1.Effect of Dictamni Cortex on Intestinal Barrier Damage by Untargeted Metabolomics and Targeted Metabolomics for Short-chain Fatty Acids
Xiaomin XU ; Donghua YU ; Yu WANG ; Pingping CHEN ; Jiameixue WO ; Suxia JIA ; Wenkai HU ; Fang LU ; Shumin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(20):40-47
		                        		
		                        			
		                        			ObjectiveThis study aims to investigate the effect of Dictamni Cortex on intestinal barrier damage in rats and its mechanism by untargeted metabolomics and targeted metabolomics for short-chain fatty acids (SCFAs). MethodsRats were randomly divided into a control group, a high-dose group of Dictamni Cortex (8.1 g·kg-1), a medium-dose group (2.7 g·kg-1), and a low-dose group (0.9 g·kg-1). Except for the control group, the other groups were administered different doses of Dictamni Cortex by gavage for eight consecutive weeks. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in the ileal tissue. Enzyme-linked immunosorbent assay (ELISA) was employed to detect the level of cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β), in the ileal tissue of rats. Quantitative real-time fluorescence polymerase chain reaction (Real-time PCR) technology was used to detect the expression level of tight junction proteins, including zonula occludens-1 (ZO-1), Occludin, and Claudin-1 mRNAs, in the ileal tissue of rats to preliminarily explore the effects of Dictamni Cortex on intestinal damage. The dose with the most significant toxic phenotype was selected to further reveal the effects of Dictamni Cortex on the metabolic profile of ileal tissue in rats by non-targeted metabolomics combined with targeted metabolomics for SCFAs. ResultsCompared with the control group, all doses of Dictamni Cortex induced varying degrees of pathological damage in the ileum, increased TNF-α (P<0.01), IL-6 (P<0.01), and IL-1β (P<0.01) levels in the ileal tissue, and decreased the expression level of ZO-1 (P<0.05, P<0.01), Occludin (P<0.01), and Claudin-1 (P<0.05) in the ileal tissue, with the high-dose group showing the most significant toxic phenotypes. The damage mechanisms of the high-dose group of Dictamni Cortex on the ileal tissue were further explored by integrating non-targeted metabolomics and targeted metabolomics for SCFAs. The non-targeted metabolomics results showed that 21 differential metabolites were identified in the control group and the high-dose group. Compared with that in the control group, after Dictamni Cortex intervention, the level of 14 metabolites was significantly increased (P<0.05, P<0.01), and the level of seven metabolites was significantly decreased (P<0.05, P<0.01) in the ileal contents. These metabolites collectively acted on 10 related metabolic pathways, including glycerophospholipids and primary bile acid biosynthesis. The quantitative data of targeted metabolomics for SCFAs showed that Dictamni Cortex intervention disrupted the level of propionic acid, butyric acid, acetic acid, caproic acid, isobutyric acid, isovaleric acid, valeric acid, and isocaproic acid in the ileal contents of rats. Compared with those in the control group, the level of isobutyric acid, isovaleric acid, and valeric acid were significantly increased, while the level of propionic acid, butyric acid, and acetic acid were significantly decreased in the ileal contents of rats after Dictamni Cortex intervention (P<0.05, P<0.01). ConclusionDictamni Cortex can induce intestinal damage by regulating glycerophospholipid metabolism, primary bile acid biosynthesis, and metabolic pathways for SCFAs. 
		                        		
		                        		
		                        		
		                        	
2.Metabolomics Reveals Immune System Domage of Dictamnine
Xiaocan GAI ; Jiaxin RUAN ; Sujie LIU ; Chen WANG ; Xiaofan WANG ; Jiahe YAN ; Yu WANG ; Fang LU ; Shumin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(20):57-65
		                        		
