1.The effects of tectochrysin on prostate cancer cells apoptosis and its mechanism.
Yu WANG ; Rui-Jun KE ; Pan-Ruo JIANG ; Jia-Hao YING ; En-Zhe LOU ; Jia-Yu CHEN
Chinese Journal of Applied Physiology 2019;35(3):283-288
OBJECTIVE:
To investigate the effects of tectochrysin on prostate cancer cell line 22Rv.1 and reveal its molecular mechanism.
METHODS:
Tectochrysin at the concentrations of 0~20 μg/ml was applied to 22Rv.1 cells and normal prostate cell RWPE-1. The proliferation activity of the cells was detected by MTS assay. Flow cytometry and hoechst 33342 staining were used to analyze the effects of drugs on cell apoptosis, death, cell cycle and nuclear type changes. LDH release test was used to analyze the cytotoxicity of the drug to 22Rv.1 cells. QPCR and Western blot were used to analyze the effects of the drug on the expressions of genes in 22Rv.1 cells. Finally, the tumor inhibited effect of the drug on the bearing tumor BALB/c mice were confirmed though anti-tumor experiment.
RESULTS:
Tectochrysin could significantly inhibit the proliferation activity of 22Rv.1 cells and induced their apoptosis, and promoted the expressions of genes dr4, dr5, trail, p53, caspase-3, caspase-8, caspase-9, bid, bax and foxo3, inhibited the expressions of anti-apoptotic genes akt, pi3k and bcl-2.
CONCLUSION
Tectochrysin can induce prostate cancer cells apoptosis through affecting TRAIL and PI3K/AKT signaling pathways, and has anti-prostate cancer effect.
Animals
;
Apoptosis
;
Cell Line, Tumor
;
Flavonoids
;
pharmacology
;
Humans
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Prostatic Neoplasms
;
drug therapy
;
pathology
;
Signal Transduction
;
TNF-Related Apoptosis-Inducing Ligand
;
metabolism
2.Andrographolide sensitizes prostate cancer cells to TRAIL-induced apoptosis.
Ruo-Jing WEI ; Xin-Shi ZHANG ; Da-Lin HE
Asian Journal of Andrology 2018;20(2):200-204
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for anticancer therapy. The identification of small molecules that can establish the sensitivity of prostate cancer (PCa) cells to TRAIL-induced apoptosis is crucial for the targeted treatment of PCa. PC3, DU145, JAC-1, TsuPr1, and LNCaP cells were treated with Andrographolide (Andro) and TRAIL, and the apoptosis was measured using the Annexin V/PI double staining method. Real time-polymerase chain reaction (PCR) and Western blot analysis were performed to measure the expression levels of target molecules. RNA interference technique was used to down-regulate the expression of the target protein. We established a nude mouse xenograft model of PCa, which was used to measure the caspase-3 activity in the tumor cells using flow cytometry. In this research study, our results demonstrated that Andro preferentially increased the sensitivity of PCa cells to TRAIL-induced apoptosis at subtoxic concentrations, and the regulation mechanism was related to the up-regulation of DR4. In addition, it also increased the p53 expression and led to the generation of reactive oxygen species (ROS) in the cells. Further research revealed that the DR4 inhibition, p53 expression, and ROS generation can significantly reduce the apoptosis induced by the combination of TRAIL and Andro in PCa cells. In conclusion, Andro increases the sensitivity of PCa cells to TRAIL-induced apoptosis through the generation of ROS and up-regulation of p53 and then promotes PCa cell apoptosis associated with the activation of DR4.
Animals
;
Antineoplastic Agents/pharmacology*
;
Apoptosis/drug effects*
;
Cell Line, Tumor
;
Diterpenes/pharmacology*
;
Drug Synergism
;
Humans
;
Male
;
Mice
;
Mice, Nude
;
Neoplasm Transplantation
;
PC-3 Cells
;
Prostatic Neoplasms/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism*
;
TNF-Related Apoptosis-Inducing Ligand/pharmacology*
;
Tumor Suppressor Protein p53/metabolism*
;
Xenograft Model Antitumor Assays
3.Molecular mechanism of cisplatin to enhance the ability of TRAIL in reversing multidrug resistance in gastric cancer cells.
