1.Molecular Mechanism of Programmed Cell Death in Chronic Obstructive Pulmonary Disease and Traditional Chinese Medicine Intervention: A Review
Xin PENG ; Yunhui LI ; Lei LIANG ; Zheyu LUAN ; Hanxiao WANG ; Haotian XU ; Ziming DANG ; Jihong FENG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):304-313
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease that poses a significant threat to global health, exhibiting high morbidity, disability and mortality rate, with its prevention and treatment situation becoming increasingly critical. The pathogenesis of COPD is complex, and the underlying cellular and molecular biological mechanisms remain incompletely elucidated. Programmed cell death (PCD) is the process wherein cells actively undergo demise to maintain internal environmental stability in response to certain signals or specific stimuli. Contemporary medical research indicates that the dysregulation of PCD patterns such as apoptosis, necroptosis, pyroptosis, autophagy, and ferroptosis is closely related to the onset and progression of COPD. Clarifying the molecular mechanisms of PCD in COPD may provide novel perspectives for in-depth understanding and prevention of the disease. Traditional Chinese medicine (TCM) is characterized by holistic regulation. In recent years, extensive research has been conducted in the TCM field focusing on modulating apoptosis, necroptosis, pyroptosis, autophagy, and ferroptosis for the treatment of COPD, yielding remarkable achievements. Therefore, this study systematically explored the molecular mechanism of PCD in COPD and reviewed the potential mechanisms and intervention status of TCM targeting PCD in COPD, aiming to provide insights and references for the clinical prevention, treatment and in-depth research of COPD.
2.Molecular Mechanism of Programmed Cell Death in Chronic Obstructive Pulmonary Disease and Traditional Chinese Medicine Intervention: A Review
Xin PENG ; Yunhui LI ; Lei LIANG ; Zheyu LUAN ; Hanxiao WANG ; Haotian XU ; Ziming DANG ; Jihong FENG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):304-313
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease that poses a significant threat to global health, exhibiting high morbidity, disability and mortality rate, with its prevention and treatment situation becoming increasingly critical. The pathogenesis of COPD is complex, and the underlying cellular and molecular biological mechanisms remain incompletely elucidated. Programmed cell death (PCD) is the process wherein cells actively undergo demise to maintain internal environmental stability in response to certain signals or specific stimuli. Contemporary medical research indicates that the dysregulation of PCD patterns such as apoptosis, necroptosis, pyroptosis, autophagy, and ferroptosis is closely related to the onset and progression of COPD. Clarifying the molecular mechanisms of PCD in COPD may provide novel perspectives for in-depth understanding and prevention of the disease. Traditional Chinese medicine (TCM) is characterized by holistic regulation. In recent years, extensive research has been conducted in the TCM field focusing on modulating apoptosis, necroptosis, pyroptosis, autophagy, and ferroptosis for the treatment of COPD, yielding remarkable achievements. Therefore, this study systematically explored the molecular mechanism of PCD in COPD and reviewed the potential mechanisms and intervention status of TCM targeting PCD in COPD, aiming to provide insights and references for the clinical prevention, treatment and in-depth research of COPD.
3.Treatment Principles and Paradigm of Diabetic Microvascular Complications Responding Specifically to Traditional Chinese Medicine
Anzhu WANG ; Xing HANG ; Lili ZHANG ; Xiaorong ZHU ; Dantao PENG ; Ying FAN ; Min ZHANG ; Wenliang LYU ; Guoliang ZHANG ; Xiai WU ; Jia MI ; Jiaxing TIAN ; Wei ZHANG ; Han WANG ; Yuan XU ; .LI PINGPING ; Zhenyu WANG ; Ying ZHANG ; Dongmei SUN ; Yi HE ; Mei MO ; Xiaoxiao ZHANG ; Linhua ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):272-279
To explore the advantages of traditional Chinese medicine (TCM) and integrative TCM-Western medicine approaches in the treatment of diabetic microvascular complications (DMC), refine key pathophysiological insights and treatment principles, and promote academic innovation and strategic research planning in the prevention and treatment of DMC. The 38th session of the Expert Salon on Diseases Responding Specifically to Traditional Chinese Medicine, hosted by the China Association of Chinese Medicine, was held in Beijing, 2024. Experts in TCM, Western medicine, and interdisciplinary fields convened to conduct a systematic discussion on the pathogenesis, diagnostic and treatment challenges, and mechanism research related to DMC, ultimately forming a consensus on key directions. Four major research recommendations were proposed. The first is addressing clinical bottlenecks in the prevention and control of DMC by optimizing TCM-based evidence evaluation systems. The second is refining TCM core pathogenesis across DMC stages and establishing corresponding "disease-pattern-time" framework. The third is innovating mechanism research strategies to facilitate a shift from holistic regulation to targeted intervention in TCM. The fourth is advancing interdisciplinary collaboration to enhance the role of TCM in new drug development, research prioritization, and guideline formulation. TCM and integrative approaches offer distinct advantages in managing DMC. With a focus on the diseases responding specifically to TCM, strengthening evidence-based support and mechanism interpretation and promoting the integration of clinical care and research innovation will provide strong momentum for the modernization of TCM and the advancement of national health strategies.
4.Non-pharmacological management for post-stroke spasticity from 2004 to 2024: a bibliometric analysis
Junfeng ZHANG ; Hao CHEN ; Yuzheng DU ; Chen LI ; Tao YU ; Yuanqing YANG
Chinese Journal of Rehabilitation Theory and Practice 2026;32(1):45-58
ObjectiveTo analyze the research status and development trends of non-pharmacological therapies for post-stroke spasticity (PSS) over the past two decades. MethodsRelevant literatures on non-pharmacological rehabilitation of PSS published from January, 2004 to June, 2024 were retrieved from Web of Science Core Collection. CiteSpace 6.3.R6 and VOSviewer 1.6.18 were used for visualization analysis. ResultsA total of 780 publications were included. The annual number of publications showed an overall upward trend. China, the USA, and Italy contributed the highest number of publications. The Hong Kong Polytechnic University and researcher Noureddin Nakhostin Ansari were identified as the most influential institution and author, respectively. High-frequency keywords and cluster labels included electric stimulation, transcranial magnetic stimulation, robot and acupuncture. ConclusionOver the past 20 years, researches on non-pharmacological therapies for PSS have remained active, with hotspots focusing on diverse interventions such as electrical stimulation, magnetic stimulation and robot-assisted therapy.
5.Protective Effect of Xuebijing on Lung Injury in Rats with Severe Acute Pancreatitis by Blocking FPRs/NLRP3 Inflammatory Pathway
Guixian ZHANG ; Dawei LIU ; Xia LI ; Xijing LI ; Pengcheng SHI ; Zhiqiao FENG ; Jun CAI ; Wenhui ZONG ; Xiumei ZHAO ; Hongbin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):113-120
ObjectiveTo explore the therapeutic effect of Xuebijing injection (XBJ) on severe acute pancreatitis induced acute lung injury (SAP-ALI) by regulating formyl peptide receptors (FPRs)/nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammatory pathway. MethodsSixty rats were randomly divided into a sham group, a SAP-ALI model group, low-, medium-, and high-dose XBJ groups (4, 8, and 12 mL·kg-1), and a positive drug (BOC2, 0.2 mg·kg-1) group. For the sham group, the pancreas of rats was only gently flipped after laparotomy, and then the abdomen was closed, while for the remaining five groups, SAP-ALI rat models were established by retrograde injection of 5% sodium taurocholate (Na-Tc) via the biliopancreatic duct. XBJ and BOC2 were administered via intraperitoneal injection once daily for 3 d prior to modeling and 0.5 h after modeling. Blood was collected from the abdominal aorta 6 h after the completion of modeling, and the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) in plasma was measured by enzyme-linked immunosorbent assay (ELISA). The amount of ascites was measured, and the dry-wet weight ratios of pancreatic and lung tissue were determined. Pancreatic and lung tissue was taken for hematoxylin-eosin (HE) staining to observe pathological changes and then scored. The protein expression levels of FPR1, FPR2, and NLRP3 in lung tissue were detected by the immunohistochemical method. Western blot was used to detect the expression of FPR1, FPR2, and NLRP3 in lung tissue. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of FPR1, FPR2, and NLRP3 in lung tissue. ResultsCompared with the sham group, the SAP-ALI model group showed significantly decreased dry-wet weight ratio of lung tissue (P<0.01), serious pathological changes of lung tissue, a significantly increased pathological score (P<0.01), and significantly increased protein and mRNA expression levels of FPR1, FPR2, and NLRP3 in lung tissue (P<0.01). After BOC2 intervention, the above detection indicators were significantly reversed (P<0.01). After treatment with XBJ, the groups of different XBJ doses achieved results consistent with BOC2 intervention. ConclusionXBJ can effectively improve the inflammatory response of the lungs in SAP-ALI rats and reduce damage. The mechanism may be related to inhibiting the expression of FPRs and NLRP3 in lung tissue, which thereby reduces IL-1β and simultaneously antagonize the release of inflammatory factors IL-6 and TNF-α.
6.Expert Consensus on Clinical Diseases Responding Specifically to Traditional Chinese Medicine: Atopic Dermatitis
Junfeng LIU ; Xiumei MO ; Mei MO ; Hongyi LI ; Ying LIN ; Xiaoxiao ZHANG ; Dacan CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):244-252
Atopic dermatitis (AD) is a common pruritic and chronic inflammatory dermatosis in clinical practice and is one of the diseases responding specifically to traditional Chinese medicine (TCM). With the launch of biological agents and small molecule drugs and the development and implementation of guidelines of diagnosis and treatment, clinical pathways of treatment of moderate to severe AD, and consensus on the whole-process management of AD, the clinical efficacy of moderate to severe AD has been significantly improved. However, there are still many unmet clinical needs that require more effective methods to meet. In response to the Opinions of the CPC Central Committee and the State Council on Facilitating the Inheritance, Innovation, and Development of Traditional Chinese Medicine and the spirit of the National Conference on TCM, the China Association of Chinese Medicine organized more than 20 experts in TCM dermatology, Western medicine dermatology, interdisciplinary fields, and industries to discuss the difficulties and advantages of TCM in the treatment of AD. TCM treatment for AD can not only improve rash and relieve itching but also solve many concomitant syndromes. The abundant external treatment methods of TCM have advantages for different special populations and rash characteristics. The concept of treating disease before its onset in TCM is in line with the chronic disease management mode of prevention and treatment of atopic march and prevention of recurrence. In addition, TCM therapy can reduce the use of topical glucocorticoids and has good safety. Regarding the comorbidity of AD, equal emphasis on TCM and Western medicine and multidisciplinary joint treatment should be advocated to achieve maximum benefit for patients. The exchange of TCM and Western medicine has clarified the positioning and advantages of TCM intervention in AD, providing guidance for clinical and scientific research.
7.Immunity-inflammation Mechanism of Viral Pneumonia and Traditional Chinese Medicine Treatment Based on Theory of Healthy Qi and Pathogenic Qi
Zheyu LUAN ; Hanxiao WANG ; Xin PENG ; Yihao ZHANG ; Yunhui LI ; Jihong FENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):239-247
Viral pneumonia is an infectious disease caused by virus invading the lung parenchyma and interstitial tissue and causing lung inflammation, with the incidence rising year by year. Traditional Chinese medicine (TCM) can treat viral pneumonia in a multi-component, multi-target, and holistic manner by targeting the core pathogenesis of pneumonia caused by different respiratory viruses, demonstrating minimal side effects and significant advantages. According to the theory of healthy Qi and pathogenic Qi in TCM, the struggle between healthy Qi and pathogenic Qi and the imbalance between immunity and inflammation run through the entire process of viral pneumonia, and the immunity-inflammation status at different stages of the disease reflects different relationships between healthy Qi and pathogenic Qi. Immune dysfunction leads to the deficiency of healthy Qi, causing viral infections. The struggle between healthy Qi and pathogenic Qi causes immunity-inflammation imbalance, leading to the onset of viral pneumonia. Inflammatory damage causes persistent accumulation of phlegm and stasis, leading to the progression of viral pneumonia. The cytokine storm causes immunodepletion, leading to the excess of pathogenic Qi and diminution of healthy Qi and the deterioration of viral pneumonia. After the recovery from viral pneumonia, there is a long-term imbalance between immunity and micro-inflammation, which results in healthy Qi deficiency and pathogenic Qi lingering. Healthy Qi deficiency and pathogenic Qi excess act as common core causes of pneumonia caused by different respiratory viruses. Clinical treatment should emphasize both replenishing healthy Qi and eliminating pathogenic Qi, helping to restore the balance between healthy Qi and pathogenic Qi as well as between immunity and inflammation, thus promoting the recovery of patients from viral pneumonia. According to the TCM theory of healthy Qi and pathogenic Qi, this article summarizes the immunity-inflammation mechanisms at different stages of viral pneumonia, and explores the application of the method of replenishing healthy Qi and eliminating pathogenic Qi in viral pneumonia. The aim is to probe into the scientific connotation of the TCM theory of healthy Qi and pathogenic Qi in viral pneumonia and provide ideas for the clinical application of the method of replenishing healthy Qi and eliminating pathogenic Qi to assist in the treatment of viral pneumonia.
8.Development of a new paradigm for precision diagnosis and treatment in traditional Chinese medicine
Jingnian NI ; Mingqing WEI ; Ting LI ; Jing SHI ; Wei XIAO ; Jing CHENG ; Bin CONG ; Boli ZHANG ; Jinzhou TIAN
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):43-47
The development of traditional Chinese medicine (TCM) diagnosis and treatment has undergone multiple paradigms, evolving from sporadic experiential practices to systematic approaches in syndrome differentiation and treatment and further integration of disease and syndrome frameworks. TCM is a vital component of the medical system, valued alongside Western medicine. Treatment based on syndrome differentiation embodies both personalized treatment and holistic approaches; however, the inconsistency and lack of stability in syndrome differentiation limit clinical efficacy. The existing integration of diseases and syndromes primarily relies on patchwork and embedded systems, where the full advantages of synergy between Chinese and Western medicine are not fully realized. Recently, driven by the development of diagnosis and treatment concepts and advances in analytical technology, Western medicine has been rapidly transforming from a traditional biological model to a precision medicine model. TCM faces a similar need to progress beyond traditional syndrome differentiation and disease-syndrome integration toward a more precise diagnosis and treatment paradigm. Unlike the micro-level precision trend of Western medicine, precision diagnosis and treatment in TCM is primarily reflected in data-driven applications that incorporate information at various levels, including precise syndrome differentiation, medication, disease management, and efficacy evaluation. The current priority is to accelerate the development of TCM precision diagnosis and treatment technology platforms and advance discipline construction in this area.
9.UPLC-Q-TOF-MS Reveals Mechanisms of Modified Qing'e Formula in Delaying Skin Photoaging and Regulating Circadian Rhythm
Wanyu YANG ; Xiujun ZHANG ; Yan WANG ; Chunjing SONG ; Haoming MA ; Lifeng WANG ; Nan LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):88-97
ObjectiveTo reveal the active substances and mechanisms of modified Qing'e formula (MQEF) in delaying skin photoaging by ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF-MS),network pharmacology, and cell experiments. MethodsUPLC-Q-TOF-MS and a literature review were employed to analyze the transdermally absorbed components in mice after the topical application of MQEF. The potential targets of MQEF in treating skin photoaging were retrieved from databases.The compound-potential target network and protein-protein interaction network were constructed to screen the key components and core targets. A photoaging cell model was established by irradiating HaCaT cells with medium-wave ultraviolet B (UVB). The safe doses of bakuchiol (BAK) and salvianolic acid B (SAB) for treating HaCaT cells and the effects of BAK and SAB on the viability of cells exposed to UVB irradiation were determined by the cell counting kit-8 (CCK-8) method.The reactive oxygen species (ROS) fluorescent probe was used to measure the ROS production in the cells treated with BAK and SAB.The expression levels of genes related to oxidative stress,inflammation,collagen metabolism,and circadian rhythm clock were measured by Real-time PCR. ResultsA total of 24 transdermally absorbed components of MQEF were identified,which acted on 367 potential targets,and 417 targets related to skin photoaging were screened out,among which 47 common targets were predicted as the targets of MQEF in treating skin photoaging. MQEF exerted the anti-photoaging effect via key components such as BAK and SAB,which acted on core proteins such as serine/threonine kinase 1 (Akt1) and mitogen-activated protein kinase 3 (MAPK3) and intervened in core pathways such as the tumor necrosis factor (TNF) and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathways.Compared with the model group,the administration of BAK and SAB increased the survival rate of HaCaT cells (P<0.01),down-regulated the mRNA levels of cyclooxygenase-2 (COX-2),interleukin-6 (IL-6),tumor necrosis factor-α (TNF-α),matrix metalloproteinase-1 (MMP-1),and matrix metalloproteinase-9 (MMP-9) (P<0.01),and up-regulated the mRNA levels of heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO-1) (P<0.05,P<0.01) in photoaged HaCaT cells.In addition,it eliminated excess ROS production induced by UVB and up-regulated the mRNA levels of brain and muscle ARNT-like 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) associated with circadian clock (P<0.05,P<0.01). ConclusionMQEF delays skin photoaging through the coordinated effects of various components,multiple targets,and diverse pathways.The key components BAK and SAB in MQEF exhibit anti-photoaging properties,which involve inhibiting oxidative stress,preventing collagen degradation,mitigating inflammation,and maintaining normal skin circadian rhythms by regulating clock gene expression.
10.Research and Application of Scalp Surface Laplacian Technique
Rui-Xin LUO ; Si-Ying GUO ; Xin-Yi LI ; Yu-He ZHAO ; Chun-Hou ZHENG ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(2):425-438
Electroencephalogram (EEG) is a non-invasive, high temporal-resolution technique for monitoring brain activity. However, affected by the volume conduction effect, EEG has a low spatial resolution and is difficult to locate brain neuronal activity precisely. The surface Laplacian (SL) technique obtains the Laplacian EEG (LEEG) by estimating the second-order spatial derivative of the scalp potential. LEEG can reflect the radial current activity under the scalp, with positive values indicating current flow from the brain to the scalp (“source”) and negative values indicating current flow from the scalp to the brain (“sink”). It attenuates signals from volume conduction, effectively improving the spatial resolution of EEG, and is expected to contribute to breakthroughs in neural engineering. This paper provides a systematic overview of the principles and development of SL technology. Currently, there are two implementation paths for SL technology: current source density algorithms (CSD) and concentric ring electrodes (CRE). CSD performs the Laplace transform of the EEG signals acquired by conventional disc electrodes to indirectly estimate the LEEG. It can be mainly classified into local methods, global methods, and realistic Laplacian methods. The global method is the most commonly used approach in CSD, which can achieve more accurate estimation compared with the local method, and it does not require additional imaging equipment compared with the realistic Laplacian method. CRE employs new concentric ring electrodes instead of the traditional disc electrodes, and measures the LEEG directly by differential acquisition of the multi-ring signals. Depending on the structure, it can be divided into bipolar CRE, quasi-bipolar CRE, tripolar CRE, and multi-pole CRE. The tripolar CRE is widely used due to its optimal detection performance. While ensuring the quality of signal acquisition, the complexity of its preamplifier is relatively acceptable. Here, this paper introduces the study of the SL technique in resting rhythms, visual-related potentials, movement-related potentials, and sensorimotor rhythms. These studies demonstrate that SL technology can improve signal quality and enhance signal characteristics, confirming its potential applications in neuroscientific research, disease diagnosis, visual pathway detection, and brain-computer interfaces. CSD is frequently utilized in applications such as neuroscientific research and disease detection, where high-precision estimation of LEEG is required. And CRE tends to be used in brain-computer interfaces, that have stringent requirements for real-time data processing. Finally, this paper summarizes the strengths and weaknesses of SL technology and envisages its future development. SL technology boasts advantages such as reference independence, high spatial resolution, high temporal resolution, enhanced source connectivity analysis, and noise suppression. However, it also has shortcomings that can be further improved. Theoretically, simulation experiments should be conducted to investigate the theoretical characteristics of SL technology. For CSD methods, the algorithm needs to be optimized to improve the precision of LEEG estimation, reduce dependence on the number of channels, and decrease computational complexity and time consumption. For CRE methods, the electrodes need to be designed with appropriate structures and sizes, and the low-noise, high common-mode rejection ratio preamplifier should be developed. We hope that this paper can promote the in-depth research and wide application of SL technology.


Result Analysis
Print
Save
E-mail