1.Nucleic Acid-driven Protein Degradation: Frontiers of Lysosomal Targeted Degradation Technology
Han YIN ; Yu LI ; Yu-Chuan FAN ; Shuai GUO ; Yuan-Yu HUANG ; Yong LI ; Yu-Hua WENG
Progress in Biochemistry and Biophysics 2025;52(1):5-19
		                        		
		                        			
		                        			Distinct from the complementary inhibition mechanism through binding to the target with three-dimensional conformation of small molecule inhibitors, targeted protein degradation technology takes tremendous advantage of endogenous protein degradation pathway inside cells to degrade plenty of “undruggable” target proteins, which provides a novel route for the treatment of many serious diseases, mainly including proteolysis-targeting chimeras, lysosome-targeting chimeras, autophagy-targeting chimeras, antibody-based proteolysis-targeting chimeras, etc. Unlike proteolysis-targeting chimeras first found in 2001, which rely on ubiquitin-proteasome system to mainly degrade intracellular proteins of interest, lysosome-targeting chimeras identified in 2020, which was act as the fastly developing technology, utilize cellular lysosomal pathway through endocytosis mediated by lysosome-targeting receptor to degrade both extracellular and membrane proteins. As an emerging biomedical technology, nucleic acid-driven lysosome-targeting chimeras utilize nucleic acids as certain components of chimera molecule to replace with ligand to lysosome-targeting receptor or protein of interest, exhibiting broad application prospects and potential clinical value in disease treatment and drug development. This review mainly introduced present progress of nucleic acid-driven lysosome-targeting chimeras technology, including its basic composition, its advantages compared with antibody or glycopeptide-based lysosome-targeting chimeras, and focused on its chief application, in terms of the type of lysosome-targeting receptors. Most research about the development of nucleic acid-driven lysosome-targeting chimeras focused on those which utilized cation-independent mannose-6-phosphonate receptor as the lysosome-targeting receptor. Both mannose-6-phosphonate-modified glycopeptide and nucleic aptamer targeting cation-independent mannose-6-phosphonate receptor, even double-stranded DNA molecule moiety can be taken advantage as the ligand to lysosome-targeting receptor. The same as classical lysosome-targeting chimeras, asialoglycoprotein receptor can also be used for advance of nucleic acid-driven lysosome-targeting chimeras. Another new-found lysosome-targeting receptor, scavenger receptor, can bind dendritic DNA molecules to mediate cellular internalization of complex and lysosomal degradation of target protein, suggesting the successful application of scavenger receptor-mediated nucleic acid-driven lysosome-targeting chimeras. In addition, this review briefly overviewed the history of lysosome-targeting chimeras, including first-generation and second-generation lysosome-targeting chimeras through cation-independent mannose-6-phosphonate receptor-mediated and asialoglycoprotein receptor-mediated endocytosis respectively, so that a clear timeline can be presented for the advance of chimera technique. Meantime, current deficiency and challenge of lysosome-targeting chimeras was also mentioned to give some direction for deep progress of lysosome-targeting chimeras. Finally, according to faulty lysosomal degradation efficiency, more cellular mechanism where lysosome-targeting chimeras perform degradation of protein of interest need to be deeply explored. In view of current progress and direction of nucleic acid-driven lysosome-targeting chimeras, we discussed its current challenges and development direction in the future. Stability of natural nucleic acid molecule and optimized chimera construction have a great influence on the biological function of lysosome-targeting chimeras. Discovery of novel lysosome-targeting receptors and nucleic aptamer with higher affinity to the target will greatly facilitate profound advance of chimera technique. In summary, nucleic acid-driven lysosome-targeting chimeras have many superiorities, such as lower immunogenicity, expedient synthesis of chimera molecules and so on, in contrast to classical lysosome-targeting chimeras, making it more valuable. Also, the chimera technology provides new ideas and methods for biomedical research, drug development and clinical treatment, and can be used more widely through further research and optimization. 
		                        		
		                        		
		                        		
		                        	
2.Study on the mechanism of Danggui buxue decoction regulating neutrophil extracellular traps to improve osteo-porosis in rats with premature ovarian failure
Chuiqiao HUANG ; Shuai CHEN ; Qian LI ; Liancheng GUAN ; Jie GAO ; Zhong QIN ; Yunzhi CHEN
China Pharmacy 2025;36(6):655-660
		                        		
		                        			
		                        			OBJECTIVE To investigate the mechanism through which Danggui buxue decoction regulates neutrophil extracellular traps (NETs) to improve osteoporosis (OP) in rats with premature ovarian failure (POF). METHODS Female SD rats were randomly divided into normal group, model group, calcitriol group, and Danggui buxue decoction low-dose, medium-dose and high-dose groups, with 9 rats in each group. Except for the normal group, all other groups were administered cisplatin via intraperitoneal injection on days 1 and 8 to establish a POF complicated with OP model. Each group received the corresponding drugs or normal saline intragastrically starting from day 5, once a day, for 4 consecutive weeks. After the last medication, serum levels of estradiol (E2), NETs, 25-hydroxyvitamin D3 [25(OH)D3], receptor activator of nuclear factor-κB ligand (RANKL), and osteocalcin (BGP) were measured. The histopathological changes in bone tissue were observed. The expressions of vitamin D receptor (VDR), myeloperoxidase (MPO), neutrophil elastase (NE) and citrullinated histone H3 (CitH3) in bone tissue were detected; the protein expressions of 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1) and 1α,25-dihydroxyvitamin D3-24-hydroxylase (CYP24A1) were also determined. RESULTS Compared with the normal group, the bone tissue of rats in the model group showed a significant reduction in the number of trabeculae, which was thinner broken and poorly connected, with significant destruction of the reticular structure, and an enlarged marrow cavity. Serum levels of NETs and RANKL, the protein expressions of MPO, NE, CitH3 and CYP24A1 in bone tissue were significantly increased or upregulated, while serum levels of E2, 25(OH)D3 and BGP as well as protein expressions of VDR and CYP27B1 were significantly decreased or downregulated (P<0.05). Compared with the model group, the histopathological changes in the bone tissue of rats in each administration group showed some degree of recovery, with significant improvements observed in most quantitative indicators (P<0.05). CONCLUSIONS Danggui buxue decoction can restore the E2 level in POF complicated with OP rats, and improve OP. The mechanism may be related to its ability to upregulate VD level and inhibit the formation of NETs.
		                        		
		                        		
		                        		
		                        	
3.Changes of retinal nerve fiber layer thickness, retinal thickness and blood flow density in different stages of diabetic retinopathy patients
Shujun ZHANG ; Shuai HUANG ; Jiajia LI ; Songbo PEI ; Yuhong LI
International Eye Science 2025;25(5):714-717
		                        		
		                        			
		                        			 AIM: To investigate the changes of retinal nerve fiber layer(RNFL)thickness, retinal thickness and blood flow density in different stages of diabetic retinopathy(DR)patients based on optical coherence tomography angiography(OCTA).METHODS: A retrospective analysis was conducted on 382 patients(382 eyes)diagnosed with DR in our hospital from February 2023 to February 2024. According to the staging criteria, the patients were divided into mild group(n=121), moderate group(n=133), severe group(n=72), and proliferative group(n=56). The general clinical data of the four groups of patients was compared; OCTA was used to scan and collect data from all patients, and the RNFL thickness, retinal thickness, and blood flow density were compared among the four groups of patients.RESULTS: There was no statistically significant difference in age, gender, hypertension, chronic kidney disease, and random blood glucose among patients in the mild, moderate, severe, and proliferative groups(all P>0.05). As the stage of DR worsened, the duration of the disease gradually prolonged(P<0.05). The thickness of the RNFL(superior, inferior, temporal, nasal, and average thickness)and retinal thickness significantly increased with the severity of DR(all P<0.001); however, there was no statistically significant difference in inferior RNFL thickness between the moderate and mild groups(P>0.05). The blood flow density in the superficial and deep retinal layers, as well as in the choroidal capillary layer, significantly decreased with the progression of DR(all P<0.05). Nevertheless, there was no statistically significant difference in superficial retinal blood flow density between the moderate and severe groups(P>0.05).CONCLUSION: OCTA can accurately observe the changes in RNFL thickness, retinal thickness, and blood flow density in patients with DR at different stages, which can serve as sensitive indicators for monitoring DR progression. 
		                        		
		                        		
		                        		
		                        	
4.Research hotspots in nutrition for patients with head and neck cancer from 2014 to 2024
WANG Shuai ; LIU Manfeng ; AN Na ; WANG Dikan ; HUANG Qiuyu ; LIN Zhumei
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(6):509-518
		                        		
		                        			Objective:
		                        			To understand the current status, international cooperation, research hotspots, and development trends of nutritional studies on patients with head and neck cancer from 2014 to 2024, and to predict future research trends.
		                        		
		                        			Methods:
		                        			The Web of Science Core Collection database was searched to retrieve nutritional studies on patients with head and neck cancer from January 2014 to March 2024. The type of studies were “articles,” the language was English, CiteSpace 6.1 R6 software was used to conduct the bibliometric analysis, and the results were visualized to form a scientific knowledge map.
		                        		
		                        			Results:
		                        			A total of 1 528 documents were retrieved, with a linear increase in the number of annual publications. The country with the highest number of publications was the United States, and the institution with the highest number of publications was the University of Queensland, with closer collaboration between authors and institutions. The most frequently cited publication was a set of nutrition guidelines, and the highest-impact articles were mainly concerned with performing percutaneous endoscopic gastrostomy. Keyword analysis showed that quality of life, radiotherapy, and weight loss were the keywords of highest interest. The keyword cluster analysis resulted in 17 clusters, which were divided into five main categories: head and neck cancer, treatment, outcome results, intervention modalities, and rehabilitation. Body composition, enteral nutrition, and accelerated postoperative rehabilitation were persistent research hotspots. Keyword highlighting revealed that “enhanced recovery after surgery” has been the focus of research in the last two years, with “index” and “model” emerging as theme words.
		                        		
		                        			Conclusion
		                        			The number of publications in the literature related to nutrition for patients with head and neck cancer has increased annually over the past 10 years. The research hotspots mainly focus on the quality of life and weight loss during radiotherapy, the content and application prospect of body composition assessment, different modes of nutritional support interventions and enteral nutritional tube feeding routes, and perioperative nutritional management in enhanced recovery after surgery. The potential clinical value of preoperative nutritional intervention under the concept of enhanced recovery and the construction of new types of nutritional index are the trends of future research.
		                        		
		                        		
		                        		
		                        	
5.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
		                        		
		                        			 Background:
		                        			In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes. 
		                        		
		                        			Methods:
		                        			The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments. 
		                        		
		                        			Results:
		                        			RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice. 
		                        		
		                        			Conclusion
		                        			RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells. 
		                        		
		                        		
		                        		
		                        	
6.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
		                        		
		                        			 Background:
		                        			In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes. 
		                        		
		                        			Methods:
		                        			The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments. 
		                        		
		                        			Results:
		                        			RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice. 
		                        		
		                        			Conclusion
		                        			RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells. 
		                        		
		                        		
		                        		
		                        	
7.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
		                        		
		                        			 Background:
		                        			In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes. 
		                        		
		                        			Methods:
		                        			The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments. 
		                        		
		                        			Results:
		                        			RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice. 
		                        		
		                        			Conclusion
		                        			RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells. 
		                        		
		                        		
		                        		
		                        	
8.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
		                        		
		                        			 Background:
		                        			In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes. 
		                        		
		                        			Methods:
		                        			The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments. 
		                        		
		                        			Results:
		                        			RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice. 
		                        		
		                        			Conclusion
		                        			RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells. 
		                        		
		                        		
		                        		
		                        	
9.Effects of shared decision-making oriented vocational training on the social function of patients with schizophrenia
Chunyan JIANG ; Jiuhong SHUAI ; Hongyuan DENG ; Junhua ZHENG ; Chunfeng GOU ; Xiaoli YANG ; Deying TONG ; Hao FENG ; Xia HUANG ; Ru GAO
Sichuan Mental Health 2025;38(3):229-234
		                        		
		                        			
		                        			BackgroundAs a high prevalence disorder, schizophrenia has caused significant burden to family and society due to the impairment of occupational and social function. Currently, the dominant vocational training model in China follows a paternalistic, clinician-led decision-making approach. Although it improves patients' social function to some extent, it undermines their autonomy and treatment adherence. Therefore, it is urgently necessary to explore a new intervention method to enhance treatment compliance and social function in patients. ObjectiveTo explore the impact of shared decision-making oriented vocational training on social function in hospitalized schizophrenia patients, so as to provide references for rehabilitation interventions. MethodsA total of 68 patients diagnosed with schizophrenia according to the International Classification of Diseases, tenth edition (ICD-10) criteria were consecutively enrolled from January to June 2024 at The Third People's Hospital of Wenjiang Distric, Chengdu. Participants were randomly allocated into the research group (n=34) and the control group (n=34) using a random number table method. Both groups received routine rehabilitation training, while the research group received shared decision-making oriented vocational training for 12 weeks, 2 times a week for 2 hours each time. Before and at the 4th and 12th week of intervention, two groups were evaluated by General Self-Efficacy Scale (GSES), Stigma Scale for Mental Illness (SSMI), Scale of Social function of Psychosis Inpatients (SSFPI) and Inpatient Psychiatric Rehabilitation Outcome Scale (IPROS). ResultsA total of 63 participants completed the study, with 30 cases in the research group and 33 cases in the control group. Repeated measures ANOVA revealed statistically significant time effects and interaction effects in both groups for GSES, SSMI, SSFPI and IPROS scores (F=20.451, 16.022; 26.193, 12.944; 23.957, 5.023; 11.776, 3.985, P<0.05 or 0.01), while no significant group effects were observed (F=0.188, 0.742, 1.878, 0.474, P>0.05). At the 12th week of intervention, there were statistically significant differences in GSES, SSMI, SSFPI and IPROS scores between the two groups. ConclusionShared decision-making oriented vocational training may help to improve social function in patients with schizophrenia. [Funded by 2023 Chengdu Medical Research Project (number, 2023468)] 
		                        		
		                        		
		                        		
		                        	
10.Exploration of the nervous organ-system-based curriculum
Journal of Apoplexy and Nervous Diseases 2025;42(1):94-96
		                        		
		                        			
		                        			Most of the medical colleges and universities in China follow the traditional three-stage teaching mode centering on subjects, and a number of colleges and universities have implemented the teaching mode of organ-system-based curriculum (OSBC). With the OSBC course for the nervous system in our university as an example, this article analyzes the advantages and challenges of OSBC course of the nervous system in the context of integrative medicine.
		                        		
		                        		
		                        		
		                        			Neurology
		                        			
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail