1.Lamin B1 regulates the growth of hepatocellular carcinoma cells by influencing telomerase activity.
Ruiguan WANG ; Si CHEN ; Zhijia SUN ; Shikun WANG ; Jie WANG ; Lingmei QIN ; Jiangbo LI
Chinese Journal of Biotechnology 2023;39(4):1609-1620
Lamin B1 (LMNB1) is highly expressed in liver cancer tissues, and its influence and mechanism on the proliferation of hepatocellular carcinoma cells were explored by knocking down the expression of the protein. In liver cancer cells, siRNAs were used to knock down LMNB1. Knockdown effects were detected by Western blotting. Changes in telomerase activity were detected by telomeric repeat amplification protocol assay (TRAP) experiments. Telomere length changes were detected by quantitative real-time polymerase chain reaction (qPCR). CCK8, cloning formation, transwell and wound healing were performed to detect changes in its growth, invasion and migration capabilities. The lentiviral system was used to construct HepG2 cells that steadily knocked down LMNB1. Then the changes of telomere length and telomerase activity were detected, and the cell aging status was detected by SA-β-gal senescence staining. The effects of tumorigenesis were detected by nude mouse subcutaneous tumorigenesis experiments, subsequent histification staining of tumors, SA-β-gal senescence staining, fluorescence in situ hybridization (FISH) for telomere analysis and other experiments. Finally, the method of biogenesis analysis was used to find the expression of LMNB1 in clinical liver cancer tissues, and its relationship with clinical stages and patient survival. Knockdown of LMNB1 in HepG2 and Hep3B cells significantly reduced telomerase activity, cell proliferation, migration and invasion abilities. Experiments in cells and tumor formation in nude mice had demonstrated that stable knockdown of LMNB1 reduced telomerase activity, shortened telomere length, senesced cells, reduced cell tumorigenicity and KI-67 expression. Bioinformatics analysis showed that LMNB1 was highly expressed in liver cancer tissues and correlated with tumor stage and patient survival. In conclusion, LMNB1 is overexpressed in liver cancer cells, and it is expected to become an indicator for evaluating the clinical prognosis of liver cancer patients and a target for precise treatment.
Animals
;
Mice
;
Telomerase/metabolism*
;
Carcinoma, Hepatocellular/genetics*
;
Liver Neoplasms/genetics*
;
Telomere Shortening
;
In Situ Hybridization, Fluorescence
;
Mice, Nude
;
Telomere/pathology*
;
Carcinogenesis
2.Research progress of lung aging in chronic respiratory diseases.
Kai ZHOU ; Long CHEN ; Xiao-Qun QIN ; Yang XIANG ; Xiang-Ping QU ; Hui-Jun LIU ; Chi LIU
Acta Physiologica Sinica 2022;74(3):479-488
Cell aging is an extremely complex process, which is characterized by mitochondrial structural dysfunction, telomere shortening, inflammatory microenvironment, protein homeostasis imbalance, epigenetic changes, abnormal DNA damage and repair, etc. Aging is usually accompanied by structural and functional damage of tissues and organs which further induces the occurrence and development of aging-related diseases. Aging includes physiological aging caused by increased age and pathological aging induced by a variety of factors. Noteworthy, as a target organ directly contacting with the outside air, lung is more prone to various stimuli, causing pathological premature aging which is lung aging. Studies have found that there is a certain proportion of senescent cells in the lungs of most chronic respiratory diseases. However, the underlying mechanism by which these senescent cells induce lung senescence and their role in chronic respiratory diseases is still obscure. This paper focuses on the causes and classification of lung aging, the internal mechanism of lung aging involved in chronic respiratory diseases, and the application of anti-aging treatments in chronic respiratory diseases. We hope to provide new research ideas and theoretical basis for the clinical prevention and treatment in chronic respiratory diseases.
Aging/pathology*
;
Cellular Senescence
;
Humans
;
Lung/pathology*
;
Lung Diseases/pathology*
;
Respiration Disorders/pathology*
;
Telomere
;
Telomere Shortening
3.Correlation of telomere length and serotonin levels with job stress and locus of control type among nurses at a private hospital in Gianyar, Indonesia
Susy Purnawati ; I Made Krisna Dinata ; Ni Made Linawati ; I G Kamasan Nyoman Arijana
Acta Medica Philippina 2021;55(6):632-639
Objectives
Telomere length and its relationship to job stress among workers in the health sector in Indonesia, especially in Bali, have never been studied. The purpose of the study was to analyze the correlation of the telomere length and serotonin levels to job stress and the type of locus of control (LOC) among nurses who were running shift work.
Internal-External Control
;
Occupational Stress
;
Serotonin
;
Telomere Shortening
4.Relationship between Telomere Maintenance and Liver Disease.
Abbey BARNARD ; Ashley MOCH ; Sammy SAAB
Gut and Liver 2019;13(1):11-15
Previous studies have established a correlation between increasing chronological age and risk of cirrhosis. This pattern raised interest in the role of telomeres and the telomerase complex in the pathogenesis of liver fibrosis and cirrhosis. This review aims to summarize and analyze the current understanding of telomere regulation in hepatocytes and lymphocytes and how this ultimately relates to the development of liver fibrosis. Notably, in chronic viral hepatitis, telomere shortening in hepatocytes and lymphocytes occurs in such a way that may promote further viral replication while also leading to liver damage. However, while telomere shortening occurs in both hepatocytes and lymphocytes and ultimately results in cellular death, the mechanisms of telomere loss appear to be initiated by independent processes. The understanding of telomere maintenance on a hepatic and immune system level in both viral and non-viral etiologies of cirrhosis may open doors to novel therapeutic strategies.
Fibrosis
;
Hepatitis
;
Hepatocytes
;
Immune System
;
Liver Cirrhosis
;
Liver Diseases*
;
Liver*
;
Lymphocytes
;
Telomerase
;
Telomere Shortening
;
Telomere*
5.Autophagy, Cellular Aging and Age-related Human Diseases
So Yeong CHEON ; Hyunjeong KIM ; David C RUBINSZTEIN ; Jong Eun LEE
Experimental Neurobiology 2019;28(6):643-657
Macroautophagy/autophagy is a conserved degradation system that engulfs intracytoplasmic contents, including aggregated proteins and organelles, which is crucial for cellular homeostasis. During aging, cellular factors suggested as the cause of aging have been reported to be associated with progressively compromised autophagy. Dysfunctional autophagy may contribute to age-related diseases, such as neurodegenerative disease, cancer, and metabolic syndrome, in the elderly. Therefore, restoration of impaired autophagy to normal may help to prevent age-related disease and extend lifespan and longevity. Therefore, this review aims to provide an overview of the mechanisms of autophagy underlying cellular aging and the consequent disease. Understanding the mechanisms of autophagy may provide potential information to aid therapeutic interventions in age-related diseases.
Aged
;
Aging
;
Autophagy
;
Cell Aging
;
DNA Damage
;
Homeostasis
;
Humans
;
Longevity
;
Neurodegenerative Diseases
;
Organelles
;
Oxidative Stress
;
Telomere Shortening
6.Telomere Biology in Mood Disorders: An Updated, Comprehensive Review of the Literature
Ather MUNEER ; Fareed Aslam MINHAS
Clinical Psychopharmacology and Neuroscience 2019;17(3):343-363
Major psychiatric disorders are linked to early mortality and patients afflicted with these ailments demonstrate an increased risk of developing physical diseases that are characteristically seen in the elderly. Psychiatric conditions like major depressive disorder, bipolar disorder and schizophrenia may be associated with accelerated cellular aging, indicated by shortened leukocyte telomere length (LTL), which could underlie this connection. Telomere shortening occurs with repeated cell division and is reflective of a cell’s mitotic history. It is also influenced by cumulative exposure to inflammation and oxidative stress as well as the availability of telomerase, the telomere-lengthening enzyme. Precariously short telomeres can cause cells to undergo senescence, apoptosis or genomic instability; shorter LTL correlates with compromised general health and foretells mortality. Important data specify that LTL may be reduced in principal psychiatric illnesses, possibly in proportion to exposure to the ailment. Telomerase, as measured in peripheral blood monocytes, has been less well characterized in psychiatric illnesses, but a role in mood disorder has been suggested by preclinical and clinical studies. In this manuscript, the most recent studies on LTL and telomerase activity in mood disorders are comprehensively reviewed, potential mediators are discussed, and future directions are suggested. An enhanced comprehension of cellular aging in psychiatric illnesses could lead to their re-conceptualizing as systemic ailments with manifestations both inside and outside the brain. At the same time this paradigm shift could identify new treatment targets, helpful in bringing about lasting cures to innumerable sufferers across the globe.
