1.Process Optimization and Health Risk Assessment of Calcined Haematitum Based on QbD Concept
Yue YANG ; Jingwei ZHOU ; Jialiang ZOU ; Guorong MEI ; Yifan SHI ; Lei ZHONG ; Jiaojiao WANG ; Xuelian GAN ; Dewen ZENG ; Xin CHEN ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):187-196
ObjectiveTo investigate the processing technology of calcined Haematitum based on the concept of quality by design(QbD) and to assess its health risk. MethodsTaking whole iron content, Fe2+ dissolution content and looseness as critical quality attributes(CQAs), and calcination temperature, calcination time, spreading thickness and particle size as critical process parameters(CPPs) determined by the failure mode and effect analysis(FMEA), the processing technology of calcined Haematitum was optimized by orthogonal test combined with analytic hierarchy process-criteria importance through intercriteria correlation(AHP-CRITIC) hybrid weighting method. The contents of heavy metals and harmful elements were determined by inductively coupled plasma mass spectrometry, and the health risk assessment was carried out by daily exposure(EXP), target hazard quotient(THQ) and lifetime cancer risk(LCR), and the theoretical value of the maximum limit was deduced. ResultsThe optimal processing technology for calcined Haematitum was calcination at 650 ℃, calcination time of 1 h, particle size of 0.2-0.5 cm, spreading thickness of 1 cm, and vinegar quenching for 1 time[Haematitum-vinegar(10:3)]. The contents of 5 heavy metals and harmful elements in 13 batches of calcined Haematitum were all decreased with reductions of up to 5-fold. The cumulative THQ of 2 batches of samples was>1, while the cumulative THQ of all batches of Haematitum was>1. The LCR of As in 1 batches of Haematitum was 1×10-6-1×10-4, and the LCR of the rest was<1×10-6, and the LCRs of calcined Haematitum were all<1×10-6, indicating that the carcinogenic risk of calcined Haematitum was low, but special attention should still be paid to Haematitum medicinal materials. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg were formulated as 1 014, 25, 17, 27, 7 mg·kg-1. ConclusionThe optimized processing technology of calcined Haematitum is stable and feasible, and the contents of heavy metals and harmful elements are reduced after processing. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg are formulated to provide a scientific basis for the formulation of standards for the limits of harmful elements in Haematitum.
2.Optimization of Processing Technology of Calcined Pyritum Based on QbD Concept and Its XRD Fingerprint Analysis
Xin CHEN ; Jingwei ZHOU ; Haiying GOU ; Lei ZHONG ; Tianxing HE ; Wenbo FEI ; Jialiang ZOU ; Yue YANG ; Dewen ZENG ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):197-205
ObjectiveBased on the concept of quality by design(QbD), the processing process of calcined Pyritum was optimized, and its X-ray diffraction(XRD) fingerprint was established. MethodsThe safety, effectiveness and quality controllability of calcined Pyritum were taken as the quality profile(QTPP), the color, hardness, metallic luster, phase composition, the contents of heavy metals and hazardous elements were taken as the critical quality attributes(CQAs), and the calcination temperature, calcination time, paving thickness and particle size were determined as the critical process parameters(CPPs). Differential thermal analysis, X-ray diffraction(XRD) and inductively coupled plasma mass spectrometry(ICP-MS) were used to analyze the correlation between the calcination temperature and CQAs of calcined Pyritum. Then, based on the criteria importance through intercriteria correlation(CRITIC)-entropy weight method, the optimal processing process of calcined Pyritum was optimized by orthogonal test. Powder XRD was used to analyze the phase of calcined Pyritum samples processed according to the best process, and the mean and median maps of calcined Pyritum were established by the superposition of geometric topological figures, and similarity evaluation and cluster analysis were carried out. ResultsThe results of single factor experiments showed that the physical phase of Pyritum changed from FeS2 to Fe7S8 during the process of temperature increase, the color gradually deepened from dark yellow, and the contents of heavy metals and harmful elements decreased. The optimized processing process of calcined Pyritum was as follows:calcination temperature at 750 ℃, calcination time of 2.5 h, paving thickness of 3 cm, particle size of 0.8-1.2 cm, vinegar quenching 1 time[Pyritum-vinegar(10∶3)]. After calcination, the internal structure of Pyritum was honeycomb-shaped, which was conducive to the dissolution of active ingredients. XRD fingerprints of 13 batches of calcined Pyritum characterized by 10 common peaks were established. The similarities of the relative peak intensities of the XRD fingerprints of the analyzed samples were>0.96, and it could effectively distinguish the raw products and unqualified products. ConclusionTemperature is the main factor affecting the quality of calcined Pyritum. After processing, the dissolution of the effective components in Pyritum increases, and the contents of heavy metals and harmful substances decrease, reflecting the function of processing to increase efficiency and reduce toxicity. The optimized processing process is stable and feasible, and the established XRD fingerprint can be used as one of the quality control standards of calcined Pyritum.
3.Phase Change and Quantity-quality Transfer Analysis of Medicinal Materials, Decoction Pieces and Standard Decoction of Haliotidis Concha (Haliotis discus hannai)
Zhihan YANG ; Jingwei ZHOU ; Weichao WANG ; Yu HUANG ; Chuang LUO ; Lian YANG ; Chenyu ZHONG ; Hongping CHEN ; Fu WANG ; Yuan HU ; Youping LIU ; Shilin CHEN ; Lin CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):206-214
ObjectiveTo explore the quantity-quality transfer process of medicinal materials, decoction pieces and standard decoction of Haliotidis Concha(Haliotis discus hannai) by analyzing the physical phase and compositional changes, so as to provide references for the effective control of its quality. MethodsA total of 20 batches of Haliotidis Concha(H. discus hannai) from different habitats were collected and prepared into corresponding calcined products and standard decoction, and the content of CaCO3 of the three samples were determined and the extract yield and transfer rate of CaCO3 were calculated. The changes in elemental composition and their relative contents were investigated by X-ray fluorescence spectrometry(XRF), X-ray diffraction(XRD) was used to study the changes in the phase compositions of the three samples and to establish their respective XRD specific chromatogram. Fourier transform infrared spectrometry(FTIR) was used to study the changes in the chemical composition and content changes of the three samples and to establish their respective FTIR specific chromatogram, while combining hierarchical cluster analysis(HCA), principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) to find the common and differential characteristics, in order to explore the quantity-quality transfer relationship in the preparation process of standard decoction of Haliotidis Concha(H. discus hannai). ResultsThe CaCO3 contents of the 20 batches of medicinal materials, decoction pieces and standard decoction of Haliotidis Concha(H. discus hannai) were 93.87%-98.95%, 96.02%-99.97% and 38.29%-51.96%, respectively, and the extract yield of standard decoction was 1.71%-2.37%, and the CaCO3 transfer rate of decoction pieces-standard decoction was 0.68%-1.27%. XRF results showed that the elemental species and their relative contents contained in Haliotidis Concha and its calcined products had a high degree of similarity, and although there was no obvious difference in the elemental species contained in decoction pieces and standard decoction, the difference in the relative contents was obvious, which was mainly reflected in the decrease of the relative content of element Ca and the increase of the relative content of element Na. XRD results showed that Haliotidis Concha mainly contained CaCO3 of aragonite and calcite, while calcined Haliotidis Concha only contained CaCO3 of calcite, and standard decoction mainly contained CaCO3 of calcite and Na2CO3 of natrite. FTIR results showed that there were internal vibrations of O-H, C-H, C=O, HCO3- and CO32- groups in Haliotidis Concha, while O-H, HCO3- and CO32- groups existed in the calcined products and standard decoction. ConclusionThe changes of Haliotidis Concha and calcined Haliotidis Concha are mainly the increase of CaCO3 content, the transformation of CaCO3 aragonite crystal form to calcite crystal form and the absence of organic components after calcination, and the changes of calcined products and standard decoction are mainly the decrease of CaCO3 content and the increase of Na2CO3 relative content. The method established in the study is applicable to the quality control of the shellfish medicines-decoction pieces- standard decoction, which provides a new idea for the study of quality control of dispensing granules of shellfish medicines.
4.Process Optimization and Health Risk Assessment of Calcined Haematitum Based on QbD Concept
Yue YANG ; Jingwei ZHOU ; Jialiang ZOU ; Guorong MEI ; Yifan SHI ; Lei ZHONG ; Jiaojiao WANG ; Xuelian GAN ; Dewen ZENG ; Xin CHEN ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):187-196
ObjectiveTo investigate the processing technology of calcined Haematitum based on the concept of quality by design(QbD) and to assess its health risk. MethodsTaking whole iron content, Fe2+ dissolution content and looseness as critical quality attributes(CQAs), and calcination temperature, calcination time, spreading thickness and particle size as critical process parameters(CPPs) determined by the failure mode and effect analysis(FMEA), the processing technology of calcined Haematitum was optimized by orthogonal test combined with analytic hierarchy process-criteria importance through intercriteria correlation(AHP-CRITIC) hybrid weighting method. The contents of heavy metals and harmful elements were determined by inductively coupled plasma mass spectrometry, and the health risk assessment was carried out by daily exposure(EXP), target hazard quotient(THQ) and lifetime cancer risk(LCR), and the theoretical value of the maximum limit was deduced. ResultsThe optimal processing technology for calcined Haematitum was calcination at 650 ℃, calcination time of 1 h, particle size of 0.2-0.5 cm, spreading thickness of 1 cm, and vinegar quenching for 1 time[Haematitum-vinegar(10:3)]. The contents of 5 heavy metals and harmful elements in 13 batches of calcined Haematitum were all decreased with reductions of up to 5-fold. The cumulative THQ of 2 batches of samples was>1, while the cumulative THQ of all batches of Haematitum was>1. The LCR of As in 1 batches of Haematitum was 1×10-6-1×10-4, and the LCR of the rest was<1×10-6, and the LCRs of calcined Haematitum were all<1×10-6, indicating that the carcinogenic risk of calcined Haematitum was low, but special attention should still be paid to Haematitum medicinal materials. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg were formulated as 1 014, 25, 17, 27, 7 mg·kg-1. ConclusionThe optimized processing technology of calcined Haematitum is stable and feasible, and the contents of heavy metals and harmful elements are reduced after processing. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg are formulated to provide a scientific basis for the formulation of standards for the limits of harmful elements in Haematitum.
5.Optimization of Processing Technology of Calcined Pyritum Based on QbD Concept and Its XRD Fingerprint Analysis
Xin CHEN ; Jingwei ZHOU ; Haiying GOU ; Lei ZHONG ; Tianxing HE ; Wenbo FEI ; Jialiang ZOU ; Yue YANG ; Dewen ZENG ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):197-205
ObjectiveBased on the concept of quality by design(QbD), the processing process of calcined Pyritum was optimized, and its X-ray diffraction(XRD) fingerprint was established. MethodsThe safety, effectiveness and quality controllability of calcined Pyritum were taken as the quality profile(QTPP), the color, hardness, metallic luster, phase composition, the contents of heavy metals and hazardous elements were taken as the critical quality attributes(CQAs), and the calcination temperature, calcination time, paving thickness and particle size were determined as the critical process parameters(CPPs). Differential thermal analysis, X-ray diffraction(XRD) and inductively coupled plasma mass spectrometry(ICP-MS) were used to analyze the correlation between the calcination temperature and CQAs of calcined Pyritum. Then, based on the criteria importance through intercriteria correlation(CRITIC)-entropy weight method, the optimal processing process of calcined Pyritum was optimized by orthogonal test. Powder XRD was used to analyze the phase of calcined Pyritum samples processed according to the best process, and the mean and median maps of calcined Pyritum were established by the superposition of geometric topological figures, and similarity evaluation and cluster analysis were carried out. ResultsThe results of single factor experiments showed that the physical phase of Pyritum changed from FeS2 to Fe7S8 during the process of temperature increase, the color gradually deepened from dark yellow, and the contents of heavy metals and harmful elements decreased. The optimized processing process of calcined Pyritum was as follows:calcination temperature at 750 ℃, calcination time of 2.5 h, paving thickness of 3 cm, particle size of 0.8-1.2 cm, vinegar quenching 1 time[Pyritum-vinegar(10∶3)]. After calcination, the internal structure of Pyritum was honeycomb-shaped, which was conducive to the dissolution of active ingredients. XRD fingerprints of 13 batches of calcined Pyritum characterized by 10 common peaks were established. The similarities of the relative peak intensities of the XRD fingerprints of the analyzed samples were>0.96, and it could effectively distinguish the raw products and unqualified products. ConclusionTemperature is the main factor affecting the quality of calcined Pyritum. After processing, the dissolution of the effective components in Pyritum increases, and the contents of heavy metals and harmful substances decrease, reflecting the function of processing to increase efficiency and reduce toxicity. The optimized processing process is stable and feasible, and the established XRD fingerprint can be used as one of the quality control standards of calcined Pyritum.
6.Phase Change and Quantity-quality Transfer Analysis of Medicinal Materials, Decoction Pieces and Standard Decoction of Haliotidis Concha (Haliotis discus hannai)
Zhihan YANG ; Jingwei ZHOU ; Weichao WANG ; Yu HUANG ; Chuang LUO ; Lian YANG ; Chenyu ZHONG ; Hongping CHEN ; Fu WANG ; Yuan HU ; Youping LIU ; Shilin CHEN ; Lin CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):206-214
ObjectiveTo explore the quantity-quality transfer process of medicinal materials, decoction pieces and standard decoction of Haliotidis Concha(Haliotis discus hannai) by analyzing the physical phase and compositional changes, so as to provide references for the effective control of its quality. MethodsA total of 20 batches of Haliotidis Concha(H. discus hannai) from different habitats were collected and prepared into corresponding calcined products and standard decoction, and the content of CaCO3 of the three samples were determined and the extract yield and transfer rate of CaCO3 were calculated. The changes in elemental composition and their relative contents were investigated by X-ray fluorescence spectrometry(XRF), X-ray diffraction(XRD) was used to study the changes in the phase compositions of the three samples and to establish their respective XRD specific chromatogram. Fourier transform infrared spectrometry(FTIR) was used to study the changes in the chemical composition and content changes of the three samples and to establish their respective FTIR specific chromatogram, while combining hierarchical cluster analysis(HCA), principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) to find the common and differential characteristics, in order to explore the quantity-quality transfer relationship in the preparation process of standard decoction of Haliotidis Concha(H. discus hannai). ResultsThe CaCO3 contents of the 20 batches of medicinal materials, decoction pieces and standard decoction of Haliotidis Concha(H. discus hannai) were 93.87%-98.95%, 96.02%-99.97% and 38.29%-51.96%, respectively, and the extract yield of standard decoction was 1.71%-2.37%, and the CaCO3 transfer rate of decoction pieces-standard decoction was 0.68%-1.27%. XRF results showed that the elemental species and their relative contents contained in Haliotidis Concha and its calcined products had a high degree of similarity, and although there was no obvious difference in the elemental species contained in decoction pieces and standard decoction, the difference in the relative contents was obvious, which was mainly reflected in the decrease of the relative content of element Ca and the increase of the relative content of element Na. XRD results showed that Haliotidis Concha mainly contained CaCO3 of aragonite and calcite, while calcined Haliotidis Concha only contained CaCO3 of calcite, and standard decoction mainly contained CaCO3 of calcite and Na2CO3 of natrite. FTIR results showed that there were internal vibrations of O-H, C-H, C=O, HCO3- and CO32- groups in Haliotidis Concha, while O-H, HCO3- and CO32- groups existed in the calcined products and standard decoction. ConclusionThe changes of Haliotidis Concha and calcined Haliotidis Concha are mainly the increase of CaCO3 content, the transformation of CaCO3 aragonite crystal form to calcite crystal form and the absence of organic components after calcination, and the changes of calcined products and standard decoction are mainly the decrease of CaCO3 content and the increase of Na2CO3 relative content. The method established in the study is applicable to the quality control of the shellfish medicines-decoction pieces- standard decoction, which provides a new idea for the study of quality control of dispensing granules of shellfish medicines.
7.Anemoside B4 inhibits SARS-CoV-2 replication in vitro and in vivo.
Mingyue XIAO ; Ronghua LUO ; Qinghua LIANG ; Honglv JIANG ; Yanli LIU ; Guoqiang XU ; Hongwei GAO ; Yongtang ZHENG ; Qiongming XU ; Shilin YANG
Chinese Herbal Medicines 2024;16(1):106-112
OBJECTIVE:
Anemoside B4 (AB4), the most abundant triterpenoidal saponin isolated from Pulsatilla chinensis, inhibited influenza virus FM1 or Klebsiella pneumoniae-induced pneumonia. However, the anti-SARS-CoV-2 effect of AB4 has not been unraveled. Therefore, this study aimed to determine the antiviral activity and potential mechanism of AB4 in inhibiting human coronavirus SARS-CoV-2 in vivo and in vitro.
METHODS:
The cytotoxicity of AB4 was evaluated using the Cell Counting Kit-8 (CCK8) assay. SARS-CoV-2 infected HEK293T, HPAEpiC, and Vero E6 cells were used for in vitro assays. The antiviral effect of AB4 in vivo was evaluated by SARS-CoV-2-infected hACE2-IRES-luc transgenic mouse model. Furthermore, label-free quantitative proteomics and bioinformatic analysis were performed to explore the potential antiviral mechanism of action of AB4. Type I IFN signaling-associated proteins were assessed using Western blotting or immumohistochemical staining.
RESULTS:
The data showed that AB4 reduced the propagation of SARS-CoV-2 along with the decreased Nucleocapsid protein (N), Spike protein (S), and 3C-like protease (3CLpro) in HEK293T cells. In vivo antiviral activity data revealed that AB4 inhibited viral replication and relieved pneumonia in a SARS-CoV-2 infected mouse model. We further disclosed that the antiviral activity of AB4 was associated with the enhanced interferon (IFN)-β response via the activation of retinoic acid-inducible gene I (RIG-1) like receptor (RLP) pathways. Additionally, label-free quantitative proteomic analyses discovered that 17 proteins were significantly altered by AB4 in the SARS-CoV-2 coronavirus infections cells. These proteins mainly clustered in RNA metabolism.
CONCLUSION
Our results indicated that AB4 inhibited SARS-CoV-2 replication through the RLR pathways and moderated the RNA metabolism, suggesting that it would be a potential lead compound for the development of anti-SARS-CoV-2 drugs.
8.Quantitative analysis of macular capillaries in diabetic patients using optical coherence tomography angiography
Nan LU ; Dongni YANG ; Yu GU ; Jian LIU ; Shilin YANG ; Ying GUO ; Zhiming SHAN ; Li LIU ; Wei ZHAO
International Eye Science 2024;24(1):10-17
AIM: To quantify early changes of macular capillary parameters in type 2 diabetic patients using optical coherence tomography angiography(OCTA).METHODS: Retrospective case study. A total of 49 healthy subjects, 52 diabetic patients without retinopathy(noDR)patients, and 43 mild nonproliferative diabetic retinopathy(mNPDR)patients were recruited. Capillary perfusion density, vessel length density(VLD), and average vessel diameter(AVD)were calculated from macular OCTA images(3 mm×3 mm)of the superficial capillary plexus after segmenting large vessels and the deep capillary plexus. Parameters were compared among control subjects, noDR, and mNPDR patients. The area under the receiver operating characteristic curve estimated the abilities of these parameters to detect early changes of retinal microvascular networks.RESULTS: Significant differences were found in the VLD and AVD among the three groups(P<0.001). Compared with the control group, the noDR group had significantly higher AVD(P<0.05). VLD of both layers in patients of mNPDR group was significant decreased compared with that of noDR group(all P<0.01). Deep AVD had a higher area under the curve(AUC)of 0.796 than other parameters to discriminate the noDR group from the healthy group. Deep AVD had the highest AUC of 0.920, followed by that of the deep VLD(AUC=0.899)to discriminate the mNPDR group from the healthy group.CONCLUSIONS: NoDR patients had wider AVD than healthy individuals and longer VLD than mNPDR patients in both layers. When compared with healthy individuals, deep AVD had a stronger ability than other parameters to detect early retinal capillary impairments in noDR patients.
9.Interaction Between Bruceoside B and Intestinal Flora and Its Inhibitory Effect on Human Lung Cancer A549 Cells
Lingyu SHI ; Wenmin WANG ; Yulin FENG ; Shilin YANG ; Yang WAN ; Daofeng CHEN ; Quan WEN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(13):160-166
ObjectiveTo explore the interaction between bruceoside B and gut microbiota and the inhibitory activity of its metabolites on human lung cancer A549 cells, and to explore the value of bruceoside B in the treatment of non-small cell lung cancer(NSCLC). MethodBruceoside B was co-incubated with the human gut microbiota under anoxic conditions in vitro, and ultra high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was used to analyze the metabolic transformation products. Cell counting kit-8(CCK-8) assay was performed to determine the effects of bruceoside B and its metabolites on the proliferation of human lung cancer A549 cells and the half inhibitory concentration(IC50) was calculated. Five healthy male rats were gavaged with bruceoside B(2 mg·kg-1) for 7 days after adaptive feeding. The feces of rats were collected before and after administration. 16S rRNA sequencing was used to assess gut microbiota. ResultBruceoside B was mainly metabolized to brusatol by human gut microbiota, the IC50 of bruceoside B and the conversion product to A549 cells were 1 755.50, 19.57 μmol·L-1, respectively, and the conversion product had a better activity at inhibiting A549 cells proliferation than bruceoside B. Additionally, The results of intestinal flora analysis showed no significant differences in α diversity and β diversity of gut microbiota after administration. In terms of species abundance, at the phylum level, bruceoside B decreased the relative abundance of Actinobacteriota and Proteobacteria, increased the relative abundance of Firmicutes, Patescibacteria and Cyanobacteria. At the genus level, bruceoside B decreased the relative abundance of Staphylococcus, Aerococcus and Psychrobacter, increased the relative abundance of Romboutsia, Lactobacillus, Clostridium sensu stricto 1, Norank-f-norank-o-Clostridia-UCG-014, Turicibacter, Allobaculum and Candidatus Saccharimonas. The results of functional prediction showed that the gut microbiota functional compositions were relatively stable. ConclusionBruceoside B can be deglycosylated by intestinal flora and converted into brusatol, with a significant increase in antitumor activity. The administration of bruceoside B will not cause significant changes in the structure and function of the intestinal flora, resulting in intestinal microecological balance disorders, and the administration appears to be beneficial to the intestinal flora of NSCLC patients.
10.Mechanism of action of cinobufotalin in inhibiting lung metastasis of hepatocellular carcinoma by regulating AKT-mediated epithelial-mesenchymal transition in a nude mouse model
Yue YANG ; Siyu XU ; Jue WANG ; Shilin DU ; Chunlei ZHANG ; Haiyan SONG
Journal of Clinical Hepatology 2024;40(9):1840-1847
Objective To investigate the effect and mechanism of cinobufotalin in inhibiting hepatocellular carcinoma(HCC)metastasis by regulating epithelial-mesenchymal transition(EMT).Methods A total of 36 male BALB/c nude mice,aged 6 weeks,were given injection of MHCC97H cells via the caudal vein to establish a model of HCC lung metastasis,and then the mice were randomly divided into high-and low-dose cinobufotalin groups and control group.Since the day of modeling,the mice in the high-and low-dose cinobufotalin groups were given intraperitoneal injection of cinobufotalin at a dose of 120 μL/kg and 60 μL/kg,respectively,and those in the control group were given intraperitoneal injection of normal saline,twice a week.After 8 weeks,HE staining was performed for lung tissue to measure the lung metastasis rate of HCC.MHCC97H cells were treated with high-dose(2.5 μL/mL)or low-dose(5 μL/mL)cinobufotalin for 24 hours,and wound healing assay,RT-PCR,and Western blot were used to measure cell migration ability and the expression of EMT-related molecules.MHCC97H cells were induced in a simulated hypoxic environment with CoCl2 incubation,with high-and low-dose cinobufotalin added for intervention,and wound healing assay and Western blot were used to investigate the effect of cinobufotalin on cell migration ability and EMT induced by hypoxia.Transcriptome analysis was used to investigate the effect mechanism of cinobufotalin on MHCC97H cells,and Western blot was used to observe the effect of cinobufotalin on the expression levels of protein kinase B(AKT)and phosphorylated AKT(P-AKT)in MHCC97H cells.A one-way analysis of variance was used for comparison of continuous data between multiple groups,and the least significant difference t-test was used for further comparison between two groups;the independent-samples t test was used for comparison of categorical data between two groups.Results Compared with the control group,the cinobufotalin group had a significant reduction in the lung metastasis rate of HCC.Compared with the control group,cinobufotalin intervention reduced the wound healing rate of MHCC97H cells,upregulated the expression of epithelial-type molecules(t=2.860,P<0.05),and downregulated the expression of EMT transcription factors(EMT-TFs)and mesenchymal molecules(t=3.545,2.022,2.852,and 2.341,all P<0.05).Hypoxia induction upregulated the wound healing rate of MHCC97H cells and the expression levels of mesenchymal molecules and EMT-TFs(P<0.05),and cinobufotalin intervention reversed EMT change and inhibited wound healing(P<0.05).The transcriptome analysis of MHCC97H cells showed significant gene differences between the cinobufotalin group and the control group,and cinobufotalin mainly affected the expression of genes associated with tumor,metabolism,immunity,and signal transduction,with the largest number of differentially expressed genes in the AKT signal transduction pathway.Further measurement showed that cinobufotalin intervention downregulated the expression levels of AKT,P-AKT,and P-AKT/AKT in MHCC97H cells(t=2.434,3.401,and 2.258,all P<0.05).Conclusion Cinobufotalin can inhibit the metastasis of HCC,especially hypoxia-induced HCC metastasis,and regulation of EMT mediated by the AKT signal transduction pathway in HCC cells might be one of its mechanisms of action.

Result Analysis
Print
Save
E-mail