1.Compound Xishu Granules Inhibit Proliferation of Hepatocellular Carcinoma Cells by Regulating Ferroptosis
Yuan TIAN ; Yuxi WANG ; Zhen LIU ; Yuncheng MA ; Hongyu ZHU ; Xiaozhu WANG ; Qian LI ; Jian GAO ; Weiling WANG ; Wenhui XU ; Ting WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):37-45
ObjectiveTo study the mechanism of compound Xishu granules (CXG) in inhibiting the proliferation of hepatocellular carcinoma cells by regulating ferroptosis. MethodsThe transplanted tumor model of human Huh7 was established with nude mice and the successfully modeled mice were randomized into model, Fufang Banmao (0.21 g·kg-1), low-dose (1.87 g·kg-1) CXG, medium-dose (3.74 g·kg-1) CXG, and high-dose (7.49 g·kg-1) CXG groups. Mice were administrated with drinking water or CXG for 28 days, and the body weight and tumor volume were measured every 4 days. Hematoxylin-eosin staining was employed to observe the histopathological changes of tumors. The cell-counting kit-8 (CCK-8) was used to examine the survival rate of Huh7 cells treated with different concentrations (0, 31.25, 62.5, 125, 250, 500, 1 000 mg·L-1) of CXG for 24 h and 48 h. CA-AM, DCFH-DA, and C11-BODIPY581/591 fluorescent probes were used to determine the intracellular levels of ferrous ion (Fe2+), reactive oxygen species (ROS), and lipid peroxide (LPO), respectively. The colorimetric method was employed to measure the levels of glutathione (GSH) and superoxide dismutase (SOD). Western blot was employed to determine the protein levels of glutathione peroxidase 4 (GPX4), transferrin receptor 1 (TFR1), and ferritin heavy chain 1 (FTH1), respectively. ResultsIn the animal experiment, compared with the model group, the drug treatment groups showed reductions in the tumor volume from day 12 (P<0.01). After treatment, the Fufang Banmao and low-, medium-, and high-dose CXG groups had lower tumor volume, relative tumor volume, and tumor weight than the model group (P<0.05), with tumor inhibition rates of 48.99%, 79.93%, 91.38%, and 97.36%, respectively. Moreover, the CXG groups had lower tumor volume and relative tumor volume (P<0.05 in all the three dose groups) and lower tumor weight (P<0.05 in medium-dose and high-dose groups) than the Fufang Banmao group. Compared with the model group, the drug treatment groups showed reduced number of tumor cells, necrotic foci with karyopyknosis, nuclear fragmentation, and nucleolysis, and the high-dose CXG group showed an increase in the proportion of interstitial fibroblasts. In the cell experiment, compared with the blank group, CXG reduced the survival rate of Huh7 cells in a dose-dependent manner after incubation for 24 h and 48 h (P<0.05). Compared with the blank group, the RSL3 group and the low-, medium-, and high-dose CXG groups showed a decrease in the relative fluorescence intensity of CA-AM and increases in the fluorescence intensity of DCFH-DA and fluorescence ratio of C11-BODIPY581/591, which indicated elevations in the levels of Fe2+ (P<0.01), ROS (P<0.05), and LPO (P<0.01), respectively. Compared with the blank group, the RSL3 and low-, medium-, and high-dose CXG groups showed lowered levels of GSH and SOD (P<0.05). In addition, the RSL3 group and the medium- and high-dose CXG groups showed down-regulated expression of GPX4 and FTH1 (P<0.05), and the low- and high-dose CXG groups presented up-regulated expression of TFR1 (P<0.05). ConclusionCXG suppresses the proliferation of hepatocellular carcinoma cells by inducing ferroptosis via downregulating the GSH-GPX4 signaling axis and increasing intracellular Fe2+and LPO levels.
2.Effect of Rhei Radix et Rhizoma Before and After Steaming with Wine on Intestinal Flora and Immune Environment in Constipation Model Mice
Yaya BAI ; Rui TIAN ; Yajun SHI ; Chongbo ZHAO ; Jing SUN ; Li ZHANG ; Yonggang YAN ; Yuping TANG ; Qiao ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):192-199
ObjectiveTo study on the different therapeutic effects and potential mechanisms of Rhei Radix et Rhizoma(RH) before and after steaming with wine on constipation model mice. MethodsFifty-four male ICR mice were randomly divided into control group, model group, lactulose group(1.5 mg·kg-1), high, medium and low dose groups of RH and RH steaming with wine(PRH)(8, 4, 1 g·kg-1). Except for the control group, the constipation model was replicated by gavage of loperamide hydrochloride(6 mg·kg-1) in the other groups. After 2 weeks of modeling, each administration group was gavaged with the corresponding dose of drug solution, and the control and model groups were given an equal volume of normal saline, 1 time/d for 2 consecutive weeks. After administration, the feces were collected for 16S rRNA sequencing, the levels of gastrin(GAS), motilin(MTL), interleukin-6(IL-6), γ-interferon(IFN-γ) in the colonic tissue were detected by enzyme-linked immunosorbent assay(ELISA), the histopathological changes of colon were observed by hematoxylin-eosin(HE) staining, flow cytometry was used to detect the proportion changes of CD4+, CD8+ and regulatory T cell(Treg) in peripheral blood. ResultsCompared with the control group, the model group showed significantly decrease in fecal number in 24 h, fecal quality and fecal water rate(P<0.01), the colon was seen to have necrotic shedding of mucosal epithelium, localized intestinal glands in the lamina propria were degenerated, necrotic and atrophied, a few lymphocytes were seen to infiltrate in the necrotic area in a scattered manner, the contents of GAS and MTL, the proportions of CD4+, CD8+ and Treg were significantly reduced(P<0.01), the contents of IL-6 and IFN-γ were significantly elevated(P<0.05, P<0.01). Compared with the model group, the fecal number in 24 h, fecal quality and fecal water rate of high-dose groups of RH and PRH were significantly increased(P<0.05, P<0.01), the pathological damage of the colon was alleviated to varying degrees, the contents of GAS, MTL, IL-6 and IFN-γ were significantly regressed(P<0.05, P<0.01), and the proportions of CD4+ and CD8+ were significantly increased(P<0.01), although the proportion of Treg showed an upward trend, there was no significant difference. In addition, the results of intestinal flora showed that the number of amplicon sequence variant(ASV) and Alpha diversity were decreased in the model group compared with the control group, and there was a significant difference in Beta diversity, with a decrease in the relative abundance of Lactobacillus and an increase in the relative abundances of Bacillus and Helicobacter. Compared with the model group, the ASV number and Alpha diversity were increased in the high-dose groups of RH and PRH, and there was a trend of regression of Beta diversity to the control group, the relative abundance of Lactobacillus increased, and the relative abundances of Bacillus and Helicobacter decreased. ConclusionRH and PRH can improve dysbacteriosis, promote immune system activation, inhibit the release of inflammatory factors for enhancing the gastrointestinal function, which may be one of the potential mechanisms of their therapeutic effect on constipation.
3.Development of a new paradigm for precision diagnosis and treatment in traditional Chinese medicine
Jingnian NI ; Mingqing WEI ; Ting LI ; Jing SHI ; Wei XIAO ; Jing CHENG ; Bin CONG ; Boli ZHANG ; Jinzhou TIAN
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):43-47
The development of traditional Chinese medicine (TCM) diagnosis and treatment has undergone multiple paradigms, evolving from sporadic experiential practices to systematic approaches in syndrome differentiation and treatment and further integration of disease and syndrome frameworks. TCM is a vital component of the medical system, valued alongside Western medicine. Treatment based on syndrome differentiation embodies both personalized treatment and holistic approaches; however, the inconsistency and lack of stability in syndrome differentiation limit clinical efficacy. The existing integration of diseases and syndromes primarily relies on patchwork and embedded systems, where the full advantages of synergy between Chinese and Western medicine are not fully realized. Recently, driven by the development of diagnosis and treatment concepts and advances in analytical technology, Western medicine has been rapidly transforming from a traditional biological model to a precision medicine model. TCM faces a similar need to progress beyond traditional syndrome differentiation and disease-syndrome integration toward a more precise diagnosis and treatment paradigm. Unlike the micro-level precision trend of Western medicine, precision diagnosis and treatment in TCM is primarily reflected in data-driven applications that incorporate information at various levels, including precise syndrome differentiation, medication, disease management, and efficacy evaluation. The current priority is to accelerate the development of TCM precision diagnosis and treatment technology platforms and advance discipline construction in this area.
4.Risk factors for concurrent hepatic hydrothorax before intervention in primary liver cancer and construction of a nomogram prediction model
Yuanzhen WANG ; Renhai TIAN ; Yingyuan ZHANG ; Danqing XU ; Lixian CHANG ; Chunyun LIU ; Li LIU
Journal of Clinical Hepatology 2025;41(1):75-83
ObjectiveTo investigate the influencing factors for hepatic hydrothorax (HH) before intervention for primary hepatic carcinoma (PHC), and to construct and assess the nomogram risk prediction model. MethodsA retrospective analysis was performed for the clinical data of 353 hospitalized patients who attended the Third People’s Hospital of Kunming for the first time from October 2012 to October 2021 and there diagnosed with PHC, and according to the presence or absence of HH, they were divided into HH group with 153 patients and non-HH group with 200 patients. General data and the data of initial clinical testing after admission were collected from all PHC patients. The independent-samples t test was used for comparison of normally distributed continuous data between two groups, and the Mann-Whitney U test was used for comparison of non-normally distributed continuous data between two groups; the chi-square test or the Fisher’s exact test was used for comparison of categorical data between groups. After the multicollinearity test was performed for the variables with statistical significance determined by the univariate analysis, the multivariate Logistic regression analysis was used to identify independent influencing factors. The “rms” software package was used to construct a nomogram risk prediction model, and the Hosmer-Lemeshow test and the receiver operating characteristic (ROC) curve were used to assess the risk prediction model; the “Calibration Curves” software package was used to plot the calibration curve, and the “rmda” software package was used to plot the clinical decision curve and the clinical impact curve. ResultsAmong the 353 patients with PHC, there were 153 patients with HH, with a prevalence rate of 43.34%. Child-Pugh class B (odds ratio [OR]=2.652, 95% confidence interval [CI]: 1.050 — 6.698, P=0.039), Child-Pugh class C (OR=7.963, 95%CI: 1.046 — 60.632, P=0.045), total protein (OR=0.947, 95%CI: 0.914 — 0.981, P=0.003), high-sensitivity C-reactive protein (OR=1.007, 95%CI: 1.001 — 1.014, P=0.025), and interleukin-2 (OR=0.801, 95%CI: 0.653 — 0.981, P=0.032) were independent influencing factors for HH before PHC intervention, and a nomogram risk prediction model was established based on these factors. The Hosmer-Lemeshow test showed that the model had a good degree of fitting (χ2=5.006, P=0.757), with an area under the ROC curve of 0.752 (95%CI: 0.701 — 0.803), a sensitivity of 78.40%, and a specificity of 63.50%. The calibration curve showed that the model had good consistency in predicting HH before PHC intervention, and the clinical decision curve and the clinical impact curve showed that the model had good clinical practicability within a certain threshold range. ConclusionChild-Pugh class, total protein, interleukin-2, and high-sensitivity C-reactive protein are independent influencing factors for developing HH before PHC intervention, and the nomogram model established based on these factors can effectively predict the risk of developing HH.
5.Discussion on the Treatment of Insomnia from Liver Based on the Theory "Liver Governs Wei Qi (Defensive Qi)"
Zirong LI ; Miaoran WANG ; Yufei WU ; Tian NI ; Xianbei WANG ; Hongjin DU ; Jiwei ZHANG ; Qiuyan LI
Journal of Traditional Chinese Medicine 2025;66(4):411-415
Psychological factors have become significant contributors to the onset and progression of insomnia. This article explored the treatment of insomnia from the perspective of “liver governs wei qi (defensive qi)”. The concept of “liver governs wei qi (defensive qi)” is summarized in three aspects, firstly, the liver assists the spleen and stomach in transformation and transportation, governing the generation of wei qi; secondly, the liver aids lung qi diffusion and dispersion, governing the distribution of wei qi; thirdly, the liver regulates circadian rhythms, governing the circulation of wei qi. It is proposed that the clinical treatment of insomnia should focus on the following methods: for regulating the liver to harmonize the five viscera, and facilitate the circulation of wei qi, medicinals entering the liver channel include Chaihu (Bupleuri radix), Baishao (Paeoniae Radix Alba), Zhizi (Gardeniae Fructus), and Suanzaoren (Ziziphi Spinosae Semen) could be commonly used; for nourishing the liver, the treatment should align with the day-night rhythm, and herbs such as Baihe (Lilium), Hehuan (Albizia julibrissin), and Yejiaoteng (Polygoni multiflori caulis) are commonly used; for soothing the liver and address both mental and physical health to calm wei qi, treatment should advocate verbal counseling, psychological regulation, and health education. Ultimately, this treatment approach can free liver qi to flow, soothe qi movement, restore the motion of wei qi, regulate during day and night, balance yin and yang, and resolve insomnia effectively.
6.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
7.The Mechanisms of Quercetin in Improving Alzheimer’s Disease
Yu-Meng ZHANG ; Yu-Shan TIAN ; Jie LI ; Wen-Jun MU ; Chang-Feng YIN ; Huan CHEN ; Hong-Wei HOU
Progress in Biochemistry and Biophysics 2025;52(2):334-347
Alzheimer’s disease (AD) is a prevalent neurodegenerative condition characterized by progressive cognitive decline and memory loss. As the incidence of AD continues to rise annually, researchers have shown keen interest in the active components found in natural plants and their neuroprotective effects against AD. Quercetin, a flavonol widely present in fruits and vegetables, has multiple biological effects including anticancer, anti-inflammatory, and antioxidant. Oxidative stress plays a central role in the pathogenesis of AD, and the antioxidant properties of quercetin are essential for its neuroprotective function. Quercetin can modulate multiple signaling pathways related to AD, such as Nrf2-ARE, JNK, p38 MAPK, PON2, PI3K/Akt, and PKC, all of which are closely related to oxidative stress. Furthermore, quercetin is capable of inhibiting the aggregation of β‑amyloid protein (Aβ) and the phosphorylation of tau protein, as well as the activity of β‑secretase 1 and acetylcholinesterase, thus slowing down the progression of the disease.The review also provides insights into the pharmacokinetic properties of quercetin, including its absorption, metabolism, and excretion, as well as its bioavailability challenges and clinical applications. To improve the bioavailability and enhance the targeting of quercetin, the potential of quercetin nanomedicine delivery systems in the treatment of AD is also discussed. In summary, the multifaceted mechanisms of quercetin against AD provide a new perspective for drug development. However, translating these findings into clinical practice requires overcoming current limitations and ongoing research. In this way, its therapeutic potential in the treatment of AD can be fully utilized.
8.Effect of integrin α5 on NLRP3 expression in periodontal ligament fibroblasts within an inflammatory microenvironment
DAI Jingyi ; CAI Hongxuan ; SI Weixing ; ZHANG Zan ; WANG Zhurui ; LI Mengsen ; TIAN Ya guang
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(1):24-32
Objective:
To investigate the effect of integrin α5 on the expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) in periodontal ligament fibroblasts (PDLFs) within an inflammatory microenvironment.
Methods:
This study was approved by the Ethics Committee of Laboratory animals. After rat PDLFs were treated with LPS (0.5, 5, and 50 µg/mL) for 24 h, the primary medium was discarded and replaced with serum-free culture medium. After 24 h, the supernatant was collected and mixed with DMEM medium containing 10% exosome-free serum at a volume ratio of 1:1 to obtain conditioned medium (CM). The groups were labeled as the 0.5-CM, 5-CM, and 50-CM groups. In addition, PDLFs cultured in DMEM medium containing 10% exosome-free serum were considered the 0-CM group. PDLFs were cultured with the above CM. In the inhibitor group, PDLFs were cultured in 0-CM containing different concentrations of integrin α5 inhibitor ATN-161 (0, 0.025, 0.25, 2.5, 25, and 250 μg/mL). The effect of CM and integrin α5 inhibitor ATN-161 on cell viability was assessed using the CCK-8 assay. According to the CCK-8 results, in further inhibitor intervention experiments, PDLFs were cultured in 0-CM, 5-CM (without/with 25 μg/mL ATN-161), and 0-CM containing 25 μg/mL ATN-161, which were labeled as the 0-CM, 5-CM, ATN-161+5-CM, and ATN-161 groups, respectively. The expression changes of integrin α5 and NLRP3 were detected using Western blot and qRT-PCR techniques. For in vivo experiments, 24 rats were randomly divided into four groups (n=6). The control group contained healthy rats that received no treatment. The rats in the other three groups were injected with 40 µL of 0-CM containing 25 μg/mL ATN-161 or 5-CM (without or with 25 μg/mL ATN-161) on the palatal side of the left maxillary first molar every three days; these groups were classified as the ATN-161, 5-CM, and ATN-161+5-CM groups, respectively. On the 30th day, the left maxillary tissue of rats was used for Micro-CT, HE staining, and immunohistochemical detection.
Results :
The CCK-8 assay showed that CM, 25 μg/mL ATN-161, and ATN-161 concentrations below 25 μg/mL had no significant effect on cell viability at 12 h and 24 h (P > 0.05). 50-CM and 25 μg/mL ATN-161 significantly inhibited cell viability at 48 h (P < 0.05). For in vitro experiments, compared to the 0-CM group, both the protein and mRNA levels of integrin α5 and NLRP3 were significantly increased in rat PDLFs in the 5-CM group (P < 0.05). Intervention with 25 μg/mL ATN-161 significantly attenuated the enhancement of 5-CM on the expression of integrin α5 and NLRP3 (P < 0.05). For in vivo experiments, compared to the control group, alveolar bone resorption and periodontal inflammatory cell infiltration were significantly increased in the 5-CM and ATN-161+5-CM groups, and the expression of integrin α5 and NLRP3 was significantly increased (P < 0.01). However, compared to the 5-CM group, the ATN-161+5-CM group had less alveolar bone resorption and fewer periodontal inflammatory cells. Further, the expression of integrin α5 and NLRP3 was significantly reduced (P < 0.01).
Conclusion
In vitro and in vivo experiments showed that integrin α5 mediated NLRP3 expression in PDLFs under an inflammatory microenvironment. ATN-161 inhibited the expression of integrin α5, thus significantly downregulating the expression of NLRP3, which plays a role in inhibiting inflammation.
9.Biomechanical effect of alveolar bone graft resorption on the maxillary alveolar process in a patient with unilateral cleft lip and palate
WANG Xiaoyu ; WANG Hao ; LI Song
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(2):120-128
Objective :
To investigate the biomechanical effect of alveolar bone graft (ABG) resorption on the maxillary alveolar process under occlusal force in a patient with unilateral cleft lip and palate (UCLP) and provide evidence for the clinical application of ABG.
Methods:
A 3D finite element maxillary model of an 11-year-old female patient with UCLP was generated. The occlusal force was applied to six models with different ABG resorption, namely non-resorption, upper 1/3 resorption, upper 2/3 resorption, lower 1/3 resorption, lower 2/3 resorption, and upper&lower 1/3 resorption. The properties of structures in all models were set to be linear, elastic, and isotropic. The displacement and Von Mises stress of each reference node of the alveolar process were compared and analyzed.
Results:
Under occlusal force, the most significant displacement of the alveolar process was located in the anterior area, and it decreased gradually from anterior area to both sides in all groups. The displacement values of the alveolar process under cleft side lateral occlusion were as follows: non-resorption group < lower 2/3 resorption group < upper&lower 1/3 resorption group < lower 1/3 resorption group < upper 2/3 resorption group < upper 1/3 resorption group. The displacement values of the alveolar process under centric occlusion were as follows: non-resorption group < lower 1/3 resorption group < upper&lower 1/3 resorption group < upper 2/3 resorption group < lower 2/3 resorption group < upper 1/3 resorption group. The displacement values of the alveolar process under non-cleft side lateral occlusion were as follows: non-resorption group < lower 1/3 resorption group < upper 1/3 resorption group < lower 2/3 resorption group < upper&lower 1/3 resorption group < upper 2/3 resorption group. The stress was concentrated on the premolar area on the functional side of the alveolar process, followed by the canine and molar areas in all groups. The stress values of the alveolar process under cleft side lateral occlusion were as follows: non-resorption group < lower 2/3 resorption group < upper&lower 1/3 resorption group < upper 2/3 resorption group < lower 1/3 resorption group < upper 1/3 resorption group. The stress values of the alveolar process under centric occlusion were as follows: non-resorption group < upper 1/3 resorption group < lower 1/3 resorption group < lower 2/3 resorption group < upper&lower 1/3 resorption group < upper 2/3 resorption group. The stress values of the alveolar process under non-cleft side lateral occlusion were as follows: non-resorption group < lower 2/3 resorption group < upper&lower 1/3 resorption group < lower 1/3 resorption group < upper 2/3 resorption group < upper 1/3 resorption group. Under occlusal force, the displacement and stress of the alveolar process in the non-resorption model were significantly lower than those in other models. The displacement and stress of the alveolar process in the models with resorption in the lower area of the ABG were significantly lower than those in the models with resorption in the upper-middle areas of the ABG.