Aged
;
Aging
;
Apoptosis
;
Biology
;
Bipolar Disorder
;
Brain
;
Cell Aging
;
Cell Division
;
Comprehension
;
Depressive Disorder, Major
;
Genomic Instability
;
Humans
;
Inflammation
;
Leukocytes
;
Monocytes
;
Mood Disorders
;
Mortality
;
Oxidative Stress
;
Schizophrenia
;
Telomerase
;
Telomere Shortening
;
Telomere
7.Leukocyte Telomere Length Reflects Prenatal Stress Exposure, But Does Not Predict Atopic Dermatitis Development at 1 Year
Dong In SUH ; Mi Jin KANG ; Yoon Mee PARK ; Jun Kyu LEE ; So Yeon LEE ; Youn Ho SHEEN ; Kyung Won KIM ; Kangmo AHN ; Hye Sung WON ; Mi Young LEE ; Suk Joo CHOI ; Ja Young KWON ; Hee Jin PARK ; Jong Kwan JUN ; Soo Jong HONG ; Young Yull KOH
Allergy, Asthma & Immunology Research 2019;11(3):357-366
PURPOSE: Prenatal maternal stress affects offspring's atopic dermatitis (AD) development, which is thought to be mediated by the oxidative stress. We aimed to evaluate the difference in leukocyte telomere length (LTL), a marker for exposure to oxidative stress, according to the prenatal stress exposure and the later AD development. METHODS: From a birth cohort (the COhort for Childhood Origin of Asthma and allergic diseases) that had displayed a good epidemiologic association between the exposure to prenatal stress and AD development in the offspring, we selected 68 pairs of samples from 4 subject groups based on the level of prenatal maternal stress and later AD development. The LTL was measured from both cord blood and 1-year peripheral blood, and their LTLs were compared between subject groups. Finally, the proportion of AD development was examined in the subject groups that are reclassified based on subjects' exposure to prenatal stress and there LTL. RESULTS: Cord-blood LTL was shorter in prenatally stressed infants than in unstressed ones (P = 0.026), which difference was still significant when subjects became 1 year old (P = 0.008). LTL of cord blood, as well as one of the 1-year peripheral blood, was not different according to later AD development at 1 year (P = 0.915 and 0.174, respectively). Shorter LTL made no increase in the proportion of later AD development in either prenatally high-stressed or low-stressed groups (P = 1.000 and 0.473, respectively). CONCLUSIONS: Cord-blood LTL may reflect subjects' exposure to maternal prenatal stress. However, the LTL shortening is not a risk factor of increasing AD development until the age of 1, and a longer investigation may be necessary for validation. Currently, the results doubt the role of LTL shortening as a marker for risk assessment tool for the prenatal stress associated with AD development in the offspring.
Asthma
;
Child
;
Cohort Studies
;
Dermatitis, Atopic
;
Fetal Blood
;
Humans
;
Infant
;
Leukocytes
;
Oxidative Stress
;
Parturition
;
Risk Assessment
;
Risk Factors
;
Stress, Psychological
;
Telomere Shortening
;
Telomere
8.Dysregulation of Telomere Lengths and Telomerase Activity in Myelodysplastic Syndrome.
Hee Sue PARK ; Jungeun CHOI ; Cha Ja SEE ; Jung Ah KIM ; Si Nae PARK ; Kyongok IM ; Sung Min KIM ; Dong Soon LEE ; Sang Mee HWANG
Annals of Laboratory Medicine 2017;37(3):195-203
BACKGROUND: Telomere shortening is thought to be involved in the pathophysiology of myeloid malignancies, but telomere lengths (TL) during interphase and metaphase in hematopoietic malignancies have not been analyzed. We aimed to assess the TLs of interphase and metaphase cells of MDS and telomerase activity (TA) and to find out prognostic significances of TL and TA. METHODS: The prognostic significance of TA by quantitative PCR and TL by quantitative fluorescence in situ hybridization (QFISH) of interphase nuclei and metaphase chromosome arms of bone marrow cells from patients with MDS were evaluated. RESULTS: MDS patients had shorter interphase TL than normal healthy donors (P<0.001). Average interphase and metaphase TL were inversely correlated (P=0.013, p arm; P=0.029, q arm), but there was no statistically significant correlation between TA and TL (P=0.258). The progression free survival was significantly shorter in patients with high TA, but the overall survival was not different according to average TA or interphase TL groups. Multivariable Cox analysis showed that old age, higher International Prognostic Scoring System (IPSS) subtypes, transformation to AML, no history of hematopoietic stem cell transplantation and short average interphase TL (<433 TL) as independent prognostic factors for poorer survival (P=0.003, 0.001, 0.005, 0.005, and 0.013, respectively). CONCLUSIONS: The lack of correlation between age and TL, TA, and TL, and the inverse relationship between TL and TA in MDS patients reflect the dysregulation of telomere status and proliferation. As a prognostic marker for leukemia progression, TA may be considered, and since interphase TL has the advantage of automated measurement by QFISH, it may be used as a prognostic marker for survival in MDS.
Arm
;
Bone Marrow Cells
;
Disease-Free Survival
;
Fluorescence
;
Hematologic Neoplasms
;
Hematopoietic Stem Cell Transplantation
;
Humans
;
In Situ Hybridization
;
Interphase
;
Leukemia
;
Metaphase
;
Myelodysplastic Syndromes*
;
Polymerase Chain Reaction
;
Prognosis
;
Telomerase*
;
Telomere Shortening
;
Telomere*
;
Tissue Donors
9.Amyloid-beta oligomers regulate the properties of human neural stem cells through GSK-3beta signaling.
Il Shin LEE ; Kwangsoo JUNG ; Il Sun KIM ; Kook In PARK
Experimental & Molecular Medicine 2013;45(11):e60-
Alzheimer's disease (AD) is the most common cause of age-related dementia. The neuropathological hallmarks of AD include extracellular deposition of amyloid-beta peptides and neurofibrillary tangles that lead to intracellular hyperphosphorylated tau in the brain. Soluble amyloid-beta oligomers are the primary pathogenic factor leading to cognitive impairment in AD. Neural stem cells (NSCs) are able to self-renew and give rise to multiple neural cell lineages in both developing and adult central nervous systems. To explore the relationship between AD-related pathology and the behaviors of NSCs that enable neuroregeneration, a number of studies have used animal and in vitro models to investigate the role of amyloid-beta on NSCs derived from various brain regions at different developmental stages. However, the Abeta effects on NSCs remain poorly understood because of conflicting results. To investigate the effects of amyloid-beta oligomers on human NSCs, we established amyloid precursor protein Swedish mutant-expressing cells and identified cell-derived amyloid-beta oligomers in the culture media. Human NSCs were isolated from an aborted fetal telencephalon at 13 weeks of gestation and expanded in culture as neurospheres. Human NSCs exposure to cell-derived amyloid-beta oligomers decreased dividing potential resulting from senescence through telomere attrition, impaired neurogenesis and promoted gliogenesis, and attenuated mobility. These amyloid-beta oligomers modulated the proliferation, differentiation and migration patterns of human NSCs via a glycogen synthase kinase-3beta-mediated signaling pathway. These findings contribute to the development of human NSC-based therapy for AD by elucidating the effects of Abeta oligomers on human NSCs.
Amyloid beta-Peptides/*pharmacology
;
Animals
;
Apoptosis
;
Cell Aging
;
Cell Movement
;
Cell Proliferation
;
Culture Media, Conditioned/chemistry/pharmacology
;
Fetus/cytology
;
Glycogen Synthase Kinase 3/*metabolism
;
HEK293 Cells
;
Humans
;
Mice
;
Mice, Inbred C57BL
;
Neural Stem Cells/*drug effects/metabolism/physiology
;
Signal Transduction
;
Telomere Shortening
10.Chemoprevention of Gastrointestinal Cancer: The Reality and the Dream.
Kyung Soo CHUN ; Eun Hee KIM ; Sooyeon LEE ; Ki Baik HAHM
Gut and Liver 2013;7(2):137-149
Despite substantial progress in screening, early diagnosis, and the development of noninvasive technology, gastrointestinal (GI) cancer remains a major cause of cancer-associated mortality. Chemoprevention is thought to be a realistic approach for reducing the global burden of GI cancer, and efforts have been made to search for chemopreventive agents that suppress acid reflux, GI inflammation and the eradication of Helicobacter pylori. Thus, proton pump inhibitors, statins, monoclonal antibodies targeting tumor necrosis factor-alpha, and nonsteroidal anti-inflammatory agents have been investigated for their potential to prevent GI cancer. Besides the development of these synthetic agents, a wide variety of the natural products present in a plant-based diet, which are commonly called phytoceuticals, have also sparked hope for the chemoprevention of GI cancer. To perform successful searches of chemopreventive agents for GI cancer, it is of the utmost importance to understand the factors contributing to GI carcinogenesis. Emerging evidence has highlighted the role of chronic inflammation in inducing genomic instability and telomere shortening and affecting polyamine metabolism and DNA repair, which may help in the search for new chemopreventive agents for GI cancer.
Anti-Inflammatory Agents, Non-Steroidal
;
Antibodies, Monoclonal
;
Biological Agents
;
Chemoprevention
;
Diet
;
DNA Repair
;
Early Diagnosis
;
Gastrointestinal Neoplasms
;
Genomic Instability
;
Helicobacter pylori
;
Inflammation
;
Mass Screening
;
Proton Pump Inhibitors
;
Telomere Shortening
;
Tumor Necrosis Factor-alpha


Result Analysis
Print
Save
E-mail