they exert precise regulatory control over these functions. A major advance in the field is the recognition that RNA modifications do not act in isolation. Instead, they participate in complex, dynamic interactions—through synergistic enhancement, antagonism, competitive binding, and functional crosstalk—forming what is now termed the “RNA modification interactome” or “RNA modification interaction network.” The formation and functional operation of this interactome rely on a multilayered regulatory framework orchestrated by RNA-modifying enzymes—commonly referred to as “writers,” “erasers,” and “readers.” These enzymes exhibit hierarchical organization within signaling cascades, often functioning in upstream-downstream sequences and converging at critical regulatory nodes. Their integration is further mediated through shared regulatory elements or the assembly into multi-enzyme complexes. This intricate enzymatic network directly governs and shapes the interdependent relationships among various RNA modifications. This review systematically elucidates the molecular mechanisms underlying both direct and indirect interactions between RNA modifications. Building upon this foundation, we introduce novel quantitative assessment frameworks and predictive disease models designed to leverage these interaction patterns. Importantly, studies across multiple disease contexts have identified core downstream signaling axes driven by specific constellations of interacting RNA modifications. These findings not only deepen our understanding of how RNA modification crosstalk contributes to disease initiation and progression, but also highlight its translational potential. This potential is exemplified by the discovery of diagnostic biomarkers based on interaction signatures and the development of therapeutic strategies targeting pathogenic modification networks. Together, these insights provide a conceptual framework for understanding the dynamic and multidimensional regulatory roles of RNA modifications in cellular systems. In conclusion, the emerging concept of RNA modification crosstalk reveals the extraordinary complexity of post-transcriptional regulation and opens new research avenues. It offers critical insights into the central question of how RNA-modifying enzymes achieve substrate specificity—determining which nucleotides within specific RNA transcripts are selectively modified during defined developmental or pathological stages. Decoding these specificity determinants, shaped in large part by the modification interactome, is essential for fully understanding the biological and pathological significance of the epitranscriptome. 
		                        		
		                        		
		                        		
		                        	
4.Liuwei Dihuang Wan inhibits oxidative stress in premature ovarian failure mice by regulating intestinal microbiota
Jiawen ZHONG ; Bo JIANG ; Wenyan ZHANG ; Xiaorong LI ; Ling QIN ; Ting GAO
Chinese Journal of Tissue Engineering Research 2025;29(11):2285-2293
		                        		
		                        			
		                        			BACKGROUND:Studies have shown that patients with premature ovarian failure have changes in the structure of intestinal flora and that imbalance of intestinal microbiota may be one of the important mechanisms in the development of premature ovarian failure. OBJECTIVE:To investigate the effect of Liuwei Dihuang Wan on oxidative stress and intestinal microbiota in premature ovarian failure mice induced by cyclophosphamide. METHODS:Forty-five female ICR mice were randomized into three groups:blank group(normal mice),model group(premature ovarian failure mice),and Liuwei Dihuang Wan group.A mouse model of premature ovarian failure was prepared by one-time intraperitoneal injection of cyclophosphamide(120 mg/kg)in the latter two groups.After successful modeling,the Liuwei Dihuang Wan group was intragastrically administered for 28 continuous days,and the other two groups were intragastrically administered with the same amount of normal saline for 28 days.Mouse body mass was recorded weekly and ovarian index was calculated.The development of mouse follicles was observed using hematoxylin-eosin staining.ELISA method was used to detect serum levels of anti-Mullerian hormone,estradiol,follicle stimulating hormone,superoxide dismutase,glutathione peroxidase,and malondialdehyde.Meanwhile,the gut microbiome of all mice was detected through 16S rDNA sequencing. RESULTS AND CONCLUSION:The mice in the model group had loose hair,decreased vigor and grip strength,almost no increase in body mass,and decreased ovarian index.Whereas,the mouse body mass and ovarian index were increased after treatment with Liuwei Dihuang Wan(P<0.05).The estrous cycle of mice in the model group was disorganized;Liuwei Dihuang Wan could restore the estrous cycle and reduce the number of atretic follicles in mice with premature ovarian failure.The serum levels of follicle stimulating hormone and malondialdehyde in the model group significantly increased(P<0.01),while the levels of estradiol,anti-Mullerian hormone,superoxide dismutase,and glutathione peroxidase significantly decreased(P<0.01).Liuwei Dihuang Wan could significantly decrease the serum levels of follicle stimulating hormone and malondialdehyde(P<0.01),and increase the levels of estradiol,anti-Mullerian hormone,superoxide dismutase,and glutathione peroxidase.According to the 16S rDNA sequencing results,Liuwei Dihuang Wan could regulate the abundance and diversity of intestinal microbiota,and increase the relative abundance of beneficial bacteria.KEGG pathway analysis showed that the intestinal microbiota and metabolic pathways,biosynthesis of secondary metabolites,microbial metabolism in different environments,and biosynthesis of amino acids were regulated by Liuwei Dihuang Wan.To conclude,the changes in the structure of intestinal microbiome may be one of the potential mechanisms of Liuwei Dihuang Wan in treating premature ovarian failure.Liuwei Dihuang Wan can regulate the structure of intestinal microbiome,increase the number of beneficial bacteria,reduce the number of harmful bacteria,and thus improve the balance of intestinal microbiota.This regulatory effect helps to reduce oxidative stress levels and further inhibit ovarian oxidative stress in mice with premature ovarian failure.
		                        		
		                        		
		                        		
		                        	
5.Identification and Potential Clinical Utility of Common Genetic Variants in Gestational Diabetes among Chinese Pregnant Women
Claudia Ha-ting TAM ; Ying WANG ; Chi Chiu WANG ; Lai Yuk YUEN ; Cadmon King-poo LIM ; Junhong LENG ; Ling WU ; Alex Chi-wai NG ; Yong HOU ; Kit Ying TSOI ; Hui WANG ; Risa OZAKI ; Albert Martin LI ; Qingqing WANG ; Juliana Chung-ngor CHAN ; Yan Chou YE ; Wing Hung TAM ; Xilin YANG ; Ronald Ching-wan MA
Diabetes & Metabolism Journal 2025;49(1):128-143
		                        		
		                        			 Background:
		                        			The genetic basis for hyperglycaemia in pregnancy remain unclear. This study aimed to uncover the genetic determinants of gestational diabetes mellitus (GDM) and investigate their applications. 
		                        		
		                        			Methods:
		                        			We performed a meta-analysis of genome-wide association studies (GWAS) for GDM in Chinese women (464 cases and 1,217 controls), followed by de novo replications in an independent Chinese cohort (564 cases and 572 controls) and in silico replication in European (12,332 cases and 131,109 controls) and multi-ethnic populations (5,485 cases and 347,856 controls). A polygenic risk score (PRS) was derived based on the identified variants. 
		                        		
		                        			Results:
		                        			Using the genome-wide scan and candidate gene approaches, we identified four susceptibility loci for GDM. These included three previously reported loci for GDM and type 2 diabetes mellitus (T2DM) at MTNR1B (rs7945617, odds ratio [OR], 1.64; 95% confidence interval [CI],1.38 to 1.96]), CDKAL1 (rs7754840, OR, 1.33; 95% CI, 1.13 to 1.58), and INS-IGF2-KCNQ1 (rs2237897, OR, 1.48; 95% CI, 1.23 to 1.79), as well as a novel genome-wide significant locus near TBR1-SLC4A10 (rs117781972, OR, 2.05; 95% CI, 1.61 to 2.62; Pmeta=7.6×10-9), which has not been previously reported in GWAS for T2DM or glycaemic traits. Moreover, we found that women with a high PRS (top quintile) had over threefold (95% CI, 2.30 to 4.09; Pmeta=3.1×10-14) and 71% (95% CI, 1.08 to 2.71; P=0.0220) higher risk for GDM and abnormal glucose tolerance post-pregnancy, respectively, compared to other individuals. 
		                        		
		                        			Conclusion
		                        			Our results indicate that the genetic architecture of glucose metabolism exhibits both similarities and differences between the pregnant and non-pregnant states. Integrating genetic information can facilitate identification of pregnant women at a higher risk of developing GDM or later diabetes. 
		                        		
		                        		
		                        		
		                        	
6.Identification and Potential Clinical Utility of Common Genetic Variants in Gestational Diabetes among Chinese Pregnant Women
Claudia Ha-ting TAM ; Ying WANG ; Chi Chiu WANG ; Lai Yuk YUEN ; Cadmon King-poo LIM ; Junhong LENG ; Ling WU ; Alex Chi-wai NG ; Yong HOU ; Kit Ying TSOI ; Hui WANG ; Risa OZAKI ; Albert Martin LI ; Qingqing WANG ; Juliana Chung-ngor CHAN ; Yan Chou YE ; Wing Hung TAM ; Xilin YANG ; Ronald Ching-wan MA
Diabetes & Metabolism Journal 2025;49(1):128-143
		                        		
		                        			 Background:
		                        			The genetic basis for hyperglycaemia in pregnancy remain unclear. This study aimed to uncover the genetic determinants of gestational diabetes mellitus (GDM) and investigate their applications. 
		                        		
		                        			Methods:
		                        			We performed a meta-analysis of genome-wide association studies (GWAS) for GDM in Chinese women (464 cases and 1,217 controls), followed by de novo replications in an independent Chinese cohort (564 cases and 572 controls) and in silico replication in European (12,332 cases and 131,109 controls) and multi-ethnic populations (5,485 cases and 347,856 controls). A polygenic risk score (PRS) was derived based on the identified variants. 
		                        		
		                        			Results:
		                        			Using the genome-wide scan and candidate gene approaches, we identified four susceptibility loci for GDM. These included three previously reported loci for GDM and type 2 diabetes mellitus (T2DM) at MTNR1B (rs7945617, odds ratio [OR], 1.64; 95% confidence interval [CI],1.38 to 1.96]), CDKAL1 (rs7754840, OR, 1.33; 95% CI, 1.13 to 1.58), and INS-IGF2-KCNQ1 (rs2237897, OR, 1.48; 95% CI, 1.23 to 1.79), as well as a novel genome-wide significant locus near TBR1-SLC4A10 (rs117781972, OR, 2.05; 95% CI, 1.61 to 2.62; Pmeta=7.6×10-9), which has not been previously reported in GWAS for T2DM or glycaemic traits. Moreover, we found that women with a high PRS (top quintile) had over threefold (95% CI, 2.30 to 4.09; Pmeta=3.1×10-14) and 71% (95% CI, 1.08 to 2.71; P=0.0220) higher risk for GDM and abnormal glucose tolerance post-pregnancy, respectively, compared to other individuals. 
		                        		
		                        			Conclusion
		                        			Our results indicate that the genetic architecture of glucose metabolism exhibits both similarities and differences between the pregnant and non-pregnant states. Integrating genetic information can facilitate identification of pregnant women at a higher risk of developing GDM or later diabetes. 
		                        		
		                        		
		                        		
		                        	
7.Identification and Potential Clinical Utility of Common Genetic Variants in Gestational Diabetes among Chinese Pregnant Women
Claudia Ha-ting TAM ; Ying WANG ; Chi Chiu WANG ; Lai Yuk YUEN ; Cadmon King-poo LIM ; Junhong LENG ; Ling WU ; Alex Chi-wai NG ; Yong HOU ; Kit Ying TSOI ; Hui WANG ; Risa OZAKI ; Albert Martin LI ; Qingqing WANG ; Juliana Chung-ngor CHAN ; Yan Chou YE ; Wing Hung TAM ; Xilin YANG ; Ronald Ching-wan MA
Diabetes & Metabolism Journal 2025;49(1):128-143
		                        		
		                        			 Background:
		                        			The genetic basis for hyperglycaemia in pregnancy remain unclear. This study aimed to uncover the genetic determinants of gestational diabetes mellitus (GDM) and investigate their applications. 
		                        		
		                        			Methods:
		                        			We performed a meta-analysis of genome-wide association studies (GWAS) for GDM in Chinese women (464 cases and 1,217 controls), followed by de novo replications in an independent Chinese cohort (564 cases and 572 controls) and in silico replication in European (12,332 cases and 131,109 controls) and multi-ethnic populations (5,485 cases and 347,856 controls). A polygenic risk score (PRS) was derived based on the identified variants. 
		                        		
		                        			Results:
		                        			Using the genome-wide scan and candidate gene approaches, we identified four susceptibility loci for GDM. These included three previously reported loci for GDM and type 2 diabetes mellitus (T2DM) at MTNR1B (rs7945617, odds ratio [OR], 1.64; 95% confidence interval [CI],1.38 to 1.96]), CDKAL1 (rs7754840, OR, 1.33; 95% CI, 1.13 to 1.58), and INS-IGF2-KCNQ1 (rs2237897, OR, 1.48; 95% CI, 1.23 to 1.79), as well as a novel genome-wide significant locus near TBR1-SLC4A10 (rs117781972, OR, 2.05; 95% CI, 1.61 to 2.62; Pmeta=7.6×10-9), which has not been previously reported in GWAS for T2DM or glycaemic traits. Moreover, we found that women with a high PRS (top quintile) had over threefold (95% CI, 2.30 to 4.09; Pmeta=3.1×10-14) and 71% (95% CI, 1.08 to 2.71; P=0.0220) higher risk for GDM and abnormal glucose tolerance post-pregnancy, respectively, compared to other individuals. 
		                        		
		                        			Conclusion
		                        			Our results indicate that the genetic architecture of glucose metabolism exhibits both similarities and differences between the pregnant and non-pregnant states. Integrating genetic information can facilitate identification of pregnant women at a higher risk of developing GDM or later diabetes. 
		                        		
		                        		
		                        		
		                        	
8.Identification and Potential Clinical Utility of Common Genetic Variants in Gestational Diabetes among Chinese Pregnant Women
Claudia Ha-ting TAM ; Ying WANG ; Chi Chiu WANG ; Lai Yuk YUEN ; Cadmon King-poo LIM ; Junhong LENG ; Ling WU ; Alex Chi-wai NG ; Yong HOU ; Kit Ying TSOI ; Hui WANG ; Risa OZAKI ; Albert Martin LI ; Qingqing WANG ; Juliana Chung-ngor CHAN ; Yan Chou YE ; Wing Hung TAM ; Xilin YANG ; Ronald Ching-wan MA
Diabetes & Metabolism Journal 2025;49(1):128-143
		                        		
		                        			 Background:
		                        			The genetic basis for hyperglycaemia in pregnancy remain unclear. This study aimed to uncover the genetic determinants of gestational diabetes mellitus (GDM) and investigate their applications. 
		                        		
		                        			Methods:
		                        			We performed a meta-analysis of genome-wide association studies (GWAS) for GDM in Chinese women (464 cases and 1,217 controls), followed by de novo replications in an independent Chinese cohort (564 cases and 572 controls) and in silico replication in European (12,332 cases and 131,109 controls) and multi-ethnic populations (5,485 cases and 347,856 controls). A polygenic risk score (PRS) was derived based on the identified variants. 
		                        		
		                        			Results:
		                        			Using the genome-wide scan and candidate gene approaches, we identified four susceptibility loci for GDM. These included three previously reported loci for GDM and type 2 diabetes mellitus (T2DM) at MTNR1B (rs7945617, odds ratio [OR], 1.64; 95% confidence interval [CI],1.38 to 1.96]), CDKAL1 (rs7754840, OR, 1.33; 95% CI, 1.13 to 1.58), and INS-IGF2-KCNQ1 (rs2237897, OR, 1.48; 95% CI, 1.23 to 1.79), as well as a novel genome-wide significant locus near TBR1-SLC4A10 (rs117781972, OR, 2.05; 95% CI, 1.61 to 2.62; Pmeta=7.6×10-9), which has not been previously reported in GWAS for T2DM or glycaemic traits. Moreover, we found that women with a high PRS (top quintile) had over threefold (95% CI, 2.30 to 4.09; Pmeta=3.1×10-14) and 71% (95% CI, 1.08 to 2.71; P=0.0220) higher risk for GDM and abnormal glucose tolerance post-pregnancy, respectively, compared to other individuals. 
		                        		
		                        			Conclusion
		                        			Our results indicate that the genetic architecture of glucose metabolism exhibits both similarities and differences between the pregnant and non-pregnant states. Integrating genetic information can facilitate identification of pregnant women at a higher risk of developing GDM or later diabetes. 
		                        		
		                        		
		                        		
		                        	
9. Establishment and genotype identification of hepatic stellate cell-specific Grk2 gene knockout mouse model
Yu-Han WANG ; Ya-Ping XU ; Nan LI ; Ting-Ting CHEN ; Ling LI ; Ping-Ping GAO ; Wei WEI ; Wu-Yi SUN ; Hua WANG
Chinese Pharmacological Bulletin 2024;40(1):189-194
		                        		
		                        			
		                        			 Aim To establish a stable hepatic stellate cell ( HSC ) -specific G protein-coupled receptor kinase 2 ( GRK2 ) knockout mice and provide the important animal model for further studying the biological function of GRK2 in HSC. Methods The loxP-labeled Grk2 gene mouse (Grk2 
		                        		
		                        		
		                        		
		                        	
10.Relationship between self-reported occupational noise exposure and expression levels of plasma inflammatory cytokines in adult asthmatic patients
Yang WANG ; Lianfeng LI ; Yuqin SHI ; Ling ZHANG ; Ming WANG ; Weihong CHEN ; Ting ZHOU
Journal of Public Health and Preventive Medicine 2024;35(2):96-100
		                        		
		                        			
		                        			Objectives  To investigate the relationship between self-reported occupational noise exposure and levels of plasma inflammatory cytokines in asthmatic patients.  Methods  A total of 910 adult asthmatic patients were selected as the study subjects, and their occupational noise exposure history and other related information were collected. The peripheral blood samples were collected from the patients, and the expression levels of plasma soluble CD14 (sCD14), complement factor D (CFD), Eotaxin-11 (CCL11), and IL-9 were determined. The relationship between self-reported occupational noise exposure and the expression levels of the four inflammatory cytokines in patients’ plasma were analyzed using multiple linear regression models. The interactions between confounding factors and self-reported occupational noise exposure were further analyzed by interaction analysis.  Results  The plasma CCL11, sCD14 and CFD expressions in asthmatic patients with self-reported occupational noise exposure were significantly higher than those in patients without the exposure (P<0.05). After adjusting for confounding factors, compared with patients reporting no occupational noise exposure, the plasma CFD expression was increased by 0.17 (95% CI: 0.02, 0.31) natural logarithm units in patients with self-reported occupational noise exposure. During remission, the levels of plasma CCL11 and sCD14 in asthmatic patients with self-reported occupational noise exposure were increased by 0.27 (95% CI: 0.05, 0.49) and 0.22 (95% CI: 0.02, 0.41) natural logarithm units, respectively, when compared with patients without the exposure. Interaction analysis showed that self-reported occupational noise exposure had significant multiplicative interaction with smoking or pet ownership on plasma CCL11 or CFD expressions in asthmatic patients (all P<0.05).  Conclusion  Self-reported occupational noise exposure is significantly associated with increased expression levels of plasma CFD, CCL11, and sCD14 in adult asthmatic patients.
		                        		
		                        		
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail