1.Innovative insights into extrachromosomal circular DNAs in gynecologic tumors and reproduction.
Ning WU ; Ling WEI ; Zhipeng ZHU ; Qiang LIU ; Kailong LI ; Fengbiao MAO ; Jie QIAO ; Xiaolu ZHAO
Protein & Cell 2024;15(1):6-20
Originating but free from chromosomal DNA, extrachromosomal circular DNAs (eccDNAs) are organized in circular form and have long been found in unicellular and multicellular eukaryotes. Their biogenesis and function are poorly understood as they are characterized by sequence homology with linear DNA, for which few detection methods are available. Recent advances in high-throughput sequencing technologies have revealed that eccDNAs play crucial roles in tumor formation, evolution, and drug resistance as well as aging, genomic diversity, and other biological processes, bringing it back to the research hotspot. Several mechanisms of eccDNA formation have been proposed, including the breakage-fusion-bridge (BFB) and translocation-deletion-amplification models. Gynecologic tumors and disorders of embryonic and fetal development are major threats to human reproductive health. The roles of eccDNAs in these pathological processes have been partially elucidated since the first discovery of eccDNA in pig sperm and the double minutes in ovarian cancer ascites. The present review summarized the research history, biogenesis, and currently available detection and analytical methods for eccDNAs and clarified their functions in gynecologic tumors and reproduction. We also proposed the application of eccDNAs as drug targets and liquid biopsy markers for prenatal diagnosis and the early detection, prognosis, and treatment of gynecologic tumors. This review lays theoretical foundations for future investigations into the complex regulatory networks of eccDNAs in vital physiological and pathological processes.
Male
;
Female
;
Animals
;
Humans
;
Swine
;
DNA, Circular/genetics*
;
Genital Neoplasms, Female
;
Semen
;
DNA
;
Reproduction
2.Application of single base editing technique in pig genetic improvement: a review.
Wudi ZHAO ; Guobin HUANG ; Xiangxing ZHU ; Yanzhen BI ; Dongsheng TANG
Chinese Journal of Biotechnology 2023;39(10):3936-3947
Traditional pig breeding has a long cycle and high cost, and there is an urgent need to use new technologies to revitalize the pig breeding industry. The recently emerged CRISPR/Cas9 genome editing technique shows great potential in pig genetic improvement, and has since become a research hotspot. Base editor is a new base editing technology developed based on the CRISPR/Cas9 system, which can achieve targeted mutation of a single base. CRISPR/Cas9 technology is easy to operate and simple to design, but it can lead to DNA double strand breaks, unstable gene structures, and random insertion and deletion of genes, which greatly restricts the application of this technique. Different from CRISPR/Cas9 technique, the single base editing technique does not produce double strand breaks. Therefore, it has higher accuracy and safety for genome editing, and is expected to advance the pig genetic breeding applications. This review summarized the working principle and shortcomings of CRISPR/Cas9 technique, the development and advantages of single base editing, the principles and application characteristics of different base editors and their applications in pig genetic improvement, with the aim to facilitate genome editing-assisted genetic breeding of pig.
Animals
;
Swine/genetics*
;
Gene Editing
;
CRISPR-Cas Systems/genetics*
;
DNA Breaks, Double-Stranded
3.Advances in innate immune responses induced by Mycoplasma hyopneumoniae infection.
Jiacui LAI ; Jiawei HE ; Honglei DING
Chinese Journal of Biotechnology 2023;39(12):4773-4783
Mycoplasma hyopneumoniae is the pathogen causing swine mycoplasmal pneumonia. The lack of well-established animal models of M. hyopneumoniae infection has delayed the progress of M. hyopneumoniae-related anti-infection immunity studies. This paper reviews the inflammatory response, the recognition of M. hyopneumoniae by the innate immune system, and the role of innate immune cells, complement system, antimicrobial peptides, autophagy, and apoptosis in M. hyopneumoniae infection. The aim was to elucidate the important roles played by the components of the innate immune system in the control of M. hyopneumoniae infection, and prospect key research directions of innate immune response of M. hyopneumoniae infection in the future.