		                        			
		                        			ObjectiveTo explore the mechanism of the immunotoxicity induced by dictamnine (DIC) in rats and the recovery effect after drug withdrawal by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry, thereby providing a theoretical basis for elucidating the toxic mechanism of DIC. MethodsSD rats were randomized into blank (normal saline), DIC (10 mg·kg-1), and DIC withdrawal (recovery period) groups (n=8). The rats were continuously treated for 7 days, once a day, and the body weight and organ weight were recorded. The levels of interleukin-1 (IL-1), IL-6, and tumor necrosis factor-α (TNF-α) in the serum and immunoglobulin A (IgA), immunoglobulin G (IgG), and immunoglobulin M (IgM) in the spleen were determined by enzyme-linked immunosorbent assay. Hematoxylin-eosin staining was used to observe the pathological changes in the spleen. ultra performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was employed to screen the potential biomarkers of immune inflammation caused by DIC, and pathway enrichment analysis and correlation analysis were performed. The mRNA levels of IL-1β, TNF-α, lysophosphatidylcholine acyltransferase 2 (LPCAT2), and farnesoid X receptor (FXR) in the serum were determined by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). ResultsCompared with the blank group, the DIC group showed elevated levels of IL-1β, IL-6, and TNF-α in the serum (P<0.01), and the DIC withdrawal group showcased lowered levels of IL-1β, IL-6, and TNF-α in the serum (P<0.01). The levels of IgA, IgG, and IgM in the spleen of rats in the DIC group were decreased (P<0.01), while those in the DIC withdrawal group were recovered (P<0.05, P<0.01). Untargeted metabolomics of the serum and spleen screened out 14 common differential metabolites and 14 common metabolic pathways. The Spearman correlation analysis between differential metabolites and inflammatory factors identified PC (32∶0), LysoPC (20∶4/0∶0), LysoPC (P-18∶0/0∶0), taurochenodeoxycholic acid, taurocholic acid, LysoPC [20∶5(5Z,8Z,11Z,14Z,17Z)/0∶0], chenodeoxycholic acid, arachidonic acid, LysoPC (18∶0/0∶0), LysoPC (15∶0/0∶0), LysoPC (16∶0/0∶0), and LysoPC (17∶0/0∶0) as the biomarkers of immunotoxicity induced by DIC in SD rats. In the process of immunotoxicity caused by DIC, lipid metabolism disorders such as glycerophospholipid metabolism, primary bile acid metabolism, and arachidonic acid metabolism were enriched, which was consistent with the DIC-induced inflammatory factors and pathological characteristics of the spleen. Compared with the blank group, the DIC group exhibited up-regulated mRNA levels of IL-1β, TNF-α, LPCAT2, and FXR (P<0.01), and the up-regulation was decreased in the withdrawal group (P<0.01). ConclusionDIC can lead to immune and inflammatory disorders. DIC withdrawal can regulate the expression of biomarkers related to serum and spleen metabolites, regulate the inflammatory metabolic pathway, reduce the inflammation level, and alleviate the metabolic disorders, thus attenuating the potential toxicity induced by DIC. 
		                        		
		                        		
		                        		
		                        	
3.Underlying Mechanism of Wuwei Shenqintang in Amelioration of Pulmonary Fibrosis by Regulating "Lung-intestine Axis" Based on UPLC-Q-TOF-MS Metabolomics Technology
Mengdi SUN ; Fang LU ; Donghua YU ; Yu WANG ; Pingping CHEN ; Shumin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):11-20
		                        		
