1.Structure and Function of GPR126/ADGRG6
Ting-Ting WU ; Si-Qi JIA ; Shu-Zhu CAO ; De-Xin ZHU ; Guo-Chao TANG ; Zhi-Hua SUN ; Xing-Mei DENG ; Hui ZHANG
Progress in Biochemistry and Biophysics 2025;52(2):299-309
GPR126, also known as ADGRG6, is one of the most deeply studied aGPCRs. Initially, GPR126 was thought to be a receptor associated with muscle development and was primarily expressed in the muscular and skeletal systems. With the deepening of research, it was found that GPR126 is expressed in multiple mammalian tissues and organs, and is involved in many biological processes such as embryonic development, nervous system development, and extracellular matrix interactions. Compared with other aGPCRs proteins, GPR126 has a longer N-terminal domain, which can bind to ligands one-to-one and one-to-many. Its N-terminus contains five domains, a CUB (complement C1r/C1s, Uegf, Bmp1) domain, a PTX (Pentraxin) domain, a SEA (Sperm protein, Enterokinase, and Agrin) domain, a hormone binding (HormR) domain, and a conserved GAIN domain. The GAIN domain has a self-shearing function, which is essential for the maturation, stability, transport and function of aGPCRs. Different SEA domains constitute different GPR126 isomers, which can regulate the activation and closure of downstream signaling pathways through conformational changes. GPR126 has a typical aGPCRs seven-transmembrane helical structure, which can be coupled to Gs and Gi, causing cAMP to up- or down-regulation, mediating transmembrane signaling and participating in the regulation of cell proliferation, differentiation and migration. GPR126 is activated in a tethered-stalk peptide agonism or orthosteric agonism, which is mainly manifested by self-proteolysis or conformational changes in the GAIN domain, which mediates the rapid activation or closure of downstream pathways by tethered agonists. In addition to the tethered short stem peptide activation mode, GPR126 also has another allosteric agonism or tunable agonism mode, which is specifically expressed as the GAIN domain does not have self-shearing function in the physiological state, NTF and CTF always maintain the binding state, and the NTF binds to the ligand to cause conformational changes of the receptor, which somehow transmits signals to the GAIN domain in a spatial structure. The GAIN domain can cause the 7TM domain to produce an activated or inhibited signal for signal transduction, For example, type IV collagen interacts with the CUB and PTX domains of GPR126 to activate GPR126 downstream signal transduction. GPR126 has homology of 51.6%-86.9% among different species, with 10 conserved regions between different species, which can be traced back to the oldest metazoans as well as unicellular animals.In terms of diseases, GPR126 dysfunction involves the pathological process of bone, myelin, embryo and other related diseases, and is also closely related to the occurrence and development of malignant tumors such as breast cancer and colon cancer. However, the biological function of GPR126 in various diseases and its potential as a therapeutic target still needs further research. This paper focuses on the structure, interspecies differences and conservatism, signal transduction and biological functions of GPR126, which provides ideas and references for future research on GPR126.
2.Effect comparison of flat loop with double C-loop Toric intraocular lenses on astigmatism correction based on standard astigmatism vector analysis
Jintao XIA ; Jia LIU ; Mi HAO ; Ting MA ; Lina CHENG
International Eye Science 2025;25(4):632-637
AIM:To compare the effect of AT TORBI 709M and Tecnis ZMT intraocular lenses on astigmatism correction in patients with corneal astigmatism at 3 mo after operation based on the standard astigmatism vector analysis.METHODS: This was a retrospective case-control study. The clinical data of 69 patients(69 eyes)with corneal astigmatism who underwent phacoemulsification and implantation of toric intraocular lens(IOL)from June 2021 to December 2021 in Day Surgery Center of Xi'an No.1 Hospital was analyzed. The patients were divided into two groups. In group one, 38 cases(38 eyes)were implanted with AT TORBI 709M, and 31 patients(31 eyes)with Tecnis ZMT in group two. The axial length, preoperative astigmatism and axis, and the degree of intraocular lens were recorded. The uncorrected distance visual acuity(UCDVA), best corrected distance visual acuity(BCDVA), diopter, residual astigmatism and axis were recorded preoperatively and at 1 wk, 1 and 3 mo postoperatively. The postoperative surgical indicators, including spherical equivalent(SE), target induced astigmatism vector(TIA), surgically induced astigmatism vector(SIA), magnitude of error(ME), absolute value of angle of