Animals
;
Swine
;
Mycoplasma hyopneumoniae
;
Pneumonia of Swine, Mycoplasmal
;
Immunity, Innate
4.Recombinant porcine interferon-gamma expressed in CHO cells and its antiviral activity.
Lingyun WANG ; Rongzeng HAO ; Yang YANG ; Yajun LI ; Bingzhou LU ; Yuhan MAO ; Yue ZHANG ; Zhenli GONG ; Yanhong LIU ; Meng QI ; Yi RU ; Haixue ZHENG
Chinese Journal of Biotechnology 2023;39(12):4784-4795
The aim of this study was to produce recombinant porcine interferon gamma (rPoIFN-γ) by Chinese hamster ovarian (CHO) cells expression system and to analyze its antiviral activity. Firstly, we constructed the recombinant eukaryotic expression plasmid pcDNA3.1-PoIFN-γ and transfected into suspension cultured CHO cells for secretory expression of rPoIFN-γ. The rPoIFN-γ was purified by affinity chromatography and identified with SDS-PAGE and Western blotting. Subsequently, the cytotoxicity of rPoIFN-γ was analyzed by CCK-8 test, and the antiviral activity of rPoIFN-γ was evaluated using standard procedures in VSV/PK-15 (virus/cell) test system. Finally the anti-Seneca virus A (SVA) of rPoIFN-γ activity and the induction of interferon-stimulated genes (ISGs) and cytokines were also analyzed. The results showed that rPoIFN-γ could successfully expressed in the supernatant of CHO cells. CCK-8 assays indicated that rPoIFN-γ did not show cytotoxicity on IBRS-2 cells. The biological activity of rPoIFN-γ was 5.59×107 U/mg in VSV/PK-15 system. Moreover, rPoIFN-γ could induced the expression of ISGs and cytokines, and significantly inhibited the replication of SVA. In conclusion, the high activity of rPoIFN-γ was successfully prepared by CHO cells expression system, which showed strong antiviral activity on SVA. This study may facilitate the investigation of rPoIFN-γ function and the development of novel genetically engineered antiviral drugs.
Swine
;
Animals
;
Cricetinae
;
Interferon-gamma/pharmacology*
;
Cricetulus
;
CHO Cells
;
Sincalide
;
Recombinant Proteins/pharmacology*
;
Antiviral Agents/pharmacology*
5.The I226R protein of African swine fever virus inhibits the cGAS-STING-mediated innate immune response.
Yabo LI ; Huicong LOU ; Yuna ZHAO ; Wenhui FAN ; Pengtao JIAO ; Lei SUN ; Tingrong LUO ; Wenjun LIU
Chinese Journal of Biotechnology 2023;39(12):4796-4808
This study aimed to explore the mechanism of how African swine fever virus (ASFV) I226R protein inhibits the cGAS-STING signaling pathway. We observed that I226R protein (pI226R) significantly inhibited the cGAS-STING-mediated type Ⅰ interferons and the interferon-stimulated genes production by dual-luciferase reporter assay system and real-time quantitative PCR. The results of co-immunoprecipitation assay and confocal microscopy showed that pI226R interacted with cGAS. Furthermore, pI226R promoted cGAS degradation through autophagy-lysosome pathway. Moreover, we found that pI226R decreased the binding of cGAS to E3 ligase tripartite motif protein 56 (TRIM56), resulting in the weakened monoubiquitination of cGAS, thus inhibiting the activation of cGAS and cGAS-STING signaling. In conclusion, ASFV pI226R suppresses the antiviral innate immune response by antagonizing cGAS, which contributes to an in-depth understanding of the immune escape mechanism of ASFV and provides a theoretical basis for the development of vaccines.