		                        			
		                        			ObjectiveTo explore the mechanism of action of Wuwei Shenqintang in improving pulmonary fibrosis by using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) for metabolomic analysis of lung tissue and feces. MethodsA rat model with pulmonary fibrosis was established by intratracheal injection of 5 mg·kg-1 bleomycin. The successfully modeled rats were randomly divided into a blank group, a model group, a prednisone (3.15 mg·kg-1) group, and low-dose, medium-dose, and high-dose groups of Wuwei Shenqintang (4.586, 9.172, 18.344 g·kg-1). The rats were given intragastric administration once a day for 28 consecutive days. Hematoxylin-eosin (HE) staining was used to measure the pathological changes in lung and colon tissue, and Masson staining was used to detect the degree of pulmonary fibrosis. Enzyme-linked immunosorbent assay (ELISA) was used to detect the expression of interleukin-1β (IL-1β), IL-6, IL-8, tumor necrosis factor-α (TNF-α), and secretory immunoglobulin A (SIgA) in bronchoalveolar lavage fluid and intestinal mucus. Immunohistochemistry and reverse transcription quantitative polymerase chain reaction (Real-time PCR) were used to detect the expression of type Ⅰ collagen (Col-Ⅰ), fibronectin (FN), and alpha smooth muscle actin (α-SMA) in lung tissue. UPLC-Q-TOF-MS was used to study the changes in the metabolic network of lung tissue and feces in rats with pulmonary fibrosis treated with Wuwei Shenqintang, screen potential biomarkers for the treatment of pulmonary fibrosis by Wuwei Shenqintang, and perform pathway enrichment analysis. ResultsCompared with the blank group, the model group showed extensive inflammatory cell infiltration and continuous fibrotic lesions in lung tissue, colonic mucosal damage, and connective tissue hyperplasia. The expression of IL-6, IL-8, IL-1β, TNF-α, and SIgA in bronchoalveolar lavage fluid and intestinal mucus was significantly increased (P<0.01). The expression of Col-Ⅰ, FN, and α-SMA proteins and mRNAs in lung tissue was significantly upregulated (P<0.01). Compared with the model group, the groups of Wuwei Shenqintang exhibited significantly reduced inflammatory infiltration and blue collagen deposition in lung tissue, alleviated colonic damage, decreased expression of IL-6, IL-8, IL-1β, TNF-α, and SIgA in bronchoalveolar lavage fluid and intestinal mucus (P<0.01), and reduced average absorbance values and mRNA expression of Col-Ⅰ, FN, and α-SMA in lung tissue (P<0.05, P<0.01), with the prednisone group and the medium-dose and high-dose groups of Wuwei Shenqintang showing the most significant effects. The metabolomics results for lung tissue showed that compared with the blank group, the model group had 19 significantly different compounds (P<0.05, P<0.01). Wuwei Shenqintang could normalize 17 of these compounds compared with the model group (P<0.05, P<0.01). Fecal metabolomics results showed that compared with those in the blank group, there were 42 compounds with significant differences in the model group (P<0.05, P<0.01). Compared with the model control group, Wuwei Shenqintang could normalize 41 of these compounds (P<0.05, P<0.01). The combined analysis results indicated that Wuwei Shenqintang might inhibit pulmonary fibrosis by regulating the biosynthesis of phenylalanine, tyrosine, and tryptophan as well as the retinol metabolism pathway. ConclusionWuwei Shenqintang can ameliorate pulmonary fibrosis, which may be related to the regulation of the "lung-intestine axis". 
		                        		
		                        		
		                        		
		                        	
4.Underlying Mechanism of Wuwei Shenqintang in Amelioration of Pulmonary Fibrosis by Regulating "Lung-intestine Axis" Based on UPLC-Q-TOF-MS Metabolomics Technology
Mengdi SUN ; Fang LU ; Donghua YU ; Yu WANG ; Pingping CHEN ; Shumin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):11-20
		                        		
		                        			
		                        			ObjectiveTo explore the mechanism of action of Wuwei Shenqintang in improving pulmonary fibrosis by using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) for metabolomic analysis of lung tissue and feces. MethodsA rat model with pulmonary fibrosis was established by intratracheal injection of 5 mg·kg-1 bleomycin. The successfully modeled rats were randomly divided into a blank group, a model group, a prednisone (3.15 mg·kg-1) group, and low-dose, medium-dose, and high-dose groups of Wuwei Shenqintang (4.586, 9.172, 18.344 g·kg-1). The rats were given intragastric administration once a day for 28 consecutive days. Hematoxylin-eosin (HE) staining was used to measure the pathological changes in lung and colon tissue, and Masson staining was used to detect the degree of pulmonary fibrosis. Enzyme-linked immunosorbent assay (ELISA) was used to detect the expression of interleukin-1β (IL-1β), IL-6, IL-8, tumor necrosis factor-α (TNF-α), and secretory immunoglobulin A (SIgA) in bronchoalveolar lavage fluid and intestinal mucus. Immunohistochemistry and reverse transcription quantitative polymerase chain reaction (Real-time PCR) were used to detect the expression of type Ⅰ collagen (Col-Ⅰ), fibronectin (FN), and alpha smooth muscle actin (α-SMA) in lung tissue. UPLC-Q-TOF-MS was used to study the changes in the metabolic network of lung tissue and feces in rats with pulmonary fibrosis treated with Wuwei Shenqintang, screen potential biomarkers for the treatment of pulmonary fibrosis by Wuwei Shenqintang, and perform pathway enrichment analysis. ResultsCompared with the blank group, the model group showed extensive inflammatory cell infiltration and continuous fibrotic lesions in lung tissue, colonic mucosal damage, and connective tissue hyperplasia. The expression of IL-6, IL-8, IL-1β, TNF-α, and SIgA in bronchoalveolar lavage fluid and intestinal mucus was significantly increased (P<0.01). The expression of Col-Ⅰ, FN, and α-SMA proteins and mRNAs in lung tissue was significantly upregulated (P<0.01). Compared with the model group, the groups of Wuwei Shenqintang exhibited significantly reduced inflammatory infiltration and blue collagen deposition in lung tissue, alleviated colonic damage, decreased expression of IL-6, IL-8, IL-1β, TNF-α, and SIgA in bronchoalveolar lavage fluid and intestinal mucus (P<0.01), and reduced average absorbance values and mRNA expression of Col-Ⅰ, FN, and α-SMA in lung tissue (P<0.05, P<0.01), with the prednisone group and the medium-dose and high-dose groups of Wuwei Shenqintang showing the most significant effects. The metabolomics results for lung tissue showed that compared with the blank group, the model group had 19 significantly different compounds (P<0.05, P<0.01). Wuwei Shenqintang could normalize 17 of these compounds compared with the model group (P<0.05, P<0.01). Fecal metabolomics results showed that compared with those in the blank group, there were 42 compounds with significant differences in the model group (P<0.05, P<0.01). Compared with the model control group, Wuwei Shenqintang could normalize 41 of these compounds (P<0.05, P<0.01). The combined analysis results indicated that Wuwei Shenqintang might inhibit pulmonary fibrosis by regulating the biosynthesis of phenylalanine, tyrosine, and tryptophan as well as the retinol metabolism pathway. ConclusionWuwei Shenqintang can ameliorate pulmonary fibrosis, which may be related to the regulation of the "lung-intestine axis". 
		                        		
		                        		
		                        		
		                        	
5.DIA Proteomics Reveals Mechanism of Acanthopanacis Senticosi Radix et Rhizoma seu Caulis Extract in Treating α-Syn Transgenic Parkinson's Disease in Mice
Qi ZHENG ; Yi LU ; Donghua YU ; Liangyou ZHAO ; Chunsheng LIN ; Fang LU ; Shumin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):40-50
		                        		
		                        			
		                        			ObjectiveTo investigate the mechanism of Acanthopanacis Senticosi Radix et Rhizoma seu Caulis extract (ASH) in treating Parkinson's disease (PD) in mice by Data-Independent Acquisition (DIA) proteomics. MethodsThe α-Synuclein (α-Syn) transgenic PD mice were selected as suitable models for PD, and they were randomly assigned into PD, ASH (61.25 mg·kg-1), and Madopar (97.5 mg·kg-1) groups. Male C57BL/6 mice of the same age were selected as the control group, with eight mice in each group. Mice were administrated with corresponding drugs by gavage once a day for 20 days. The pole climbing time and the number of autonomic activities were recorded to evaluate the exercise ability of mice. Hematoxylin-eosin staining was employed to observe neuronal changes in the substantia nigra of PD mice. Immunohistochemistry (IHC) was employed to measure the tyrosine hydroxylase (TH) activity in the substantia nigra and assess the areal density of α-Syn in the striatum. DIA proteomics was used to compare protein expression in the substantia nigra between groups. IHC was utilized to validate key differentially expressed proteins, including Lactotransferrin, Notch2, Ndrg2, and TMEM 166. The cell counting kit-8 (CCK-8) method was used to investigate the effect of ASH on the viability of PD cells with overexpression of α-Syn. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were employed to determine the protein and mRNA levels of Lactotransferrin, Notch2, Ndrg2, and TMEM 166 in PD cells. ResultsCompared with the control group, the model group showed prolonged pole climbing time, diminished coordination ability, reduced autonomic activities (P<0.01), and reduced swelling neurons. Compared with the model group, ASH and Madopar reduced the climbing time, increased autonomic activities (P<0.01), and ameliorated neuronal damage. Compared with the control group, the model group showed a decrease in TH activity in the substantia nigra and an increase in α-Syn accumulation in the striatum (P<0.01). Compared with the model group, the ASH group showed an increase in TH activity and a reduction in α-Syn accumulation (P<0.05). DIA proteomics revealed a total of 464 differentially expressed proteins in the model group compared with the control group, with 323 proteins being up-regulated and 141 down-regulated. A total of 262 differentially expressed proteins were screened in the ASH group compared with the model group, including 85 proteins being up-regulated and 177 down-regulated. Kyoto encylopedia of genes and genomes (KEGG) pathway analysis indicated that ASH primarily regulated the Notch signaling pathway. The model group showed up-regulation in protein levels of Notch2, Ndrg2, and TMEM 166 and down-regulation in the protein level of Lactotransferrin compared with the control group (P<0.01). Compared with the model group, ASH down-regulated the protein levels of Notch2, Ndrg2, and TMEM 166 (P<0.05) while up-regulating the protein level of Lactotransferrin (P<0.01). The IHC results corroborated the proteomics findings. The cell experiment results showed that compared with the control group, the modeling up-regulated the mRNA and protein levels of Notch2, Ndrg2, and TMEM 166 (P<0.01), while down-regulating the mRNA and protein levels of Lactotransferrin (P<0.01). Compared with the model group, ASH reduced the mRNA and protein levels of Notch2, Ndrg2, and TMEM 166 (P<0.01), while increasing the mRNA and protein levels of Lactotransferrin (P<0.05, P<0.01). ConclusionASH may Synergistically inhibit the Notch signaling pathway and mitigate neuronal damage by down-regulating the expression of Notch2 and Ndrg2. Additionally, by up-regulating the expression of Lactotransferrin and down-regulating the expression of TMEM166, ASH can address brain iron accumulation, intervene in ferroptosis, inhibit mitophagy, and mitigate reactive oxygen species damage, thereby protecting nerve cells and contributing to the treatment of PD. 
		                        		