Xingchao ZHU ; Kaiguang ZHANG ; Email: ZKG@MEDMAIL.COM.CN. ; Qiaomin WANG ; Si CHEN ; Yawen GOU ; Yufang CUI ; Qin LI
Chinese Journal of Oncology 2015;37(6):404-411
OBJECTIVETo study the molecular mechanism of cisplatin to enhance the ability of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in reversing multidrug resistance in vincristine-resistant human gastric cancer SGC7901/VCR cells.
METHODSMTT assay was used to measure the 50% inhibiting concentration (IC₅₀) and cell survival in SGC7901 and SGC7901/VCR cells after different treatments. SGC7901/VCR cells were treated with different concentrations of DDP, different concentrations of TRAIL alone or in combination, and then the mRNA and protein levels of several genes were determined by RT-PCR, RT-qPCR and Western-blot analysis. After targeted silencing with specific siRNA and transfection of recombinant plasmid c-myc into the SGC7901/VCR cells, the mRNA and protein levels of DR4, DR5 and c-myc were determined by RT-PCR and Western-blot analysis.
RESULTSAfter combined treatment with TRAIL and DDP of the SGC7901/VCR cells, the IC₅₀ of VCR, DDP, ADM, and 5-Fu treatment was significantly decreased compared with the control group or TRAIL-treated group (P < 0.05). After treatment with 0, 10, 50 ng/ml TRAIL in combination with 0.4 µg/ml DDP, the SGC7901/VCR cells showed significantly higher activation of caspase 3, down-regulation of DNA-PKcs/Akt/GSK-3β signaling pathway, and higher inhibition of MDR1(P-gp) and MRP1 than those treated with TRAIL alone (P < 0.01 for all). The mRNA and protein levels of DR4, DR5, c-myc were significantly decreased after silencing c-myc with specific siRNA in the SGC7901/VCR cells (P < 0.01 for all), and were significantly increased after transfection of recombinant plasmid c-myc into the SGC7901/VCR cells (P < 0.01 foe all). After the treatment with 10 ng/ml TRAIL, 0.25 µg/ml DDP + 10 ng/ml TRAIL and 0.5 µg/ml DDP + 10 ng/ml TRAIL, the relative expression level of c-myc protein in the SGC7901/VCR cells was 0.314 ± 0.012, 0.735 ± 0.026, and 0.876 ± 0.028, respectively, and the relative expression of cytochrome C was 0.339 ± 0.036, 0.593 ± 0.020 and 0.735 ± 0.031, respectively, and the relative expression levels of DR4, DR5, active-caspase 3 and active-caspase 9 in the SGC7901/VCR cells were also increased along with increasing DDP concentrations.
CONCLUSIONSThe activation of DNA-PKcs/Akt/GSK-3β signaling pathway and high expression of MDR1 and MRP1 play an important role in the multi-drug resistance properties of SGC7901/VCR cells. After combining with TRAIL, DDP can enhance the expression of DR4 and DR5 through up-regulating c-myc and enhancing the activation of caspase 3 and caspase 9 by facilitating mitochondrial release of cytochrome C. It may be an important molecular mechanism of DDP-induced sensitization of TRAIL to reverse the multidrug resistancein SGC7901/VCR cells.
ATP-Binding Cassette, Sub-Family B, Member 1 ; metabolism ; Antineoplastic Agents ; administration & dosage ; pharmacology ; Antineoplastic Combined Chemotherapy Protocols ; administration & dosage ; pharmacology ; Caspase 3 ; metabolism ; Caspase 9 ; metabolism ; Cell Line, Tumor ; Cisplatin ; administration & dosage ; pharmacology ; Down-Regulation ; Drug Resistance, Multiple ; drug effects ; Drug Resistance, Neoplasm ; drug effects ; Fluorouracil ; administration & dosage ; pharmacology ; Formazans ; Genes, myc ; Glycogen Synthase Kinase 3 ; metabolism ; Glycogen Synthase Kinase 3 beta ; Humans ; Inhibitory Concentration 50 ; Multidrug Resistance-Associated Proteins ; metabolism ; Neoplasm Proteins ; metabolism ; Plasmids ; Proto-Oncogene Proteins c-myc ; metabolism ; RNA, Messenger ; metabolism ; RNA, Small Interfering ; pharmacology ; Receptors, TNF-Related Apoptosis-Inducing Ligand ; metabolism ; Stomach Neoplasms ; drug therapy ; pathology ; TNF-Related Apoptosis-Inducing Ligand ; administration & dosage ; pharmacology ; Tetrazolium Salts ; Transfection ; methods
4.Expression and antitumor activity of fusion protein RGD-TRAIL in Pichia pastoris.
Acta Pharmaceutica Sinica 2015;50(5):552-559
To compare the activity of RGD-TRAIL in different expression systems, RGD-TRAIL in both Escherichia coli (E.coli) and Pichia pastoris was constructed and expressed. In vitro activity of RGD-TRAIL from Pichia pastoris expression system was also analyzed. Genetic engineering techniques were used to construct recombinant plasmid pET30-rgd-trail and pHBM-rgd-trail. The recombinant protein RGD-TRAIL was purified with Ni ion affinity chromatography after induction. MTT assay, ELISA, scratch wound healing, transwell migration assay and Hoechst 33342 staining were performed to detect the effects of RGD-TRAIL on proliferation, binding activity, migration and apoptosis. The expression of apoptosis-associated proteins was detected by Western blotting. Recombinant protein RGD-TRAIL was successfully expressed in a form of inclusion body in E.coli, while expressed secretorily in Pichia pastoris. It possessed more potent cytotoxicity than RGD-TRAIL in E.coli by MTT assay. The RGD-TRAIL expressed by Pichia pastoris showed powerful binding affinity with cancer cells expressing α(v), DR4, DR5 and highly potent cytotoxicity through inducing apoptosis of cancer cells. Nuclear fragmentation was examined by Hoechst 33342 staining. Cleaved PARP and caspase-3 were also detected after incubation with RGD-TRAIL. Additionally, RGD-TRAIL inhibited migration significantly in A549 and HT1080 cells. The results demonstrate that Pichia pastoris expression system is more suitable for the recombinant protein RGD-TRAIL. Its binding affinity and antitumor activity might make RGD-TRAIL a promising candidate for cancer therapy.
Antineoplastic Agents
;
pharmacology
;
Apoptosis
;
Blotting, Western
;
Cell Line, Tumor
;
Chromatography, Affinity
;
Enzyme-Linked Immunosorbent Assay
;
Escherichia coli
;
Humans
;
Oligopeptides
;
biosynthesis
;
pharmacology
;
Pichia
;
metabolism
;
Plasmids
;
Recombinant Fusion Proteins
;
biosynthesis
;
pharmacology
;
TNF-Related Apoptosis-Inducing Ligand
;
biosynthesis
;
pharmacology
5.Sensitization of human colon cancer HT-29 cells to TRAIL-induced apoptosis by gambognic acid.
Ji-lin YE ; You-jiang YU ; Ai-lian WU ; Dong-yan WANG ; Yong-chun LIU ; Yan-qing LIU
Acta Pharmaceutica Sinica 2015;50(10):1252-1257
To investigate the effects of gambognic acid (GA) on TRAIL-induced apoptosis of cancer cells, human colon HT-29 cancer cells were treated with GA to promote apoptosis. Inhibition of the cell proliferation was measured with MTT assay and cell apoptosis was detected with formation of DNA ladders in agarose gel electrophoresis, and activation of caspase activity. The content of cytosolic reactive oxygen species (ROS) was measured with flow cytometry. The activities of Caspase-3, -8, -9 were detected using spectrophotometric assay. The levels of c-FLIP, CHOP, DR4 and DR5 in cells were tested by Western blot. Combination of GA (1 µg · mL(-1)) and TRAIL (40 ng · mL(-1)) significantly reduced proliferation and increased apoptosis of HT-29 cells over those induced by each agent alone. Percentage of apoptotic cells was increased to 45.5%. GA markedly enhanced the intracellular ROS generation. Expression of CHOP, DR4 and DR5 was up-regulated to 7.38, 5.41, and 4.85 times of the control group, respectively. GA promoted activation of Caspase-3, -8, and -9 by TRAIL (P<0.05). Furthermore, the expression of anti-apoptotic protein c-FLIP was down-regulated to 0.22 ± 0.08 times of the control group. In conclusion, GA sensitizes HT-29 cells to TRAIL-induced apoptosis by promoting ROS-activated ERS pathways, up-regulating of DR4 and DR5, and inhibiting c-FLIP expression.
Apoptosis
;
Apoptosis Regulatory Proteins
;
metabolism
;
Caspases
;
metabolism
;
Cell Line, Tumor
;
Cell Proliferation
;
Colonic Neoplasms
;
metabolism
;
Down-Regulation
;
HT29 Cells
;
Humans
;
Reactive Oxygen Species
;
metabolism
;
TNF-Related Apoptosis-Inducing Ligand
;
pharmacology
;
Up-Regulation
;
Xanthones
;
pharmacology
6.Enhanced sensitivity of leukemia cell line KG-1a to activated immune cell-mediated cytolysis after treated with resveratrol.
Liangshan HU ; Huawen YANG ; Lihua LI ; Zhihong ZHANG ; Xiaolin FANG ; Donglin CAO
Chinese Journal of Hematology 2014;35(7):645-649
OBJECTIVETo explore the enhanced sensitivity of leukemia cell line KG-1a to activated immune cell-mediated cytolysis after treated with resveratrol.
METHODSThe value of 50% inhibition concentration (IC₅₀) for KG-1a by resveratrol was analyzed using trypan blue staining. Peripheral blood mononuclear cells were separated, and then activated by interleukin (IL)-2 and IL-15. The sensitivity of KG-1a treated with and without resveratrol to activated immune cell-mediated cytolysis was assayed by lactate dehydrogenase (LDH) -releasing assay. The expression of tumor necrosis factor related apoptosis inducing ligand (TRAIL) on the surface of activated immune cells and its receptors (DR4/5 and DcR1/2) on the surface of KG-1a were detected by flow cytometry.
RESULTSResveratrol could inhibit the proliferation of KG-1a and IC50 at 24 h was 25 mmol/L. At a ratio of 10:1 or 20:1 between effect and target, the cytolytic rates of treated KG-1a by activated immune cells were (55.80 ± 10.88)% and (72.31 ± 13.06)%, significantly higher than (24.96 ± 9.25)% and (37.93 ± 5.21)% of untreated KG-1a (P<0.05). The expression of DR5 on the surface of KG-1a treated with resveratrol was (9.05 ± 3.57)%, significantly higher than (3.11 ± 0.54)% of untreated KG-1a (P<0.05). Conversely, the expression of DcR1 on the surface of treated KG-1a was (13.23 ± 3.56)%, lower than (53.75 ± 10.51)% of KG-1a (P<0.05). When TRAIL pathway on the surface of activated immune cells was blocked, the cytolytic rates of treated KG-1a were (35.97 ± 6.36)% and (49.80 ± 10.68)%, significantly lower than (52.92 ± 6.98)% and (70.73 ± 9.79)% of untreated KG-1a (P<0.05) at the same ratio of effector and target.
CONCLUSIONResveratrol could enhance cytolytic sensitivity of KG-1a by activated immune cells through TRAIL pathway.
Cell Line, Tumor ; Cell Proliferation ; drug effects ; Humans ; Leukemia ; metabolism ; pathology ; Leukocytes, Mononuclear ; drug effects ; immunology ; metabolism ; Male ; Receptors, TNF-Related Apoptosis-Inducing Ligand ; metabolism ; Receptors, Tumor Necrosis Factor, Member 10c ; metabolism ; Stilbenes ; pharmacology ; TNF-Related Apoptosis-Inducing Ligand ; metabolism
7.The synergism and mechanism of action of rClone30-hDR5 in combination with TRAIL on HCC.
Tian SUN ; Ze-Shan NIU ; Xue-Ying LIU ; Gui-You TIAN ; Yin BAI ; Fu-Liang BAI ; Jie-Chao YIN ; Dan YU ; Yun-Zhou WU ; De-Shan LI ; Qing-Zhong YU ; Si-Ming LI ; Gui-Ping REN
Acta Pharmaceutica Sinica 2014;49(7):985-992
To investigate the cell-killing effect and its possible mechanism of rClone30-hDR5 in combination with TRAIL on human hepatic carcinoma (HCC) cell line, first of all, recombinant plasmid pee12.4-hDR5 was introduced into HepG2 cells by liposome transfection. After five rounds of screening by flow cytometry, HepG2 cells expressing high levels of DR5 on cell surface were isolated. The cytotoxicity of TRAIL to selected cells was higher than that of TRAIL to HepG2 cells by MTT method (P < 0.01). The result suggested that the cloned hDR5 gene had biological activity. MTT assay showed that, rClone30- hDR5 in combination with TRAIL more efficiently inhibited the tumor growth of HepG2 cells compared to rClone30-hDR5 or TRAIL in vitro. The results of Annexin V-FITC/PI staining and Quantitative Real-time PCR indicated that rClone30-hDR5 in combination with TRAIL significantly increased the mRNA levels of caspase 3 and caspase 8, and induced the apoptosis of tumor cells. HepG2 cells were infected with rClone30-hDR5 or rClone30 at MOI of 1. The expression of hDR5 on tumor surface increased significantly by rClone30-hDR5 compared to that by rClone30, which contributed to the sensitivity to TRAIL. In conclusion, rClone30-hDR5 in combination with TRAIL has potential application value in cancer treatment.
Apoptosis
;
Carcinoma, Hepatocellular
;
pathology
;
Caspase 3
;
metabolism
;
Caspase 8
;
metabolism
;
Drug Synergism
;
Hep G2 Cells
;
Humans
;
Liver Neoplasms
;
pathology
;
Real-Time Polymerase Chain Reaction
;
Receptors, TNF-Related Apoptosis-Inducing Ligand
;
pharmacology
;
TNF-Related Apoptosis-Inducing Ligand
;
pharmacology
;
Transfection
8.The Synergistic Apoptotic Interaction of Indole-3-Carbinol and Genistein with TRAIL on Endometrial Cancer Cells.
Bidur PARAJULI ; So Jin SHIN ; Sang Hoon KWON ; Soon Do CHA ; Hyun Gyo LEE ; Insoo BAE ; Chi Heum CHO
Journal of Korean Medical Science 2013;28(4):527-533
Induction of apoptosis in target cells is a key mechanism by which chemotherapy promotes cell killing. The purpose of this study was to determine whether Indole-3-Carbinol (I3C) and Genistein in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induce apoptosis in endometrial cancer cell (Ishikawa) and to assess apoptotic mechanism. The MTT assay and flow cytometry were performed to determine cell viability and cell cycle. The induction of apoptosis was measured by caspase-3 activity test, DNA fragmentation assay, annexin V binding assay and western blot analysis. There was no effect in cell growth inhibition and cell cycle progression alone or in two-combination. However, the treatment of I3C and Genistein followed by TRAIL showed significant cell death and marked increase in sub-G1 arrest. Three-combination treatment revealed elevated expression of DR4, DR5 and cleaved forms of caspase-3, caspase-8, PARP. The Flip was found down regulated. Moreover, increase in caspase-3 activity and DNA fragmentation indicated the induction of apoptosis. The results indicate that I3C and Genistein with TRAIL synergistically induced apoptosis via death receptor dependent pathway. Our findings might provide a new insight into the development of novel combination therapies against endometrial cancer.
Anticarcinogenic Agents/*pharmacology
;
Apoptosis/*drug effects
;
Caspase 3/metabolism
;
Caspase 8/metabolism
;
Cell Line, Tumor
;
Drug Synergism
;
Endometrial Neoplasms/metabolism/pathology
;
Female
;
G1 Phase Cell Cycle Checkpoints/drug effects
;
Genistein/*pharmacology
;
Humans
;
Indoles/*pharmacology
;
Poly(ADP-ribose) Polymerases/metabolism
;
Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism
;
TNF-Related Apoptosis-Inducing Ligand/*pharmacology
9.Effect of zinc ion on polymerization and cytotoxicity of sTRAIL in tumor cells.
Liqiang HU ; Hao YANG ; Lin WAN ; Xiaofeng LU
Journal of Biomedical Engineering 2013;30(2):415-427
Soluble tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) is potentially a novel anti-cancer drug due to its superior selective cytotoxicity in a wide variety of tumor cells. Zinc ion (Zn2+) insufficiency might be an important cause for weak cytotoxicity of sTRAIL prepared by gene engineering. In this paper, the sTRAIL protein is highly-expressed with insertion of the synthesized gene encoding sTRAIL into pQE30 plasmid. The polymerization and cytotoxicity in tumor cells of sTRAIL prepared in presence of different concentrations of Zinc ions were compared. It was found that the sTRAIL protein prepared in absence of Zinc ions mainly existed as monomer with weak cytotoxicity. However, in the presence of Zinc ions, sTRAIL formed homotrimer and showed strong cytotoxicity in tumor cells. These results demonstrate that Zinc ion is very important for cytotoxicity of sTRAIL. It is necessary for keeping stable activity of sTRAIL by addition of proper concentration of Zinc ion in the media.
Antineoplastic Agents
;
metabolism
;
pharmacology
;
Breast Neoplasms
;
pathology
;
Cell Line, Tumor
;
Female
;
Humans
;
Lung Neoplasms
;
pathology
;
Polymerization
;
drug effects
;
Recombinant Proteins
;
metabolism
;
pharmacology
;
TNF-Related Apoptosis-Inducing Ligand
;
genetics
;
metabolism
;
Zinc
;
pharmacology
10.Synergistic apoptotic effect of the combination of diosgenin and TRAIL on non-small-cell lung cancer cell line A549 evaluated with the Chou-Talalay method.
Yan HE ; Ji-Shuang WANG ; Peng ZHANG ; Wen-Jing ZHANG ; Qi-Lai HUANG ; Zi-Chun HUA
Acta Pharmaceutica Sinica 2013;48(1):45-51
This study is to investigate the apoptotic induction effect of the combination of diosgenin and TNF-related apoptosis-inducing ligand (TRAIL) on non-small-cell lung cancer cell line A549 by using the Chou-Talalay method, and observe the mechanism of the combination. The apoptotic effect of diosgenin or TRAIL alone and their combination on A549 and normal cell line 293T proliferation was measured by MTT assay. Chou-Talalay method was used to evaluate the combination effect. Apoptosis was examined by Hoechst 33342 staining and flow cytometry assay. Western blotting detects the expression of apoptosis-associated proteins. Diosgenin or TRAIL alone can inhibit proliferation ofA549 in a concentration-dependent manner. According to the Chou-Talalay method, when f(a) = 0.1, CI > 1, when f(a) > 0.1, CI < 1. Combined with TRAIL, the IC50 of diosgenin decreases from 21.864 to 14.810 micromol x L(-1) (P < 0.05) on A549 cells. But for 293T cells, IC50 of diosgenin does not change significantly. As with Hoechst 33342 staining and flow cytometry assay, the apoptosis ratios also increased in the combination group. At protein expression level, combination-treated group displays increased Caspase-8, Caspase-9, Bid, Caspase-3 activation and PARP cleavage, significantly decreased Bcl-2 and increased Bax expression, and MAPK pathways were activated. The combination of diosgenin and TRAIL has synergistic effect on A549 cells.
Apoptosis
;
drug effects
;
Apoptosis Regulatory Proteins
;
metabolism
;
Carcinoma, Non-Small-Cell Lung
;
metabolism
;
pathology
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Diosgenin
;
administration & dosage
;
pharmacology
;
Dose-Response Relationship, Drug
;
Drug Synergism
;
HEK293 Cells
;
Humans
;
Lung Neoplasms
;
metabolism
;
pathology
;
Mitogen-Activated Protein Kinase Kinases
;
metabolism
;
Signal Transduction
;
TNF-Related Apoptosis-Inducing Ligand
;
administration & dosage
;
pharmacology

Result Analysis
Print
Save
E-mail