Animals
;
Swine
;
African Swine Fever Virus/metabolism*
;
Membrane Proteins/metabolism*
;
Immunity, Innate
;
Nucleotidyltransferases/metabolism*
;
Signal Transduction/genetics*
6.Eukaryotic expression of GP5 and M protein of porcine reproductive and respiratory syndrome virus and immunogenicity evaluation.
Huicong LOU ; Runshan LIN ; Yabo LI ; Yuna ZHAO ; Pengtao JIAO ; Tingrong LUO ; Wenjun LIU
Chinese Journal of Biotechnology 2023;39(12):4809-4823
In order to understand the prevalence and evolution of porcine reproductive and respiratory syndrome virus (PRRSV) in China and to develop subunit vaccine against the epidemic lineage, the genetic evolution analysis of PRRSV strains isolated in China from 2001 to 2021 was performed. The representative strains of the dominant epidemic lineage were selected to optimize the membrane protein GP5 and M nucleotide sequences, which were used, with the interferon and the Fc region of immunoglobulin, to construct the eukaryotic expression plasmids pCDNA3.4-IFNα-GP5-Fc and pCDNA3.4-IFNα-M-Fc. Subsequently, the recombinant proteins IFNα-GP5-Fc and IFNα-M-Fc were expressed by HEK293T eukaryotic expression system. The two recombinant proteins were mixed with ISA206VG adjuvant to immunize weaned piglets. The humoral immunity level was evaluated by ELISA and neutralization test, and the cellular immunity level was detected by ELISPOT test. The results showed that the NADC30-like lineage was the main epidemic lineage in China in recent years, and the combination of IFNα-GP5-Fc and IFNα-M-Fc could induce high levels of antibody and cellular immunity in piglets. This study may facilitate the preparation of a safer and more effective new PRRSV subunit vaccine.
Humans
;
Animals
;
Swine
;
Porcine respiratory and reproductive syndrome virus/genetics*
;
Porcine Reproductive and Respiratory Syndrome/prevention & control*
;
HEK293 Cells
;
Viral Envelope Proteins/genetics*
;
Antibodies, Viral
;
Viral Vaccines/genetics*
;
Recombinant Proteins
;
Vaccines, Subunit
7.Effects of host proteins interacting with non-structural protein nsp9 of porcine epidemic diarrhea virus on viral replication.
Zhugui SHI ; Jiayu WU ; Ya ZHU ; Jiyong ZHOU ; Boli HU
Chinese Journal of Biotechnology 2023;39(12):4824-4836
Porcine epidemic diarrhea virus (PEDV) is a highly pathogenic virus that can cause acute intestinal infectious diseases in both piglets and fattening pigs. The virus encodes at least 16 non-structural proteins, including nsp9, which has been shown to bind to single-stranded RNA. However, its function and mechanism remain unclear. In this study, we aimed to identify potential host proteins that interact with PEDV nsp9 using immunoprecipitation combined with mass spectrometry. The interactions were then confirmed by co-immunoprecipitation (Co-IP) and confocal laser scanning fluorescence techniques. The results showed that nsp9 interacts with HSPA8, Tollip, HSPA9 and TOMM70. Among them, overexpression of HSPA8 resulted in caused first upregulated and then down-regulated expression of nsp9, and promoted the proliferation of PEDV. Overexpression of Tollip significantly upregulated the expression of nsp9 and inhibited the proliferation of PEDV. Overexpression of TOMM70 significantly reduced the expression of nsp9, but did not show significant effect on the proliferation of PEDV. Overexpression of HSPA9 did not show significant effect on the expression of nsp9 and the proliferation of PEDV. These findings may facilitate further investigating the role of nsp9-interacting proteins in PEDV infection.
Animals
;
Swine
;
Porcine epidemic diarrhea virus/genetics*
;
Virus Replication
;
Proteins
;
Swine Diseases
8.Effects of Aeriscardovia aeriphila on growth performance, antioxidant functions, immune responses, and gut microbiota in broiler chickens.
Muhammad Zahid FAROOQ ; Xinkai WANG ; Xianghua YAN
Journal of Zhejiang University. Science. B 2023;24(11):1014-1026
Aeriscardovia aeriphila, also known as Bifidobacterium aerophilum, was first isolated from the caecal contents of pigs and the faeces of cotton-top tamarin. Bifidobacterium species play important roles in preventing intestinal infections, decreasing cholesterol levels, and stimulating the immune system. In this study, we isolated a strain of bacteria from the duodenal contents of broiler chickens, which was identified as A. aeriphila, and then evaluated the effects of A. aeriphila on growth performance, antioxidant functions, immune functions, and gut microbiota in commercial broiler chickens. Chickens were orally gavaged with A. aeriphila (1×109 CFU/mL) for 21 d. The results showed that A. aeriphila treatment significantly increased the average daily gain and reduced the feed conversion ratio (P<0.001). The levels of serum growth hormone (GH) and insulin-like growth factor 1 (IGF-1) were significantly increased following A. aeriphila treatment (P<0.05). Blood urea nitrogen and aspartate aminotransferase levels were decreased, whereas glucose and creatinine levels increased as a result of A. aeriphila treatment. Furthermore, the levels of serum antioxidant enzymes, including catalase (P<0.01), superoxide dismutase (P<0.001), and glutathione peroxidase (P<0.05), and total antioxidant capacity (P<0.05) were enhanced following A. aeriphila treatment. A. aeriphila treatment significantly increased the levels of serum immunoglobulin A (IgA) (P<0.05), IgG (P<0.01), IgM (P<0.05), interleukin-1 (IL-1) (P<0.05), IL-4 (P<0.05), and IL-10 (P<0.05). The broiler chickens in the A. aeriphila group had higher secretory IgA (SIgA) levels in the duodenum (P<0.01), jejunum (P<0.001), and cecum (P<0.001) than those in the control group. The messenger RNA (mRNA) relative expression levels of IL-10 (P<0.05) and IL-4 (P<0.001) in the intestinal mucosa of chickens were increased, while nuclear factor-κB (NF-κB) (P<0.001) expression was decreased in the A. aeriphila group compared to the control group. Phylum-level analysis revealed Firmicutes as the main phylum, followed by Bacteroidetes, in both groups. The data also found that Phascolarctobacterium and Barnesiella were increased in A. aeriphila-treated group. In conclusion, oral administration of A. aeriphila could improve the growth performance, serum antioxidant capacity, immune modulation, and gut health of broilers. Our findings may provide important information for the application of A. aeriphila in poultry production.
Animals
;
Swine
;
Antioxidants/pharmacology*
;
Chickens
;
Gastrointestinal Microbiome
;
Interleukin-10/pharmacology*
;
Interleukin-4/pharmacology*
;
NF-kappa B/metabolism*
;
Immunity
;
Diet/veterinary*
;
Animal Feed/analysis*
;
Dietary Supplements/analysis*
9.Effect of various intracanal materials on the diagnostic accuracy of cone-beam computed tomography in vertical root fractures.
Jin Hua ZHANG ; Jie PAN ; Zhi Peng SUN ; Xiao WANG
Journal of Peking University(Health Sciences) 2023;55(2):333-338
OBJECTIVE:
To study the effect of various intracanal materials on the accuracy of oral maxillofacial cone-beam computed tomography (CBCT) for the diagnosis of vertical root fracture (VRF).
METHODS:
A total of twenty-four structurally intact single root canal dried and isolated teeth extracted for orthodontic treatment or periodontal disease were collected. The teeth were decrowned along the cemento-enamel junction (CEJ) and then used as samples for the study after conventional root canal preparation and post preparation. The 24 samples were divided into two groups with 12 samples in each group. Group A was the control group (no VRF group). According to intracanal materials, they were divided into five subgroups: blank group, fiber post group, gutta-percha point group, titanium post group and gold-palladium post group. Group B was the experimental group (VRF group), and subgroups were grouped as above. The VRF model was prepared by a unified method in the VRF group: the root was completely fractured in the buccolingual direction with a custom root canal nail and then cemented and reset. The control group was not subjected to the simulation of VRF. Titanium post and gold-palladium post were made according to the individuality of the root canal preparation, and the tightness of the post to the root canal wall was confirmed by X-ray radiograph. Then all the samples were scanned by CBCT in the isolate swine mandibular alveolar sockets. The diagnostic accuracy was statistically analyzed via blind interpretation by experienced endodontic specialists and oral and maxillofacial medical imaging specialists.
RESULTS:
The accuracy of the diagnosis of VRF in the blank group, fiber post group, gutta-percha point group, titanium post group, and gold-palladium post group in CBCT was 95.83%, 91.67%, 87.50%, 79.17%, and 45.83%, respectively. Compared with the blank group, the differences were not statistically significant in the fiber post group (P>0.999), the gutta-percha point group (P=0.500) and the titanium post group (P=0.125). The lowest diagnostic accuracy of VRF was found in the gold-palladium post group, and the difference was statistically significant compared with all other groups (P < 0.001).
CONCLUSION
Various intracanal materials have different degrees of influence on the diagnostic accuracy of VRF diagnosis in CBCT. The influence of fiber post, gutta-percha point and titanium post was small, while the influence of gold-palladium post was significant.
Animals
;
Cone-Beam Computed Tomography/methods*
;
Gold
;
Gutta-Percha
;
Palladium
;
Swine
;
Titanium
;
Tooth Fractures/diagnostic imaging*
;
Tooth Root/injuries*
;
Reproducibility of Results
10.Embedded 3D printing of porous silicon orbital implants and its surface modification.
Hong ZHAO ; Yilin WANG ; Yanfang WANG ; Haihuan GONG ; Feiyang YINJUN ; Xiaojun CUI ; Jiankai ZHANG ; Wenhua HUANG
Journal of Southern Medical University 2023;43(5):783-792
OBJECTIVE:
To prepare customized porous silicone orbital implants using embedded 3D printing and assess the effect of surface modification on the properties of the implants.
METHODS:
The transparency, fluidity and rheological properties of the supporting media were tested to determine the optimal printing parameters of silicone. The morphological changes of silicone after modification were analyzed by scanning electron microscopy, and the hydrophilicity and hydrophobicity of silicone surface were evaluated by measuring the water contact angle. The compression modulus of porous silicone was measured using compression test. Porcine aortic endothelial cells (PAOECs) were co-cultured with porous silicone scaffolds for 1, 3 and 5 days to test the biocompatibility of silicone. The local inflammatory response to subcutaneous porous silicone implants was evaluated in rats.
RESULTS:
The optimal printing parameters of silicone orbital implants were determined as the following: supporting medium 4% (mass ratio), printing pressure 1.0 bar and printing speed 6 mm/s. Scanning electron microscopy showed that the silicone surface was successfully modified with polydopamine and collagen, which significantly improved hydrophilicity of the silicone surface (P < 0.05) without causing significant changes in the compression modulus (P > 0.05). The modified porous silicone scaffold had no obvious cytotoxicity and obviously promoted adhesion and proliferation of PAOECs (P < 0.05). In rats bearing the subcutaneous implants, no obvious inflammation was observed in the local tissue.
CONCLUSION
Poprous silicone orbital implants with uniform pores can be prepared using embedded 3D printing technology, and surface modification obviously improves hydrophilicity and biocompatibility of the silicone implants for potential clinical application.
Animals
;
Rats
;
Swine
;
Silicon
;
Orbital Implants
;
Endothelial Cells
;
Porosity
;
Silicones
;
Printing, Three-Dimensional

Result Analysis
Print
Save
E-mail