		                        		
		                        		
		                        	
6.Total Saponins of Dioscoreae Nipponicae Rhizoma Alleviates Gouty Arthritis by Down-regulating COX-2-mediated M1 Macrophage Reprogramming
Lin HUANG ; Shumin LIU ; Huijuan SUN ; Geyu DENG ; Donghua YU ; Yu WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):200-207
		                        		
		                        			
		                        			ObjectiveTo explore the mechanism of total saponins of Dioscoreae Nipponicae Rhizoma (TSDN) in treating gouty arthritis (GA) by regulating cyclooxygenase-2 (COX-2)-mediated M1 macrophage reprogramming by in vivo and in vitro experiments. MethodsIn vivo experiment: 24 male SD rats were randomly allocated into blank, model (GA), TSDN, and celecoxib groups, with 6 rats in each group. After 7 days of administration, pathological changes in the ankle synovial tissue were observed via hematoxylin-eosin (HE) staining. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to quantify the mRNA levels of NOD-like receptor protein 3 (NLRP3) inflammasome, apoptosis-associated speck-like protein (ASC), Caspase-1, COX-2, interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in the synovial tissue. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the serum levels of inducible nitric oxide synthase (iNOS), IL-1β, CD86, CD80, CD206, and arginase-1 (Arg-1). In vitro experiment: The GA model was established by lipopolysaccharide (LPS) + MSU induction, and the inhibitor concentration was screened by the methyl thiazolyl tetrazolium (MTT) assay. RAW264.7 cells were allocated into blank, model, TSDN, dexamethasone, COX-2 inhibitor (celecoxib), and TSDN + COX-2 inhibitor groups. The levels of iNOS, IL-1β, CD86, CD80, CD206, and Arg-1 in the cell supernatant of each group were determined by enzyme-linked immunosorbent assay (ELISA). The mRNA and protein levels of NLRP3 inflammasome, COX-2, IL-1β, and TNF-α in each group were determined by Real-time PCR and Western blot, respectively. ResultsIn vivo experiment: compared with the model group, TSDN reduced the mRNA levels of NLRP3 inflammasome, COX-2, IL-1β, and TNF-α in the synovial tissue (P<0.05, P<0.01). ELISA results showed that TSDN lowered the serum levels of iNOS, IL-1β, CD86, and CD80 (P<0.01) while increasing the serum levels of CD206 and Arg-1 (P<0.01). In vitro experiment: compared with the model group, TSDN and inhibitor down-regulated the mRNA levels of NLRP3 inflammasome, COX-2, IL-1β, and TNF-α and the protein levels of NLRP3 inflammasome, COX-2, cleaved IL-1β, and TNF-α (P<0.01). Compared with TSDN alone, TSDN + COX-2 inhibitor further reduced the mRNA and protein levels of the markers above (P<0.01). Compared with the model group, TSDN and COX-2 inhibitor decreased the levels of IL-1β, iNOS, CD80, and CD86 (P<0.01) and increased the levels of CD206 and Arg-1 (P<0.01) in cells. Compared with TSDN alone, TSDN + COX-2 inhibitor reduced IL-1β, iNOS, CD80, and CD86 levels (P<0.05, P<0.01) and elevated CD206 and Arg-1 levels (P<0.01) in cells. ConclusionTSDN can alleviate GA by downregulating COX-2-mediated M1 macrophage reprogramming and suppressing the inflammatory factors. 
		                        		
		                        		
		                        		
		                        	
7.Total Saponins of Dioscoreae Nipponicae Rhizoma Alleviates Gouty Arthritis by Down-regulating COX-2-mediated M1 Macrophage Reprogramming
Lin HUANG ; Shumin LIU ; Huijuan SUN ; Geyu DENG ; Donghua YU ; Yu WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):200-207
		                        		
		                        			
		                        			ObjectiveTo explore the mechanism of total saponins of Dioscoreae Nipponicae Rhizoma (TSDN) in treating gouty arthritis (GA) by regulating cyclooxygenase-2 (COX-2)-mediated M1 macrophage reprogramming by in vivo and in vitro experiments. MethodsIn vivo experiment: 24 male SD rats were randomly allocated into blank, model (GA), TSDN, and celecoxib groups, with 6 rats in each group. After 7 days of administration, pathological changes in the ankle synovial tissue were observed via hematoxylin-eosin (HE) staining. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to quantify the mRNA levels of NOD-like receptor protein 3 (NLRP3) inflammasome, apoptosis-associated speck-like protein (ASC), Caspase-1, COX-2, interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in the synovial tissue. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the serum levels of inducible nitric oxide synthase (iNOS), IL-1β, CD86, CD80, CD206, and arginase-1 (Arg-1). In vitro experiment: The GA model was established by lipopolysaccharide (LPS) + MSU induction, and the inhibitor concentration was screened by the methyl thiazolyl tetrazolium (MTT) assay. RAW264.7 cells were allocated into blank, model, TSDN, dexamethasone, COX-2 inhibitor (celecoxib), and TSDN + COX-2 inhibitor groups. The levels of iNOS, IL-1β, CD86, CD80, CD206, and Arg-1 in the cell supernatant of each group were determined by enzyme-linked immunosorbent assay (ELISA). The mRNA and protein levels of NLRP3 inflammasome, COX-2, IL-1β, and TNF-α in each group were determined by Real-time PCR and Western blot, respectively. ResultsIn vivo experiment: compared with the model group, TSDN reduced the mRNA levels of NLRP3 inflammasome, COX-2, IL-1β, and TNF-α in the synovial tissue (P<0.05, P<0.01). ELISA results showed that TSDN lowered the serum levels of iNOS, IL-1β, CD86, and CD80 (P<0.01) while increasing the serum levels of CD206 and Arg-1 (P<0.01). In vitro experiment: compared with the model group, TSDN and inhibitor down-regulated the mRNA levels of NLRP3 inflammasome, COX-2, IL-1β, and TNF-α and the protein levels of NLRP3 inflammasome, COX-2, cleaved IL-1β, and TNF-α (P<0.01). Compared with TSDN alone, TSDN + COX-2 inhibitor further reduced the mRNA and protein levels of the markers above (P<0.01). Compared with the model group, TSDN and COX-2 inhibitor decreased the levels of IL-1β, iNOS, CD80, and CD86 (P<0.01) and increased the levels of CD206 and Arg-1 (P<0.01) in cells. Compared with TSDN alone, TSDN + COX-2 inhibitor reduced IL-1β, iNOS, CD80, and CD86 levels (P<0.05, P<0.01) and elevated CD206 and Arg-1 levels (P<0.01) in cells. ConclusionTSDN can alleviate GA by downregulating COX-2-mediated M1 macrophage reprogramming and suppressing the inflammatory factors. 
		                        		
		                        		
		                        		
		                        	
8.Mechanism of Huangqi Chifengtang in Treating Atherosclerosis Based on 16S rRNA Sequencing and Metabolomics
Yuqin LIANG ; Jiaqi FU ; Yunhe SHI ; Fang LU ; Donghua YU ; Shumin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):94-103
		                        		
		                        			
		                        			ObjectiveTo investigate the mechanism of action of Huangqi Chifengtang (HQCFT) on rats with atherosclerosis (AS) by regulating the gut microbiota and their metabolites. MethodsA rat model of AS was induced through high-fat diet feeding and vitamin D3 injection, and the modeling lasted for 12 weeks. Fifty eight-week-old male SD rats were randomly divided into five groups: A blank group, a model group, a group receiving a low dose of HQCFT at 1.53 g·kg-1 (HQCFT-L group), a group receiving a high dose of HQCFT at 3.06 g·kg-1 (HQCFT-H group), and a group receiving atorvastatin calcium tablets at 1.8 mg·kg-1 (Ato group), with 10 rats in each group. Oral gavage administration started on the day after model establishment, once daily for four weeks. The efficacy of HQCFT was verified using aortic hematoxylin-eosin (HE) staining and determination of lipid levels and hemorrheology. The real-time polymerase chain reaction (Real-time PCR) was used for detecting inflammatory factor levels in the aorta, high-throughput sequencing for analyzing the gut microbiota composition in intestinal contents, targeted metabolomics for detecting short-chain fatty acid (SCFA) levels, and non-targeted metabolomics for identifying metabolomic profiles of intestinal contents. ResultsCompared with that in the blank group, the aortic tissue of rats in the model group showed significant AS lesions, including endothelial damage, inflammatory infiltration, and formation of fibrous plaques and calcified foci. Moreover, serum triacylglycerol (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels were significantly elevated (P<0.05), while high-density lipoprotein cholesterol (HDL-C) levels were significantly reduced (P<0.05). Significant increases were observed in whole blood viscosity, plasma viscosity, and the mRNA expression levels of NOD-like receptor pyrin domain containing 3 (NLRP3), Caspase-1, interleukin (IL)-β, IL-6, and tumor necrosis factor-α (TNF-α) in aortic tissue (P<0.05). Additionally, gut microbiota composition, SCFA levels, and metabolomic profiles were significantly altered. Compared with those in the model group, serum TC, TG, and LDL-C levels, as well as the whole blood viscosity and plasma viscosity, were significantly reduced in all groups treated with HQCFT (P<0.05). Significant decreases were observed in NLRP3 mRNA expression levels in all groups treated with HQCFT, Caspase-1, IL-β, and IL-6 mRNA expression levels in the HQCFT-H group, and TNF-α mRNA expression levels in the HQCFT-L group (P<0.05). HQCFT reversed the increase in the F/B ratio and dialled back the decrease in the relative abundance of Blautia and the increase in that of Desulfovibrio. HQCFT promoted the production of acetic acid, valeric acid, and propionic acid. Non-targeted metabolomics identified 39 differential metabolites, which were mainly enriched in metabolic pathways such as arachidonic acid metabolism and primary bile acid biosynthesis. ConclusionThe mechanism by which HQCFT ameliorates AS injury may be related to the improvement of dyslipidemia and body inflammatory responses by altering gut microbiota composition, promoting SCFA production, and regulating the levels of metabolites in intestinal contents. 
		                        		
		                        		
		                        		
		                        	
9.Mechanism of Huangqi Chifengtang in Treating Atherosclerosis Based on 16S rRNA Sequencing and Metabolomics
Yuqin LIANG ; Jiaqi FU ; Yunhe SHI ; Fang LU ; Donghua YU ; Shumin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):94-103
		                        		
		                        			
		                        			ObjectiveTo investigate the mechanism of action of Huangqi Chifengtang (HQCFT) on rats with atherosclerosis (AS) by regulating the gut microbiota and their metabolites. MethodsA rat model of AS was induced through high-fat diet feeding and vitamin D3 injection, and the modeling lasted for 12 weeks. Fifty eight-week-old male SD rats were randomly divided into five groups: A blank group, a model group, a group receiving a low dose of HQCFT at 1.53 g·kg-1 (HQCFT-L group), a group receiving a high dose of HQCFT at 3.06 g·kg-1 (HQCFT-H group), and a group receiving atorvastatin calcium tablets at 1.8 mg·kg-1 (Ato group), with 10 rats in each group. Oral gavage administration started on the day after model establishment, once daily for four weeks. The efficacy of HQCFT was verified using aortic hematoxylin-eosin (HE) staining and determination of lipid levels and hemorrheology. The real-time polymerase chain reaction (Real-time PCR) was used for detecting inflammatory factor levels in the aorta, high-throughput sequencing for analyzing the gut microbiota composition in intestinal contents, targeted metabolomics for detecting short-chain fatty acid (SCFA) levels, and non-targeted metabolomics for identifying metabolomic profiles of intestinal contents. ResultsCompared with that in the blank group, the aortic tissue of rats in the model group showed significant AS lesions, including endothelial damage, inflammatory infiltration, and formation of fibrous plaques and calcified foci. Moreover, serum triacylglycerol (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels were significantly elevated (P<0.05), while high-density lipoprotein cholesterol (HDL-C) levels were significantly reduced (P<0.05). Significant increases were observed in whole blood viscosity, plasma viscosity, and the mRNA expression levels of NOD-like receptor pyrin domain containing 3 (NLRP3), Caspase-1, interleukin (IL)-β, IL-6, and tumor necrosis factor-α (TNF-α) in aortic tissue (P<0.05). Additionally, gut microbiota composition, SCFA levels, and metabolomic profiles were significantly altered. Compared with those in the model group, serum TC, TG, and LDL-C levels, as well as the whole blood viscosity and plasma viscosity, were significantly reduced in all groups treated with HQCFT (P<0.05). Significant decreases were observed in NLRP3 mRNA expression levels in all groups treated with HQCFT, Caspase-1, IL-β, and IL-6 mRNA expression levels in the HQCFT-H group, and TNF-α mRNA expression levels in the HQCFT-L group (P<0.05). HQCFT reversed the increase in the F/B ratio and dialled back the decrease in the relative abundance of Blautia and the increase in that of Desulfovibrio. HQCFT promoted the production of acetic acid, valeric acid, and propionic acid. Non-targeted metabolomics identified 39 differential metabolites, which were mainly enriched in metabolic pathways such as arachidonic acid metabolism and primary bile acid biosynthesis. ConclusionThe mechanism by which HQCFT ameliorates AS injury may be related to the improvement of dyslipidemia and body inflammatory responses by altering gut microbiota composition, promoting SCFA production, and regulating the levels of metabolites in intestinal contents. 
		                        		
		                        		
		                        		
		                        	
10.Effect of Cannabidiol on Pulmonary Fibrosis Analyzed by UPLC-Q-TOF-MS
Mengdi SUN ; Feiyu ZHANG ; Huicong YANG ; Yu WANG ; Pingping CHEN ; Fang LU ; Shumin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(12):185-193
		                        		
		                        			
		                        			ObjectiveTo investigate the mechanism of anti-pulmonary fibrosis of cannabidiol by ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS). MethodSD rats were randomly divided into blank group, model group, prednisone group(3.15 mg·kg-1) and cannabidiol low, medium and high dose groups(12, 36, 108 mg·kg-1), with 8 rats in each group. The rat model of pulmonary fibrosis was established by intratracheal injection of bleomycin(5 mg·kg-1), which was administered continuously for 28 days after successful modeling. The pathological changes of rat lung tissue were observed, and enzyme-linked immunosorbent assay(ELISA) was used to detect the expression levels of matrix metalloproteinase-7(MMP-7), type Ⅱ alveolar cell surface antigen(KL-6), pulmonary surfactant-associated protein A(SP-A) and SP-D in serum. The expression levels of type Ⅰ collagen(Col-Ⅰ) and fibronectin(FN) in lung tissues were detected by immunohistochemistry, and the expression of mucin 5 subtype AC(MUC5AC) was detected by immunofluorescence. UPLC-Q-TOF-MS was used to search for potential biomarkers and related metabolic pathways of cannabidiol in treating pulmonary fibrosis. ResultCompared with the blank group, there were a large number of inflammatory cell infiltration and continuous fibrosis lesions in the lung tissue of rats in the model group. Compared with the model group, the inflammatory infiltration and blue collagen deposition in the lung tissue of rats in the prednisone and cannabidiol groups were reduced. Compared with the blank group, the expressions of MMP-7, KL-6, SP-A and SP-D in serum of the model group were significantly increased(P<0.01), while the expressions of MMP-7, KL-6, SP-A and SP-D in the prednisone and cannabidiol high dose groups were significantly decreased by comparing with the model group(P<0.05, P<0.01). Compared with the blank group, the expression levels of Col-Ⅰ and FN in the lung tissues of the model group were significantly increased, and the fluorescence intensity of MUC5AC was significantly increased(P<0.01). Compared with the model group, the expression levels of Col-Ⅰ and FN in the lung tissues of the prednisone and cannabidiol high dose groups were significantly decreased(P<0.05, P<0.01), and the expression of MUC5AC was significantly decreased(P<0.01). Compared with the blank group, a total of 18 differential compounds were screened out in the model group, which could be used as potential biomarkers, and cannabidiol could call back 16 of them, mainly involving 4 metabolic pathways(linoleic acid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, arachidonic acid metabolism, and niacin and niacinamide metabolism). Compared with the blank group, the relative contents of potential biomarkers arachidonic acid and linoleic acid were significantly increased in the model group(P<0.05, P<0.01), while the relative contents of 5,6-EET, L-tyrosine and niacinamide were significantly decreased(P<0.01). Compared with the model group, cannabidiol could significantly reduce the relative contents of arachidonic acid and linoleic acid, and significantly increase the relative contents of 5,6-EET, L-tyrosine and niacinamide(P<0.01). ConclusionCannabidiol has an intervention and remission effect on pulmonary fibrosis, and its mechanism may be related to linoleic acid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, arachidonic acid metabolism, niacin and niacinamide metabolism. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail