1.Study on the mechanism of Danggui buxue decoction regulating neutrophil extracellular traps to improve osteo-porosis in rats with premature ovarian failure
Chuiqiao HUANG ; Shuai CHEN ; Qian LI ; Liancheng GUAN ; Jie GAO ; Zhong QIN ; Yunzhi CHEN
China Pharmacy 2025;36(6):655-660
OBJECTIVE To investigate the mechanism through which Danggui buxue decoction regulates neutrophil extracellular traps (NETs) to improve osteoporosis (OP) in rats with premature ovarian failure (POF). METHODS Female SD rats were randomly divided into normal group, model group, calcitriol group, and Danggui buxue decoction low-dose, medium-dose and high-dose groups, with 9 rats in each group. Except for the normal group, all other groups were administered cisplatin via intraperitoneal injection on days 1 and 8 to establish a POF complicated with OP model. Each group received the corresponding drugs or normal saline intragastrically starting from day 5, once a day, for 4 consecutive weeks. After the last medication, serum levels of estradiol (E2), NETs, 25-hydroxyvitamin D3 [25(OH)D3], receptor activator of nuclear factor-κB ligand (RANKL), and osteocalcin (BGP) were measured. The histopathological changes in bone tissue were observed. The expressions of vitamin D receptor (VDR), myeloperoxidase (MPO), neutrophil elastase (NE) and citrullinated histone H3 (CitH3) in bone tissue were detected; the protein expressions of 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1) and 1α,25-dihydroxyvitamin D3-24-hydroxylase (CYP24A1) were also determined. RESULTS Compared with the normal group, the bone tissue of rats in the model group showed a significant reduction in the number of trabeculae, which was thinner broken and poorly connected, with significant destruction of the reticular structure, and an enlarged marrow cavity. Serum levels of NETs and RANKL, the protein expressions of MPO, NE, CitH3 and CYP24A1 in bone tissue were significantly increased or upregulated, while serum levels of E2, 25(OH)D3 and BGP as well as protein expressions of VDR and CYP27B1 were significantly decreased or downregulated (P<0.05). Compared with the model group, the histopathological changes in the bone tissue of rats in each administration group showed some degree of recovery, with significant improvements observed in most quantitative indicators (P<0.05). CONCLUSIONS Danggui buxue decoction can restore the E2 level in POF complicated with OP rats, and improve OP. The mechanism may be related to its ability to upregulate VD level and inhibit the formation of NETs.
2.Effect and mechanism of Xintong Granules in ameliorating myocardial ischemia-reperfusion injury in rats by regulating gut microbiota.
Yun-Jia WANG ; Ji-Dong ZHOU ; Qiu-Yu SU ; Jing-Chun YAO ; Rui-Qiang SU ; Guo-Fei QIN ; Gui-Min ZHANG ; Hong-Bao LIANG ; Shuai FENG ; Jia-Cheng ZHANG
China Journal of Chinese Materia Medica 2025;50(14):4003-4014
This study investigates the mechanism by which Xintong Granules improve myocardial ischemia-reperfusion injury(MIRI) through the regulation of gut microbiota and their metabolites, specifically short-chain fatty acids(SCFAs). Rats were randomly divided based on body weight into the sham operation group, model group, low-dose Xintong Granules group(1.43 g·kg~(-1)·d~(-1)), medium-dose Xintong Granules group(2.86 g·kg~(-1)·d~(-1)), high-dose Xintong Granules group(5.72 g·kg~(-1)·d~(-1)), and metoprolol group(10 mg·kg~(-1)·d~(-1)). After 14 days of pre-administration, the MIRI rat model was established by ligating the left anterior descending coronary artery. The myocardial infarction area was assessed using the 2,3,5-triphenyltetrazolium chloride(TTC) staining method. Apoptosis in tissue cells was detected by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL) assay. Pathological changes in myocardial cells and colonic tissue were observed using hematoxylin-eosin(HE) staining. The levels of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6), creatine kinase MB isoenzyme(CK-MB), and cardiac troponin T(cTnT) in rat serum were quantitatively measured using enzyme-linked immunosorbent assay(ELISA) kits. The activities of lactate dehydrogenase(LDH), creatine kinase(CK), and superoxide dismutase(SOD) in myocardial tissue, as well as the level of malondialdehyde(MDA), were determined using colorimetric assays. Gut microbiota composition was analyzed by 16S rDNA sequencing, and fecal SCFAs were quantified using gas chromatography-mass spectrometry(GC-MS). The results show that Xintong Granules significantly reduced the myocardial infarction area, suppressed cardiomyocyte apoptosis, and decreased serum levels of pro-inflammatory cytokines(TNF-α, IL-1β, and IL-6), myocardial injury markers(CK-MB, cTnT, LDH, and CK), and oxidative stress marker MDA. Additionally, Xintong Granules significantly improved intestinal inflammation in MIRI rats, regulated gut microbiota composition and diversity, and increased the levels of SCFAs(acetate, propionate, isobutyrate, etc.). In summary, Xintong Granules effectively alleviate MIRI symptoms. This study preliminarily confirms that Xintong Granules exert their inhibitory effects on MIRI by regulating gut microbiota imbalance and increasing SCFA levels.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Rats
;
Male
;
Myocardial Reperfusion Injury/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Apoptosis/drug effects*
;
Humans
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/genetics*
;
Malondialdehyde/metabolism*
3.Structure-activity Omics on Anti-inflammatory and Analgesic Effect of Glycyrrhizae Radix et Rhizoma in Qizhiweitong Granules
Ying MENG ; Ying ZHENG ; Xinpeng QIN ; Sicong LIU ; Tianjiao LI ; Yongrui BAO ; Shuai WANG ; Liang WANG ; Honghong JIANG ; Xiansheng MENG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(21):161-168
ObjectiveTo reveal the pharmacodynamic substances for the anti-inflammatory and analgesic effects of Glycyrrhizae Radix et Rhizoma by structure-activity omics. MethodOn the basis of the previous study about the screening of active components in vitro, this study explored the effects of flavonoids in Glycyrrhizae Radix et Rhizoma in vivo. The flavonoids in Glycyrrhizae Radix et Rhizoma and their direct targets for the anti-inflammatory and analgesic effects were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), PharmMapper, Swiss TargetPrediction, DisGeNET, and Online Mendelian Inheritance in Man (OMIM). STRING and Cytoscape 3.7.2 were employed to establish the protein-protein interaction (PPI) network of key targets. Molecular docking was performed to simulate the binding of five targets with high degrees to flavonoids in Glycyrrhizae Radix et Rhizoma, on the basis of which the key core targets were selected. The targets were used as a bridge to correlate the structures and effects of one or more classes of chemical components in Glycyrrhizae Radix et Rhizoma. According to the binding affinity between flavonoids with different structures in Glycyrrhizae Radix et Rhizoma and targets, the relationships between compound structures and core targets were discussed. ResultThe flavonoids in Glycyrrhizae Radix et Rhizoma reduced the content of prostaglandin E2 (PGE2) in the rat model of pain induced by formalin, demonstrating definite anti-inflammatory and analgesic effects. Sixty active compounds (flavonoids) with anti-inflammatory and analgesic effects of Glycyrrhizae Radix et Rhizoma were obtained. With the total score as the standard, prostaglandin-endoperoxide synthase 2 (PTGS2) and mitogen-activated protein kinase 3 (MAPK3) were selected as the key core targets of Glycyrrhizae Radix et Rhizoma for the anti-inflammatory and analgesic effects. Except that flavones showed selectivity of binding to MAPK3, the other flavonoids of Glycyrrhizae Radix et Rhizoma showed strong binding to PTGS2 and MAPK3, and the structures containing glycoside fragments showed stronger binding affinity to the targets. The introduction of chain olefins in the ring of chalcones facilitated the binding to the targets. The isopentenyl fragment in flavonols may cause the difference in binding affinity. The parallel combination of a ring into pyran ring in flavanes was not conducive to the binding to the target. The electric charge, liposolubility, and steric hindrance of the substituent group on the B ring of isoflavones directly affected the binding affinity. ConclusionThis study adopts structure-activity omics to analyze the material basis for the anti-inflammatory and analgesic effects of Glycyrrhizae Radix et Rhizoma. Structure-activity omics provides new ideas and methods for predicting the pharmacodynamic substances of traditional Chinese medicine.
4.Changes of corneal densitometry in patients with keratoconus after corneal collagen cross-linking
Shuai LI ; Yang GAO ; Limei MA ; Rui LI ; Yixuan QIN ; Caihong SUN ; Yu HAN ; Jinjin ZHANG ; Wenjuan ZHUANG
International Eye Science 2024;24(12):1954-1958
AIM: To observe the changes of corneal densitometry(CD)in patients with keratoconus after corneal cross-linking(CXL).METHODS: Retrospective study. A total of 32 patients(43 eyes)with keratoconus in Ningxia Eye Hospital from April 2020 to April 2022 were selected. Pentacam analysis system divided the cornea into three layers: anterior 120 μm, middle layer and posterior 60 μm, and divides it into five regions with diameters of 0-2, 2-6, 6-10, 10-12 mm and full diameter according to the diameter, and measures the CD in different ranges. The changes of CD were compared before operation and at 1, 3 and 6 mo after operation.RESULTS: There were differences in uncorrected visual acuity, best corrected visual acuity and intraocular pressure before and 6 mo after operation(all P<0.05), and there was no difference in corneal endothelial cells(P=0.477). CD reached its peak at 1 mo after operation, and decreased at 3 mo and 6 mo after operation, but it was still higher than that before operation. There is a significant positive correlation between CD and Kmax in the anterior layer and the whole layer(r=0.164, P=0.016; r=0.152, P=0.023).CONCLUSION: The values of CD peaked at 1 mo after CXL, then it gradually decreased, tending to become stable at 6 mo postoperatively.
5.Overview of Research on Intervention Methods in the Mechanism of Acupuncture Treatment of Cocaine Addiction
Luqiang SUN ; Fangli LUO ; Di QIN ; Shuai CHEN ; Haiyan WANG ; Ying LI
World Science and Technology-Modernization of Traditional Chinese Medicine 2024;26(1):275-280
Cocaine,as a widely abused and highly addictive drug,has a serious impact on the physical and mental health of individuals and carries a certain degree of social harm and economic burden.Acupuncture can assist in the treatment of cocaine addiction with fewer side effects.However,a well-defined mode of stimulation is an important factor in elucidating the various mechanisms by which acupuncture treats disease.This paper summarizes the problems in the mechanism of cocaine addiction,such as different parameters of stimulation,unstable depth of acupuncture,different acupoint selection,and different lengths of acupuncture time.To standardize the intervention measures of acupuncture experiments,it is suggested that in future research,the stimulation method should explore the best parameters,the selection of acupoints should be based on clinical practice,the timing of acupuncture should be objective,and the treatment course should consider the effects of acupuncture.
6.Protective Effect of Banxia Xiexin Decoction on AOM/DSS-induced Colitis Associated Cancer Mice
Yinzi YUE ; Yunhui GU ; Yuanyuan QIN ; Lianlin SU ; Xiaodong HUA ; Yahui WANG ; Xiaoman LI ; Xiaopeng WANG ; Shuai YAN
Chinese Journal of Modern Applied Pharmacy 2024;41(7):917-926
OBJECTIVE
To investigate the effect of Banxia Xiexin decoction(BXD) on colitis associated cancer(CAC) mice and its related mechanism.
METHODS
Seventy-five C57BL/6 mice were randomly divided into normal group, model group, Banxia Xiexin decoction low-dose group, high-dose group and mesalazine group. Except for the normal group, the mice in the other groups were intraperitoneally injected with azoxymethane combined with oral dextran sodium sulfate to establish the CAC model. BXD and mesalazine were given respectively for intervention. The general conditions of all mice were observed and recorded, and the changes of body weight, disease activity index, colon length and tumor number were monitored. HE staining was utilized to observe the pathological changes of colon tissue. The expression levels of PCNA, NF-κB P65 and IκB-α were detected by immunohistochemistry. The mRNA levels of IL-17A, N-cadherin, E-cadherin and Bcl-2 were detected by qRT-PCR. Macrophage infiltration was measured using immunostaining analysis. Western blotting was applied to analyze the expression of NF-κB, E-cadherin and N-cadherin proteins in colon tissues of each group.
RESULTS
There was no significant tumor occurrence in the normal group, while the body weight of the model group mice was significantly reduced and the number of colon tumors increased. The colon length, number of tumors, and degree of inflammatory cell infiltration in the BXD group were significantly improved compared to the model group. Immunohistochemical results showed that the expression of PCNA, NF-κB P65 and IκB-α protein in colon tissue of model group was remarkably increased (P<0.01). Immunofluorescence results showed that the number of F4/80, CD80 and CD206 positive macrophages in the colon tissue of the model group increased (P<0.05 or P<0.01). The results of RT-PCR demonstrated that the levels of IL-17A, N-cadherin and Bcl-2 mRNA in the colon tissue of the model group were significantly increased (P<0.01), while the level of E-cadherin mRNA was fundamentally decreased (P<0.01). Western blotting results displayed that the expression levels of NF-κB and N-cadherin protein in colon tissue of model group were up-regulated (P<0.01), while E-cadherin was significantly down-regulated (P<0.01). Compared with the model group, the changes of the above indexes in the BXD and mesalazine groups were ameliorated, with statistical differences (P<0.05 or P<0.01), and the changes in the BXD high-dose group were more significant.
CONCLUSION
BXD exhibits strong anti-inflammatory and anti-tumor benefits in CAC mice, inhibiting macrophage activation in colon tissue and promoting M2 polarization, while reducing the expression of tumor associated proteins PCNA and Bcl-2, and block the progression of EMT related proteins (E-cadherin and N-cadherin). The mechanism may connect to suppressing NF-κB P65 and IκB-α activation to regulate the NF-κB signaling pathway.
7.Protective Effect of Banxia Xiexin Decoction on AOM/DSS-induced Colitis Associated Cancer Mice
Yinzi YUE ; Yunhui GU ; Yuanyuan QIN ; Lianlin SU ; Xiaodong HUA ; Yahui WANG ; Xiaoman LI ; Xiaopeng WANG ; Shuai YAN
Chinese Journal of Modern Applied Pharmacy 2024;41(7):917-926
OBJECTIVE
To investigate the effect of Banxia Xiexin decoction(BXD) on colitis associated cancer(CAC) mice and its related mechanism.
METHODS
Seventy-five C57BL/6 mice were randomly divided into normal group, model group, Banxia Xiexin decoction low-dose group, high-dose group and mesalazine group. Except for the normal group, the mice in the other groups were intraperitoneally injected with azoxymethane combined with oral dextran sodium sulfate to establish the CAC model. BXD and mesalazine were given respectively for intervention. The general conditions of all mice were observed and recorded, and the changes of body weight, disease activity index, colon length and tumor number were monitored. HE staining was utilized to observe the pathological changes of colon tissue. The expression levels of PCNA, NF-κB P65 and IκB-α were detected by immunohistochemistry. The mRNA levels of IL-17A, N-cadherin, E-cadherin and Bcl-2 were detected by qRT-PCR. Macrophage infiltration was measured using immunostaining analysis. Western blotting was applied to analyze the expression of NF-κB, E-cadherin and N-cadherin proteins in colon tissues of each group.
RESULTS
There was no significant tumor occurrence in the normal group, while the body weight of the model group mice was significantly reduced and the number of colon tumors increased. The colon length, number of tumors, and degree of inflammatory cell infiltration in the BXD group were significantly improved compared to the model group. Immunohistochemical results showed that the expression of PCNA, NF-κB P65 and IκB-α protein in colon tissue of model group was remarkably increased (P<0.01). Immunofluorescence results showed that the number of F4/80, CD80 and CD206 positive macrophages in the colon tissue of the model group increased (P<0.05 or P<0.01). The results of RT-PCR demonstrated that the levels of IL-17A, N-cadherin and Bcl-2 mRNA in the colon tissue of the model group were significantly increased (P<0.01), while the level of E-cadherin mRNA was fundamentally decreased (P<0.01). Western blotting results displayed that the expression levels of NF-κB and N-cadherin protein in colon tissue of model group were up-regulated (P<0.01), while E-cadherin was significantly down-regulated (P<0.01). Compared with the model group, the changes of the above indexes in the BXD and mesalazine groups were ameliorated, with statistical differences (P<0.05 or P<0.01), and the changes in the BXD high-dose group were more significant.
CONCLUSION
BXD exhibits strong anti-inflammatory and anti-tumor benefits in CAC mice, inhibiting macrophage activation in colon tissue and promoting M2 polarization, while reducing the expression of tumor associated proteins PCNA and Bcl-2, and block the progression of EMT related proteins (E-cadherin and N-cadherin). The mechanism may connect to suppressing NF-κB P65 and IκB-α activation to regulate the NF-κB signaling pathway.
8.Analysis of virus gene subtypes and drug resistance monitoring results of newly reported HIV/AIDS population in Anhui Province from 2020 to 2023
Yizu QIN ; Yuelan SHEN ; Aiwen LIU ; Jianjun WU ; Lifeng MIU ; Qin FANG ; Chenxi SHUAI ; Lin JIN
Chinese Journal of Preventive Medicine 2024;58(8):1204-1212
Objective:To investigate the genetic subtypes and drug resistance monitoring of newly reported human immunodeficiency virus (HIV) infection/AIDS virus in Anhui Province from 2020 to 2023.Methods:An observational design study was used to collect blood samples from patients diagnosed with HIV/AIDS in the AIDS Prevention and Control Department of Anhui Provincial Center for Disease Control and Prevention from January 2020 to December 2023.The HIV-1 pol gene was amplified by reverse transcription-nested PCR, and the genetic subtypes were identified by phylogenetic tree analysis using MEGA 7.0 software. The mutation sites of drug resistance were analyzed by the online software tool of Stanford University′s HIV Drug resistance database. The influencing factors of drug resistance before treatment were analyzed by multivariate logistic analysis.Results:A total of 335 plasma samples were collected, and 332 HIV-1 pol gene sequences were obtained successfully. The main gene subtypes were CRF01-AE, accounting for 35.55% (118/332), followed by CRF07-BC, B and B+C types [29.22% (97/332), 11.74% (39/332), 9.93% (33/332)]. The total drug resistance rate before treatment was 30.12%(32/100), and the drug resistance rate of protease inhibitor (PIs) in HIV-1 was 6.33% (21/332). The drug resistance rate of nucleoside reverse transcriptase inhibitors (NRTI) before treatment was 6.33% (21/332). The drug resistance rate of non-nucleoside reverse transcriptase inhibitors (NNRTI) before treatment was 17.47% (58/332).The comparison of drug resistance rate of different drug types showed statistical significance ( χ2=30.435, P<0.05).Among the 100 cases of drug resistance, the main mutation point of HIV-1 protease inhibitor was Q58E (21.00%), and the main mutation point of nucleoside reverse transcriptase inhibitor was M184V/I (6.00%). Non-nucleoside reverse transcriptase inhibitor resistance mutation points mainly K103N (22.00%).There were statistically significant differences in the starting time of antiviral therapy, the number of CD4 +T cells at baseline and the drug resistance rate of gene subtypes (the chi-square values are respectively 24.152, 32.516, 11.652, P<0.05).Multivariate logistic analysis showed that the baseline CD4 +T cell count was <200/μl, subtype B, subtype B+C, CRF01-AE subtype, CRF55-01B subtype and 01-BC subtype was the influential factor of drug resistance before treatment (the chi-square values are respectively 4.577, 8.202, 4.416, 5.206, 7.603 and 4.804, P<0.05). Conclusion:The newly reported HIV/AIDS population in Anhui Province from 2020 to 2023 has a variety of viral gene subtypes, and NNRTIs are the main types of drug resistance gene mutations before treatment. Attention should be paid to the number of baseline CD4 +T cells, the duration of antiviral treatment, and the distribution of gene subtypes to reduce the drug resistance of HIV/AIDS patients before treatment.
9.Structure-activity Omics of Traditional Chinese Medicine: A Case Study of Anti-inflammatory and Analgesic Effect of Qizhi Weitong Granules
Xiansheng MENG ; Ying ZHENG ; Ying MENG ; Bing QI ; Sicong LIU ; Xi LUO ; Xinpeng QIN ; Yongrui BAO ; Shuai WANG ; Tianjiao LI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(15):129-135
The complex chemical composition and limited research ideas of traditional Chinese medicine (TCM) have led to the unclear material basis and mechanism of the medicinal effects, which is a common problem hindering the modernization of TCM in China. The introduction of computer virtual technology has provided a new perspective for TCM research. In this study, we established the research method of structure-activity omics to study the relationships between the structures and effects of different compounds in TCM based on the chemical structures of TCM components and to analyze and predict the material basis and multitarget synergistic mechanism of TCM. Furthermore, a structure-activity omics study was carried out with the anti-inflammatory and analgesic effects of Qizhi Weitong granules as an example. This study provides support for screening the pharmacodynamic components and analyzing the active ingredients of TCM and gives insights into the research on the material basis and mechanism of compound efficacy and the development of lead compounds of TCM, thus promoting the modern research and the innovative development of TCM.
10.Structure-activity Omics of Anti-inflammatory and Analgesic Effect of Corydalis Rhizoma in Qizhi Weitong Granules
Xinpeng QIN ; Ying MENG ; Sicong LIU ; Ying ZHENG ; Yongrui BAO ; Shuai WANG ; Tianjiao LI ; Ling HAN ; Wei ZOU ; Xiansheng MENG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(15):136-145
ObjectiveTo explain the anti-inflammatory and analgesic effects of Corydalis Rhizoma by the means of structure-activity omics. MethodOn the basis of the previous in vitro screening study, we studied the in vivo efficacy of the alkaloids in Corydalis Rhizoma. With the targets as a bridge, the structures of chemical components in Corydalis Rhizoma were connected with the efficacy. The molecular docking of the alkaloids in Corydalis Rhizoma with the targets of inflammation and pain was carried out. According to the docking scores and the differences in the structural nucleus of Corydalis Rhizoma alkaloids, a study of structure-activity omics was carried out to summarize the rules of their connection. ResultThe alkaloids in Corydalis Rhizoma had good anti-inflammatory and analgesic effects in vivo, involving 53 chemical components and 73 targets. There were 3 074 targets associated with inflammation and pain, and 42 targets of direct action were shared by the chemical components and the disease. The protein-protein interaction (PPI) and molecular docking analysis predicted that the main active components of Corydalis Rhizoma were tetrahydropalmatine and palmatine, and the core targets were prostaglandin endoperoxide synthase 2 (PTGS2), glutamate receptor metabotropic 5 (GRM5), estrogen receptor 1 (ESR1), solute carrier family 6 member 4 (SLC6A4), and fusion oncoproteins (FOS). According to the differences of mother nucleus, the 53 alkaloid components of Corydalis Rhizoma were classified into 8 categories, including protoberberine, berberine, and aporphine, which had high binding affinities with PTGS2, GRM5 and other targets. The relationship between the structures of Corydalis Rhizoma alkaloids and docking scores in each group showed the same law. In protoberberine, appropriate substituents with hydroxyl, alkoxy or methyl groups on the A and D rings of the parent ring were conducive to enhancing the binding activities with the two targets. In berberine, the structure containing a methyl group on position 13 had strong binding affinities with the two targets. It is hypothesized that the methyl fragment changes the binding mode between the component structure and amino acid residues, which greatly improves the binding affinity. ConclusionThis study employs the method of structure-activity omics to analyze the material basis for the anti-inflammatory and analgesic effects of alkaloids in Corydalis Rhizoma, and the structure-activity omics provides new ideas for revealing the pharmacodynamic substances of traditional Chinese medicine.


Result Analysis
Print
Save
E-mail