Conclusion
After unilateral complete cleft lip and palate bone grafting, the integrity and continuity of the middle and upper parts of the alveolar process bone grafting play a key role in the biomechanical status of the alveolar process. If bone resorption occurs in the above parts, bone grafting should be considered.
10.Clinical Observation on 60 Cases of Knee Osteoarthritis Treated with Heat-Sensitive Moxibustion
Lu TIAN ; Hongwu XIE ; Meihua LIU ; Jing ZHANG ; Shaozhong XU ; Changjun LI ; Zhixiong KOU
Journal of Traditional Chinese Medicine 2025;66(5):492-500
ObjectiveTo explore the central neuroregulation mechanism of heat-sensitive moxibustion for knee osteoarthritis on pain relief. MethodsThirty patients who did not have experience of Deqi (得气) during heat-sensitive moxibustion treatment were assigned to the "non-Deqi group", while another 30 patients who had experience of Deqi were assigned to the "Deqi group". Both groups received moxibustion at the left Heding (EX-LE2) acupoint. In the Deqi group, after the patients experienced sensation of Deqi at the acupoint, moxibustion was applied at approximately 3 cm from the skin for 10 minutes; in the non-Deqi group, moxibustion was also applied at approximately 3 cm from the skin for 10 minutes. Both groups received treatment once daily for 10 consecutive days. Knee joint pain was assessed before and after treatment using the visual analog scale (VAS). Resting-state functional magnetic resonance imaging (rs-fMRI) scans were performed on all participants before the first treatment session and after the final session on the 10th day. The fractional amplitude of low-frequency fluctuations (fALFF) maps before and after treatment were processed using the SPM12 module by MATLAB. ResultsAfter treatment, VAS scores in both groups were significantly lower than before treatment (P<0.05 or P<0.01), with the Deqi group showing significantly lower VAS scores than the non-Deqi group (P<0.01). Compared to before treatment, the Deqi group exhibited significant activation in the prefrontal cortex (t = 6.28), white matter (t = 6.36), and left temporal lobe (t = 9.33), while significant inhibition was observed in the occipital lobe (t = -9.86) and right cerebrum (t = -4.54, P<0.01); in the non-Deqi group, significant changes after treatment were observed in the left occipital lobe (t = -6.42), left medial frontal gyrus (t = -4.35), left middle frontal gyrus (t = -4.74), right superior frontal gyrus (t = -4.82), right superior temporal gyrus (t = -6.61), and right cerebellar posterior lobe (t = -8.64), all of which were in inhibited states (P<0.01). Compared to the non-Deqi group, the Deqi group exhibited significant activation after treatment in the external nucleus (t = 5.77), white matter (t = 3.58), right cerebrum (t = 5.84), left cerebellum (t = 5.35), and left cerebrum (t = 4.32), while significant inhibition was observed in the prefrontal cortex (t = -4.16), occipital lobe (t = -4.87), and precentral gyrus (t = -4.46, P<0.01). ConclusionsHeat-sensitive moxibustion provides better analgesic effects for knee osteoarthritis under state of Deqi. Its central neuroregulation mechanism may be related to the involvement of the frontal lobe, temporal lobe, occipital lobe, external nucleus, white matter, right cerebrum, left cerebellum, left cerebrum, and precentral gyrus in modulating pain signals.


Result Analysis
Print
Save
E-mail