1.Textual Research of Key Information of Classic Formula Xieqingwan Based on Ancient and Modern Literature
Yujie CHANG ; Lyuyuan LIANG ; Jialei CAO ; Xinghang LYU ; Wenxi WEI ; Xiaofang WANG ; Huizhen ZHANG ; Sai REN ; Mengqi WANG ; Bingqi WEI ; Bingxiang MA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):226-234
ObjectiveThis paper aims to systematically collect and organize ancient and modern clauses and studies containing Xieqingwan, excavate and analyze the key information of Xieqingwan, and provide a reference for facilitating the development of the classic formula Xieqingwan. MethodsThe composition, dosage, decocting methods, usage, and other key information of Xieqingwan in ancient traditional Chinese medicine books were collected and analyzed by means of literature research and metrological methods. The modern clinical application of Xieqingwan was summarized. ResultsA total of 42 pieces of effective data involving 32 ancient traditional Chinese medicine books were collected. Xieqingwan was first recorded in Xiaoer Yaozheng Zhijue. The drug origin of this formula is basically clear in the ancient traditional Chinese medicine books. The modern drug usage and decocting method were as follows: Angelicae Sinensis Radix, Gentianae Radix et Rhizoma, Chuanxiong Rhizoma, Gardenia seeds, Radix et Rhizoma Rhei, Notopterygii Rhizoma et Radix, and Saposhnikoviae Radix were grounded to fine powder, decocted with honey, and finally formed into pills with the size of a chicken head (1.5 g). It was suggested that half a pill or one pill were taken for one dose with warm Lophatheri decoction and sugar. The indications and clinical application had developed from the recordings in Xiaoer Yaozheng Zhijue and evolved from pediatrics to ophthalmic otolaryngology, neurology, dermatology, digestion, and respiratory diseases. The main pathogenesis of these diseases is heat in the liver meridian and is treated. The effect of Xieqingwan is "clearing away heat and toxicity, removing fire and relaxing the bowels, and dispersing swelling and relieving pain". It is recommended to use the corresponding preparation methods in the 2020 Edition of Pharmacopoeia of the People's Republic of China. Modern clinical studies are centered around the clinical application of Xieqingwan, which is often modified and used in treating Tourette syndrome, herpes, febrile convulsion, sleepwalking, and insomnia. ConclusionThis paper conducts a thorough textual research of the key information of Xieqingwan, induces its historic evolution, and confirms its key information, so as to provide a reference for the future development of Xieqingwan.
2.Mechanisms of Intestinal Microecology in Hyperuricemia and Traditional Chinese Medicine Intervention:A Review
Mingyuan FAN ; Jiuzhu YUAN ; Hongyan XIE ; Sai ZHANG ; Qiyuan YAO ; Luqi HE ; Qingqing FU ; Hong GAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):329-338
In recent years, hyperuricemia (HUA) has shown a rapidly increasing incidence and tends to occur in increasingly young people, with a wide range of cardiac, renal, joint, and cancerous hazards and all-cause mortality associations. Western medicine treatment has limitations such as large liver and kidney damage, medication restriction, and easy recurrence. The intestine is the major extra-renal excretion pathway for uric acid (UA), and the intestinal microecology can be regulated to promote UA degradation. It offers great potential to develop UA-lowering strategies that target the intestinal microecology, which are promising to provide safer and more effective therapeutic approaches. Traditional Chinese medicine (TCM) can treat HUA via multiple targets and multiple pathways from a holistic view, with low toxicity and side effects. Studies have shown that intestinal microecology is a crucial target for TCM in the treatment of HUA. However, its specific mechanism of action has not been fully elucidated. Focusing on the key role of intestinal microecology in HUA, this review explores the relationship between intestinal microecology and HUA in terms of intestinal flora, intestinal metabolites, intestinal UA transporters, and intestinal barriers. Furthermore, we summarize the research progress in TCM treatment of HUA by targeting the intestinal microecology, with the aim of providing references for the development of TCM intervention strategies for HUA and the direction of future research.
3.Efficacy Evaluation of Initial Double Filtration Plasmapheresis in NMOSD with Respiratory Insufficiency
Sai ZHANG ; Xi CHEN ; Tao ZENG
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(1):154-160
ObjectiveTo discuss the clinical manifestations and image features of Neuromyelitis Optica Spectrum Disorder (NMOSD)with respiratory insufficiency. We present a retrospective review about the use of double filtration plasmapheresis in the treatment of the acute attack of NMOSD in these patients. MethodsAll of our patients with central respiratory insufficiency who suffered attacks of NMOSD were retrospectively considered for inclusion. Extended Disability Status Scale(EDSS)scores were compared within six months after double membrane filtration plasma exchange. ResultsThe clinical data of the six patients included were analyzed. Magnetic Resonance Imaging confirmed that the demyelinating plaques in our patients could involve the medulla oblongata and upper spinal cord. They were managed by plasma exchange given as an initial therapy. The clinical symptoms improved significantly and the patients were successfully withdrawn from the ventilator,with EDSS scores significantly reduced (P<0.001). ConclusionDemyelination of medulla oblongata and upper spinal cord in NMOSD may lead to acute life-threatening respiratory compromise, and early initiation of double filtration plasmapheresis can be a safe and effective treatment.
4.Summary of 16-Year Observation of Reflux Esophagitis-Like Symptoms in A Natural Village in A High-Incidence Area of Esophageal Cancer
Junqing LIU ; Lingling LEI ; Yaru FU ; Xin SONG ; Jingjing WANG ; Xueke ZHAO ; Min LIU ; Zongmin FAN ; Fangzhou DAI ; Xuena HAN ; Zhuo YANG ; Kan ZHONG ; Sai YANG ; Qiang ZHANG ; Qide BAO ; Lidong WANG
Cancer Research on Prevention and Treatment 2025;52(6):461-465
Objective To investigate the screening results and factors affecting abnormal detection rates among high-risk groups of esophageal cancer and to explore effective intervention measures. Methods We investigated and collected the information on gender, education level, age, marital status, symptoms of reflux esophagitis (heartburn, acid reflux, belching, hiccup, foreign body sensation in the pharynx, and difficulty swallowing), consumption of pickled vegetables, salt use, and esophageal cancer incidence of villagers in a natural village in Wenfeng District, Anyang City, Henan Province. Changes in reflux esophagitis symptoms in the high-incidence area of esophageal cancer before and after 16 years were observed, and the relationship of such changes with esophageal cancer was analyzed. Results In 2008, 711 cases were epidemiologically investigated, including
5.Molecular Mechanisms of Exercise in Promoting Health: a Multi-omics Analysis of Metabolic Biomarkers
Progress in Biochemistry and Biophysics 2025;52(6):1631-1644
The molecular mechanisms underlying the health-promoting effects of exercise remain to be fully elucidated. As a bridge between genetics, exercise and phenotype, metabolites can be detected in high throughput through metabolomics, offering valuable insights into mechanism elucidation and disease prediction. Metabolic homeostasis is intricately regulated by various factors, including enzyme activity and transporters. Integration of multiple omics technologies such as genomics, transcriptomics, and proteomics enables the comprehensive elucidation of the metabolic network modulated by exercise interventions and facilitates the identification of key metabolic markers. This review summarizes the current research advancements, biological functions, discovery methods, and applications of exercise-induced multi omics metabolic markers, furnishing a theoretical foundation for understanding the mechanisms of exercise-induced health benefits and enabling precision interventions. Relevant literatures from 2000 to 2025 were systematically retrieved from databases including PubMed, CNKI and other databases with the keywords such as “multi-omics”, “metabolic biomarkers”, “exercise”, “health”. Subsequently, the identified literature was meticulously screened to meet the specified criteria and was subsequently incorporated into the study. (1) Exercise induces profound alterations in metabolite levels within the body, with particular emphasis on markers associated with sugar, lipid, and protein metabolism being extensively investigated. As an intensity marker, lactate is implicated in the regulation of fat browning (UCP-1), angiogenesis (VEGF), mitochondrial function (PGC-1α) and metabolic homeostasis (HIF-1α/CES2). Following resistance training, pyruvate levels increase, and an aberrant pyruvate to lactate ratio (approximately 10) may indicate mitochondrial dysfunction. Supplementation with pyruvate has been shown to reduce weight and lipid levels. Ketone bodies regulate metabolism by inhibiting lipolytic enzyme activity and promoting insulin secretion. Plasma ketone body concentrations rise after high-intensity exercise, with levels positively associated with central fatigue. Carnitine levels elevate post-endurance training, and supplementation with carnitine has been linked to increased lean body mass and enhanced cognitive function in older individuals. Serum alanine levels rise following resistance training and, as a precursor of carnosine, supplementation can elevate carnosine concentration by 80%, exerting antioxidant and neuroprotective effects. Creatine, a pivotal molecule in phosphogen energy supply, exhibits a 93% increase in plasma levels post-marathon, with its metabolism intricately related to AMPK activation. (2) Metabolites play a crucial role in disease prediction, particularly in the context of cardiovascular disease where 18 metabolites including glycoprotein acetyl and ketone bodies have been shown to enhance the performance of prediction models. Similarly, in diabetes research, acylcarnitine and other metabolites can improve prediction model efficacy. The combination of multiple metabolites has been found to substantially enhance predictive capabilities for various conditions such as cancer, aging, and other risks, surpassing the predictive power of traditional indicators. (3) Genomics investigations have unveiled the genetic underpinnings of exercise-related metabolites. VO2max, a significant exercise phenotype with heritability estimates ranging from 0.59 to 0.66, exhibits a negative correlation with the susceptibility to diabetes and cardiovascular disease. SNPs associated with VO2max, such as variants in the FSHR gene, are positively linked to serum creatinine levels. Reduced creatinine levels have been associated with an elevated risk of T2DM. These findings suggest that creatinine serves as a potential marker of exercise metabolism. (4) Transcriptomic studies have elucidated the molecular mechanisms by which exercise modulates metabolites. Acute exercise induces rapid alterations in the expression profiles of 9 132 transcripts. Exercise elicits upregulation of genes involved in the fructose/mannose metabolic pathway (such as SORD, PFKFB3), suggesting these metabolites may serve as pivotal mediators in the beneficial effects of exercise on Parkinson’s disease. Altitude training enhances the expression of the PHOSPHO1 gene, which encodes an enzyme facilitating choline synthesis. Choline deficiency has been linked to insulin resistance. Choline supplementation has been shown to augment the effects of resistance training, underscoring the significance of choline as a key marker in exercise-mediated metabolic health promotion. (5) Proteomic analyses have unveiled the key mechanisms through which exercise modulates metabolism. Endurance training induces significant alterations in myofibrillar expression, with 237 slow muscles and 172 fast muscles proteins showing differential regulation, of which 65% are associated with metabolism, including ACSL1 and ECHS1. Various training modalities elicit distinct phosphorylation modifications, exemplified by the negative correlation between LDHA3 phosphorylation and lactate levels. Endurance training upregulates SLC25A15 expression in adipose tissue, enhancing arginine synthesis. The post-exercise elevation of plasma GPLD1 levels mimics the neuroprotective effects of exercise on the brain. These findings present novel targets for investigating exercise-related metabolic markers. The application of multi omics technologies has expedited the identification and mechanistic analysis of both established and novel sports-related metabolic markers like lactate. Integrated multi omics strategies (e.g., genome-metabolome) enable the simultaneous examination of metabolic markers and their regulatory mechanisms, facilitating the discovery of exercise-related genetic markers and pivotal regulatory proteins. However, challenges persist, including inadequate data integration and a lack of standardization. Future endeavors should focus on developing dynamic monitoring tools, integrating state-of-the-art approaches such as single-cell/spatial omics, and leveraging AI algorithms for optimized analysis to construct precise predictive models for maximizing health benefits in exercise.
6.Pathogenesis and Treatment of Atopic Dermatitis from the Theory of Pathogens Intruding Eight Weak Areas
Zhengwen TENG ; Nan LI ; Sai ZHANG ; Xiaohan HANG ; Fengchuan ZHANG ; Yuanwen LI
Journal of Traditional Chinese Medicine 2025;66(15):1548-1552
Based on the discussion of "eight weak areas" in The Inner Canon of Yellow Emperor (《黄帝内经》), combined with the typical rash manifestations of atopic dermatitis, it is believed that atopic dermatitis is mostly deficiency-excess complex, and that pathogens intruding eight weak areas are the core of its pathogenesis. The external cause is exterior deficiencies, with heat, wind, dampness and other pathogenic qi attacking. The heart, lungs, kidneys out of balance, and excess pathogen are the internal cause, in which fire constraint and excessive heat are the basis of the disease, the wind invading leads to the progress of the changes, dampness obstructing channels and colla-terals make the condition persistent. Internal and external pathogens combination and retention result to the course of the disease lingering and difficult to cure. The internal treatment is to regulate zang-fu organs, and the formula could use self-prescribed modified Qingrun Tongluo Decoction (清润通络汤), clearing heart and reducing fire in order to clear the heat and cool the blood, moistening lungs and generating metal to consolidate the exterior and dispel the wind, and nourishing kidneys and draining water to dispel the dampness and activate the collaterals. The external treatment applies maceration, fire acupuncture, wrapping to dredge the eight weak areas and regulate qi and blood in channel, so as to expel pathogens.
7.Protective effect of Humanin on rotenone-induced dopamine neuron toxicity
Yaohui SHAN ; Qifu ZHANG ; Jin CHENG ; Feng YE ; Xi ZHANG ; Wenpei YU ; Xiaogang WANG ; Yuanpeng ZHAO ; Guorong DAN ; Mingliang CHEN ; Yan SAI
Journal of Army Medical University 2024;46(7):670-677
Objective To investigate the mechanism and protective effect of Humanin(HN)on rotenone(Rot)-induced toxic damage for dopamine neurons.Methods The Rot-poisened PC12 cell model was constructed,and the control group,the Rot poisening group,the HN pretreated Rot poisening group,and the HN treatment group were set up.ELISA was used to detect the content of HN inside and outside of Rot-infected cells,CCK-8 assay was used to detect cell viability,and ATP detection kit was used to detect the intracellular ATP content.Dichloro-dihydro-fluorescein diacetate(DCFH-DA)assay was used to detect the level of reactive oxygen species(ROS)in cells.Western blotting was performed to detect the expression level of mitochondrial autophagy regulatory proteins Pink1,Parkin,p62,LC3,mitochondrial biogenesis regulatory protein PGC1α,division/fusion regulatory proteins OPA1,MFN2,DRP1,p-DRP1 and antioxidant stress regulatory proteins Keap1 and Nrf2.HBAD-mcherry-EGFP-LC3 adenovirus transfected cells was used to observed the number of autophagosomes and autophagolysosomes.Results The results showed that the intracellular concentration of HN in PC12 in the Rot poisening group was significantly higher than that in the control group(P<0.05);Compared with the control group,the Rot poisening group had significantly decreased activity of PC12 cells,decreased ATP content and increased production of ROS.After the poisen of Rot in PC12 cells,the expression of Pink1 and p-Parkin,the ratio of LC3Ⅱ/LC3Ⅰ and the expression of p-DRP1 in mitochondrial fusion protein was increased,while the expression of p62,the expression of mitochondrial biogenesis protein PGC1 α,mitochondrial fusion proteins MFN2 and OPA1,and antioxidant stress proteins Keap1 and Nrf2 were decreased(all P<0.05).The number of autophagosomes and autophagolysosomes in PC12 cells in the Rot poisening group was higher than that in the control group(P<0.05),and HN pretreatment(20 μmol/L)could significantly improve the changes mentioned above caused by Rot poisening(P<0.05).Conclusion HN ameliorates Rot-induced toxic damage for dopamine neurons by inhibiting mitophagy and mitochondrial division and promoting mitochondrial biogenesis and fusion,and anti-oxidative stress.
8.Involvement of RNF99 in potential link between ubiquitination and septic shock via TAK1/NF-κB signal-ing pathway
Chi ZHANG ; Sai HU ; Jing WANG ; Fengqiang XIA ; Xiaoying CHENG ; Zeying GAN
The Journal of Practical Medicine 2024;40(5):615-620,626
Objective To explore the potential relationship between ubiquitination of transforming growth factor kinase 1(TAK1)/nuclear factor-κB(NF-κB)signaling pathway mediated by ring finger protein 99(RNF99)and septic acute respiratory distress syndrome(ARDS).Methods Plasmid and siRNA transfection were conducted to overexpress or knock down RNF99 in MLE12,and expressions of p65 phosphate and p65 protein were analyzed.The protein interaction between RNF99 and TRAF6 or TAK1 was analyzed by immunoprecipitation assay.Forty mice were randomly divided into WT plus PBS,WT plus LPS,RNF99 specific expression(TG)plus PBS,and TG plus LPS groups,with 10 mice in each group.Sepsis was induced by intraperitoneal injection of 30 mg/kg LPS.Results As compared with vector group,protein expression levels of TRAF6 and TAK1 in MLE12 cells decreased significantly in RNF99 group(P<0.05).Ubiquitinated TRAF6 protein increased in MLE12 cells with RNF99 knockdown.As compared with LPS plus vector group,phosphorylation level of p65 in MLE12 cells was signifi-cantly lower in LPS plus RNF99 group(P<0.05).As compared with si-NC group,protein expression levels of RNF99 and IκBα in si-RNF99 group decreased significantly(P<0.05).As compared with LPS plus si-NC group,phosphorylation level of p65 in LPS plus si-RNF99 group increased significantly(P<0.05).The staining percentage of CD68 macrophages in lung tissues was significantly lower in TG plus LPS group than in WT plus LPS group(P<0.05).Phosphorylation level of p65 in lung tissues was significantly lower in TG plus LPS group than in WT plus LPS group(P<0.05).Conclusion RNF99 regulates NF-κB signaling pathway by interacting with the key regulator of NF-κB signaling pathway(TRAF6/TAK1),and improves lung injury after intraperitoneal injection of LPS in mice.
9.Recombinant mouse MANF participates in the protection of myocardial injury induced by sepsis by activating SIRT1/AMPK signaling pathway
Hao He ; Cheng Li ; Sai Hu ; Fengqiang Xia ; Chi Zhang ; Jing Wang
Acta Universitatis Medicinalis Anhui 2024;59(11):1981-1988
Objective:
To investigate the protective effect of neurotrophic factor(MANF) derived from midbrain astrocytes on myocardial injury induced by sepsis by activating SIRT1/AMPK signaling pathway.
Methods:
48 mice were randomly divided into 4 groups: control group, recombinant mouse MANF(rmMANF) group, cecal ligation and puncture(CLP) group and CLP+rmMANF group, with 12 mice in each group.The survival rate, sepsis score, anal temperature, blood biochemical indexes, pathological indexes of myocardial injury and the expression of endoplasmic reticulum stress(ERS) related proteins were detected 8 h after CLP.H9C2 cells were divided into control group(Con),LPS group, LPS+rmMANF group, LPS+rmMANF+EX527 group and LPS+rmMANF+Cpd C group.The cells were collected after 24 h treatment with LPS,and the expression of ERS protein and apoptosis in cells were analyzed.
Results:
Compared with CLP group, the sepsis score and serum Lactate dehydrogenase(LDH),creatine kinase(CK),aspartateaminotransferase(AST) and blood urea nitrogen(BUN) levels in CLP+rmMANF group decreased significantly(P<0.01),and the anal temperature and serum albumin(ALB) levels increased significantly(P<0.05).Compared with CLP group, the expression of MANF in CLP+rmMANF group increased significantly(P<0.01),and the expression of glucose-regulated protein 78(GRP78),C/EBP homologous protein(CHOP) and the percentage of TUNEL positive cells decreased significantly(P<0.05).In vitro, LPS stimulation down-regulated the expression of SIRT1 and AMPK in H9C2 cells, while rmMANF further increased the expression level of SIRT1 and AMPK.Compared with LPS+rmMANF group, the expression of GRP78 and CHOP protein and the apoptosis rate of H9C2 cells in LPS+rmMANF+EX527 group and LPS+rmMANF+Cpd C group increased significantly(P<0.05).
Conclusion
rmMANF inhibits ERS related to sepsis-induced myocardial injury by activating SIRT1/AMPK signaling pathway, thereby protecting myocardial injury.
10.Effect of Simo decoction on the regulation of NLRP3/Caspase-1/GSDMD signal pathway on duodenal microinflammation in rats with functional dyspepsia
Qin LIU ; Xiao-Yuan LIN ; Ling-Feng YANG ; Qian LUO ; Yun-Zong HAN ; Si-Qing CHEN ; Hai-Yue ZHANG ; Shu ZHOU ; Sai-Nan ZHOU
The Chinese Journal of Clinical Pharmacology 2024;40(1):67-71
Objective To investigate the effects of Simo decoction on duodenal microinflammation and NOD-like receptor thermal protein domain associated protein 3(NLRP3)/cysteinyl aspartate-specific proteinase-1(Caspase-1)/gasdermin D(GSDMD)signaling pathway in rats with functional dyspepsia(FD).Methods The FD model was established by multifactorial method.SD rats were randomly divided into normal group,model group(FD model),positive control group(gavage administration of 0.305 mg·kg-1 mosapride injection)and experimental-H,-M,-L groups(gavage administration of 5.62,2.81,1.40 g·kg-1 Simo decoction).Small intestinal advancement rate and gastric emptying rate was determined;the levels of interleukin(IL)-1 β and IL-18 in serum were determined by enzyme linked immunosorbent assay(ELISA);the protein expression of NLRP3 and GSDMD in duodenal tissue was detected by Western blotting.Results The gastric emptying rates of normal,model,positive control and experimental-H,-M,-Lgroupswere(58.34±5.72)%,(29.16±8.37)%,(48.77±6.10)%,(48.35±6.04)%,(48.20±3.49)%and(39.24±4.20)%;the small intestinal propulsion rates were(82.01±7.55)%,(41.95±9.53)%,(64.61±10.18)%,(75.04±9.76)%,(60.58±7.13)%and(45.89±7.40)%;serum IL-1 β expression were(12.86±0.88),(43.73±4.60),(18.84±0.86),(24.61±1.57),(19.14±0.77)and(29.04±0.72)pg·mL-1;IL-18 expressions were(95.00±3.74),(170.60±8.78),(108.50±3.05),(118.90±3.45),(99.90±8.70)and(141.00±3.71)pg·mL-1;the relative expression levels of NLRP3 proteins were 0.32±0.02,0.84±0.05,0.42±0.03,0.48±0.02,0.61±0.04 and 0.62±0.05;the relative expression levels of GSDMD proteins were 0.34±0.05,0.93±0.06,0.35±0.03,0.52±0.02,0.53±0.06 and 0.55±0.05,respectively.Compared with the normal group,the above indexes in the model group have statistical significance;compared with the model group,the above indexes in the experimental-H group and the positive control group also have statistical significance(P<0.01 or P<0.05).Conclusion Simo decoction can effectively improve the general condition and duodenal microinflammation in FD rats,and the mechanism may be related to the inhibition of duodenal NLRP3/Caspase-1/GSDMD signaling pathway.


Result Analysis
Print
Save
E-mail