error(|AE|), absolute value of difference vector(|DV|), correction index(CI), and index of success(IOS)were evaluated by the standard astigmatism vector analysis.RESULTS:Postoperative UCDVA and BCDVA were significantly improved(all P<0.001), and there were statistically significant differences compared to preoperative UCDVA and BCDVA(all P<0.001). While, there was no significant difference in UCDVA and BCDVA between the two groups(P=0.275, 0.124). The standard astigmatism vector analysis showed that a good astigmatism correction was achieved in both AT TORBI 709M group and Tecnis ZMT group, and both |DV| and IOS were close to 0(P=0.329, 0.288). The CI of the AT TORBI 709M group was closer to 1, indicating a better astigmatism correction, while the CI of the Tecnis ZMT group was higher than 1, suggesting an overcorrection of astigmatism. However, the difference between the two groups was not statistically significant(P=0.193). The mean residual astigmatism at 3 mo postoperatively was -0.11±0.91 D in the AT TORBI 709M group and -0.46±0.76 D in the Tecnis ZMT group, respectively, showing no statistically significance difference(t=1.732, P=0.088).CONCLUSION:Both the flat loop AT TORBI 709M and the double C-loop Tecnis ZMT intraocular lenses can effectively improve postoperative visual acuity in patients with regular corneal astigmatism, showing good rotational stability and comparable correction abilities for both astigmatism with the rule and against-the-rule astigmatism.
3.Study on Kinetic and Static Tasks With Different Resistance Coefficients in Post-stroke Rehabilitation Training Based on Functional Near-infrared Spectroscopy
Ling-Di FU ; Jia-Xuan DOU ; Ting-Ting YING ; Li-Yong YIN ; Min TANG ; Zhen-Hu LIANG
Progress in Biochemistry and Biophysics 2025;52(7):1890-1903
ObjectiveFunctional near-infrared spectroscopy (fNIRS), a novel non-invasive technique for monitoring cerebral activity, can be integrated with upper limb rehabilitation robots to facilitate the real-time assessment of neurological rehabilitation outcomes. The rehabilitation robot is designed with 3 training modes: passive, active, and resistance. Among these, the resistance mode has been demonstrated to yield superior rehabilitative outcomes for patients with a certain level of muscle strength. The control modes in the resistance mode can be categorized into dynamic and static control. However, the effects of different control modes in the resistance mode on the motor function of patients with upper limb hemiplegia in stroke remain unclear. Furthermore, the effects of force, an important parameter of different control modes, on the activation of brain regions have rarely been reported. This study investigates the effects of dynamic and static resistance modes under varying resistance levels on cerebral functional alterations during motor rehabilitation in post-stroke patients. MethodsA cohort of 20 stroke patients with upper limb dysfunction was enrolled in the study, completing preparatory adaptive training followed by 3 intensity-level tasks across 2 motor paradigms. The bilateral prefrontal cortices (PFC), bilateral primary motor cortices (M1), bilateral primary somatosensory cortices (S1), and bilateral premotor and supplementary motor cortices (PM) were examined in both the resting and motor training states. The lateralization index (LI), phase locking value (PLV), network metrics were employed to examine cortical activation patterns and topological properties of brain connectivity. ResultsThe data indicated that both dynamic and static modes resulted in significantly greater activation of the contralateral M1 area and the ipsilateral PM area when compared to the resting state. The static patterns demonstrated a more pronounced activation in the contralateral M1 in comparison to the dynamic patterns. The results of brain network analysis revealed significant differences between the dynamic and resting states in the contralateral PFC area and contralateral M1 area (F=4.709, P=0.038), as well as in the contralateral PM area and ipsilateral M1 area (F=4.218, P=0.049). Moreover, the findings indicated a positive correlation between the activation of the M1 region and the increase in force in the dynamic mode, which was reversed in the static mode. ConclusionBoth dynamic and static resistance training modes have been demonstrated to activate the corresponding brain functional regions. Dynamic resistance modes elicit greater oxygen changes and connectivity to the region of interest (ROI) than static resistance modes. Furthermore, the effects of increasing force differ between the two modes. In patients who have suffered a stroke, dynamic modes may have a more pronounced effect on the activation of exercise-related functional brain regions.
4.Molecular Mechanisms of RNA Modification Interactions and Their Roles in Cancer Diagnosis and Treatment
Jia-Wen FANG ; Chao ZHE ; Ling-Ting XU ; Lin-Hai LI ; Bin XIAO
Progress in Biochemistry and Biophysics 2025;52(9):2252-2266
RNA modifications constitute a crucial class of post-transcriptional chemical alterations that profoundly influence RNA stability and translational efficiency, thereby shaping cellular protein expression profiles. These diverse chemical marks are ubiquitously involved in key biological processes, including cell proliferation, differentiation, apoptosis, and metastatic potential, and they exert precise regulatory control over these functions. A major advance in the field is the recognition that RNA modifications do not act in isolation. Instead, they participate in complex, dynamic interactions—through synergistic enhancement, antagonism, competitive binding, and functional crosstalk—forming what is now termed the “RNA modification interactome” or “RNA modification interaction network.” The formation and functional operation of this interactome rely on a multilayered regulatory framework orchestrated by RNA-modifying enzymes—commonly referred to as “writers,” “erasers,” and “readers.” These enzymes exhibit hierarchical organization within signaling cascades, often functioning in upstream-downstream sequences and converging at critical regulatory nodes. Their integration is further mediated through shared regulatory elements or the assembly into multi-enzyme complexes. This intricate enzymatic network directly governs and shapes the interdependent relationships among various RNA modifications. This review systematically elucidates the molecular mechanisms underlying both direct and indirect interactions between RNA modifications. Building upon this foundation, we introduce novel quantitative assessment frameworks and predictive disease models designed to leverage these interaction patterns. Importantly, studies across multiple disease contexts have identified core downstream signaling axes driven by specific constellations of interacting RNA modifications. These findings not only deepen our understanding of how RNA modification crosstalk contributes to disease initiation and progression, but also highlight its translational potential. This potential is exemplified by the discovery of diagnostic biomarkers based on interaction signatures and the development of therapeutic strategies targeting pathogenic modification networks. Together, these insights provide a conceptual framework for understanding the dynamic and multidimensional regulatory roles of RNA modifications in cellular systems. In conclusion, the emerging concept of RNA modification crosstalk reveals the extraordinary complexity of post-transcriptional regulation and opens new research avenues. It offers critical insights into the central question of how RNA-modifying enzymes achieve substrate specificity—determining which nucleotides within specific RNA transcripts are selectively modified during defined developmental or pathological stages. Decoding these specificity determinants, shaped in large part by the modification interactome, is essential for fully understanding the biological and pathological significance of the epitranscriptome.
5.Research and development of teaching software for medical image processing under the background of"new medical science"
Yanru LIU ; Yuyue BI ; Yuhang WANG ; Ting ZHU ; Junni JIA ; Siyuan TANG
Chinese Journal of Medical Physics 2024;41(3):333-339
In response to the current situation and teaching status of the medical image processing course on the background of"new medical science",a teaching software which is highly compatible with the teaching process of medical image processing is developed.The teaching software allows for linear grayscale transformation,windowing display,scaling,rotation,mirroring,median filtering,differential sharpening,edge detection,histogram acquisition,and histogram equalization of medical images.Additionally,it enables parameter adjustments within a certain range for linear grayscale transformation,windowing display,scaling,rotation,median filtering,differential sharpening,and edge detection.Meanwhile,it employs different algorithms to achieve the scaling of medical images.The teaching software is used in the theoretical and experimental teaching of medical image processing courses at Baotou Medical College.It can improve students'initiative and enthusiasm in learning,strengthen their understanding of the examination points for radiology technicians,lay a solid foundation for subsequent courses,and ultimately achieve the goal of in-depth integration of"Medical Engineering"and"Medical Science"in the medical image technology major at Baotou Medical College under the background of"new medical science".
6.UHPLC-Q-TOF/MS Analysis of the Active Components of Total Flavonoids Extracts from Sarcandra glabra in Promoting Megakaryocyte Differentiation
Zhongkang ZHANG ; Xiaonan LU ; Zhen LU ; Jia HU ; Huizhen LIU ; Ting LU ; Guangbin SHANG
Traditional Chinese Drug Research & Clinical Pharmacology 2024;35(1):56-64
Objective To screen the active components of total flavonoid extracts of Sarcandra glabra to promote megakaryocyte differentiation.Methods(1)A model of megakaryocyte differentiation disorder was established by co-culturing human megakaryocytic leukaemia cells(Dami)with human bone marrow stromal cells(HS-5)as an evaluation system,and the experimental groupings were as follows:the Dami group(Dami),the control group(Dami+HS-5),and the PMA group[Dami+HS-5+5 ng·mL-1 foprolol 12-tetradecanoate 13-acetate(PMA)],and model group[Dami+HS-5+1%rabbit anti-rat platelet serum(APS)+5 ng·mL-1 PMA]were cultured for 48 hours.The expressions of megakaryocyte differentiation and maturation surface marker molecules,CD41a and CD61 were detected by flow cytometry.(2)Forty-nine SD male rats were randomly divided into blank plasma group,15-minute group,30-minute group,60-minute group,90-minute group,120-minute group,and 240-minute group,with 7 rats in each group.The rats in each administration group were gavaged with 1.26 g·kg-1 of total flavonoids extracts of Sarcandra glabra,and blood was collected at six set time points(15,30,60,90,120,240 minutes)for the preparation of time-dependent serum-containing plasma of total flavonoids extracts of Sarcandra glabra.(3)Ultra-high performance liquid chromatography-quadrupole tandem time-of-flight mass spectrometry(UHPLC-Q-TOF/MS)was used to analyze the plasma of the time-dependent serum-containing plasma of the total flavonoids extracts of Sarcandra glabra,and the peak area was used to construct a matrix(X-matrix)of the amount of chemical composition change over time in the time-dependent serum-containing plasma of the total flavonoids extracts of Sarcandra glabra.The collected time-dependent serum-containing plasma of the total flavonoids extracts of Sarcandra glabra at six different time points was used to intervene in the model of megakaryocyte differentiation and maturation disorder,and the expression of cell surface molecules CD41a and CD61 was detected by flow cytometry to construct the matrix of effect of time-dependent serum-containing plasma of the total flavonoids extracts of Sarcandra glabra(Y-matrix).(4)After the data of X and Y matrices were standardized,partial least squares(PLS)was used to calculate and analyze the quantitative and qualitative effect relationship,and variable importance for projection(VIP)>1 was used as the threshold to screen the effect components related to the changes of cell surface molecules CD41a and CD61,and chemical composition identification,as the potential effector components in the total flavonoid extracts of Sarcandra glabra were used to promote the differentiation of megakaryocytes,and finally the regression evaluation system was used to verify the efficacy of its medicinal effect.Results(1)Compared with the Dami group,the expression level of CD41a on the surface of Dami cells in the control group was significantly increased(P<0.05).Compared with the control group,the expression levels of CD41a and CD61 on the surface of Dami cells in the PMA group were significantly increased(P<0.01).Compared with the PMA group,the expression levels of CD41a and CD61 on the surface of Dami cells in the model group were significantly reduced(P<0.01).(2)Compared with the blank plasma group,the expression levels of the molecules CD41a and CD61 on the surface of Dami cells at each time point of 15,30,60,90,120,and 240 minutes were significantly increased(P<0.01),and the expression levels of CD41a and CD61 were both highest in the 30-minute group.The potential effective components with VIP value greater than 1 were screened out in the positive and negative ion mode,and 540.3638@12.25 and 559.2991@11.53 were selected for pharmacodynamic verification.559.2991@11.53 was identified as daucosterol(Dau),540.3638@12.25 was identified as rosmarinic acid 4-O-β-D-glucoside(Ros).After Ros and Dau intervened in the megakaryocyte differentiation and maturation disorder model respectively,the expression levels of CD41a and CD61 on the surface of Dami cells in the low-,medium-and high-dose groups(40,60 and 80 μg·mL-1)of Ros and Dau were significantly increased compared with the model group(P<0.05,P<0.01).Conclusion Ros and Dau may be the active components of the total flavonoids extracts of Sarcandra glabra to promote the differentiation of megakaryocytes.
7.Barley Protein LFBEP-C1 from Lactiplantibacillus plantarum dy-1 Fermented Barley Extracts by Inhibiting Lipid Accumulation in a Caenorhabditis elegans Model
Yan Jia ZHANG ; Ting Meng LIU ; Hao Yu LIU ; Huan DENG ; Juan BAI ; Hua Jian XIE ; Xiang XIAO
Biomedical and Environmental Sciences 2024;37(4):377-386
Objective This study aimed to investigate the lipid-lowering activity of LFBEP-C1 in high glucose-fed Caenorhabditis elegans(C.elegans). Methods In this study,the fermented barley protein LFBEP-C1 was prepared and tested for its potential anti-obesity effects on C.elegans.The worms were fed Escherichia coli OP50(E.coli OP50),glucose,and different concentrations of LFBEP-C1.Body size,lifespan,movement,triglyceride content,and gene expression were analyzed.The results were analyzed using ANOVA and Tukey's multiple comparison test. Results Compared with the model group,the head-swing frequency of C.elegans in the group of LFBEP-C1 at 20 μg/mL increased by 33.88%,and the body-bending frequency increased by 27.09%.This indicated that LFBEP-C1 improved the locomotive ability of C.elegans.The average lifespan of C.elegans reached 13.55 days,and the body length and width of the C.elegans decreased after LFBEP-C1 intake.Additionally,LFBEP-C1 reduced the content of lipid accumulation and triglyceride levels.The expression levels of sbp-1,daf-2,and mdt-15 significantly decreased,while those of daf-16,tph-1,mod-1,and ser-4 significantly increased after LFBEP-C1 intake.Changes in these genes explain the signaling pathways that regulate lipid metabolism. Conclusion LFBEP-C1 significantly reduced lipid deposition in C.elegans fed a high-glucose diet and alleviated the adverse effects of a high-glucose diet on the development,lifespan,and exercise behavior of C.elegans.In addition,LFBEP-C1 regulated lipid metabolism mainly by mediating the expression of genes in the sterol regulatory element-binding protein,insulin,and 5-hydroxytryptamine signaling pathways.
8.Role and Possible Mechanism of Clock Gene Rev-erbα in Exercise-induced Mitochondrial Biogenesis
Ting-Ting YANG ; Feng-Jia CHENG ; Yang GAO ; Liang YU
Progress in Biochemistry and Biophysics 2024;51(6):1357-1370
The clock gene Rev-erbα, also known as nuclear receptor subfamily 1 group D member 1 (Nr1d1), is a crucial regulatory factor in organisms. It exhibits circadian rhythmic expression in metabolically active tissues such as skeletal muscles, heart, liver, and adipose tissue, responding to various environmental stimuli. Rev-erbα plays a significant role in regulating circadian rhythms, metabolic homeostasis, and other physiological processes, earning its designation as an “integrator” of the circadian system and metabolism. Rev-erbα establishes complex connections with other clock genes through the transcriptional-translational feedback loop (TTFL), which is important for the rhythmic output of biological clock system and for the relative stability of phases and cycles. Mitochondrial biogenesis is a physiological process initiated by cells to maintain energy homeostasis by using existing mitochondria as a template for self-growth and division. As the “energy factory” of organism, disruptions in mitochondrial biogenesis are closely associated with the development of various diseases. Studies have shown that not only the factors involved in mitochondrial biogenesis have circadian oscillations, but also the morphology, dynamics and energy metabolism of mitochondria themselves have cyclic fluctuations throughout the day, suggesting that mitochondrial biogenesis is regulated by the biological clock system, in which the clock gene Rev-erbα plays a key role, it drives mitochondrial biogenesis and synergistically regulates autophagy to normalize a number of physiological processes in the body. Rev-erbα is sensitive to both internal and external environmental changes, and disruptions in circadian rhythms, metabolic diseases, and aging are significant inducers of changes in Rev-erbα expression, and its concomitant inflammation and oxidative stress may be an intrinsic mechanism for inhibiting mitochondrial biogenesis. Therefore, the enhancement of mitochondrial biogenesis by regulating the Rev-erbα activity status may be an important way to improve the pathology and promote the health of organism. Exercise, as a commonly accepted non-pharmacological tool, plays an important role in enhancing mitochondrial biogenesis and promoting health. It has been found that there is a close relationship between exercise and Rev-erbα. On the one hand, exercise stimulation directly affects the expression of Rev-erbα, especially high-intensity and long-term regular exercise; on the other hand, Rev-erbα achieves indirect regulation of exercise capacity by mediating processes such as skeletal muscle mitochondrial biogenesis and autophagy, muscle mass maintenance, energy metabolism and skeletal muscle regeneration. Based on the above findings, it is hypothesized that Rev-erbα may serve as a key bridge between exercise and mitochondrial biogenesis. Exercise enhances the transcriptional response of Rev-erbα in the nucleus, upregulates the expression of Rev-erbα protein in cytoplasm, activates the AMP-activated proteinkinase (AMPK)/ silent information regulator 1 (SIRT1)/peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) pathway, regulates Ca2+ flux and downstream signaling molecules; meanwhile, exercise can upregulate antioxidant gene expression and alleviate oxidative stress through Rev-erbα, which ultimately enhances the function of mitochondria, and promotes mitochondrial biogenesis. In conclusion, the clock gene Rev-erbα emerges as a crucial target for exercise-induced enhancement of mitochondrial biogenesis. In this paper, the biological characteristics ofRev-erbα, the role of Rev-erbα in regulating mitochondrial biogenesis and the factors that may influence it, the interaction between exercise and Rev-erbα, and the potential mechanism of exercise-induced mitochondrial biogenesis via Rev-erbα are sorted out and discussed, which can provide theoretical references to the mechanism of exercise-promoted mitochondrial biogenesis.
9.The Preclinical Models of Glioma Dependent on Alternative Lenthening of Telomeres (ALT) and Current Applications
Jin-Kai TONG ; Si-Xiang YAN ; Yan-Duo ZHANG ; Kai-Long HOU ; Ke ZHANG ; Hao-Nan ZHANG ; Shun CHANG ; Shu-Ting JIA
Progress in Biochemistry and Biophysics 2024;51(2):269-275
Glioma is the most common malignancy of the central nervous system, originating mainly from glial cells. Because of its highly aggressive nature, glioma has one of the highest rates of death among all types of cancer. Therefore, it is very important to develop new therapeutic approaches and drugs for glioma treatment. Instead of activate the telomerase, approximately 30% of glioma use alternative lenthening of telomere (ALT) to maintain telomere length. The mechanism of ALT development is poorly understood, however, some genetic mutations have been reported to induce the development of ALT glioma, such as ATRX, IDH1, p53, etc. The lack of ALT glioma cell lines and preclinical ALT glioma models has limited the mechanistic studies of ALT glioma. Therefore, this review listed ALT glioma cell lines that derived from primary culture or gene editing in the last decade, as well as the xenografted animal models established by ALT glioma cell lines, and discussed the role and significance these cell and animal models play in preclinical studies.
10.Occupational delay of gratification among community healthcare workers
CHENG Yuanfen ; PENG Jia ; LI Dan ; YANG Juanhua ; YANG Ting ; CAO Yu
Journal of Preventive Medicine 2024;36(7):603-606
Objective:
To investigate the occupational delay of gratification among community healthcare workers and its influencing factors, so as to provide insights into the sustainable development of primary healthcare personnel.
Methods:
The in-service community healthcare workers from 5-7 community health service centers in 9 cities (prefectures) of Guizhou Province were selected using a multi-stage stratified random sampling method. Gender, age, and educational level and other basic information were collected through questionnaire surveys. The status of occupational delay of gratification was investigated using the Occupational Delay of Gratification Scale. Multiple linear regression model was used to analyze the influencing factors of occupational delay of gratification.
Results:
A total of 2 076 respondents were surveyed, including 367 males (17.68%) and 1 709 females (82.32%). There were 112 respondents (5.39%) with secondary vocational school degree or below, 872 respondents (42.00%) with junior college degree, 1 087 respondents (52.36%) with bachelor's degree, and 5 respondents (0.24%) with master's degree or above. There were 665 respondents (32.03%) with managerial positions. The monthly income of 1 705 respondents (82.13%) was ≤5 000 Yuan. The total score of occupational delay of gratification was (33.22±4.33) points, and the total average score was (2.77±0.36) points. The average scores of work delay, career delay and persistence were (2.67±0.48), (2.96±0.45) and (2.75±0.46) points, respectively. Multiple linear regression analysis identified educational level (junior college, β=0.089; bachelor's degree, β=0.088), management position (not have, β=-0.046) and monthly income (>6 000 Yuan, β=0.085) as factors affecting occupational delay of gratification (all P<0.05).
Conclusion
The community healthcare workers with an education below secondary vocational school, no management position and lower income have relatively lower level of occupational delay of gratification.


Result Analysis
Print
Save
E-mail