1.Advances on the production of organic acids by yeast.
Ruiyuan ZHANG ; Yifan ZHU ; Duwen ZENG ; Shihao WEI ; Yachao FAN ; Sha LIAO ; Xinqing ZHAO ; Fengli ZHANG ; Lin ZHANG
Chinese Journal of Biotechnology 2023;39(6):2231-2247
		                        		
		                        			
		                        			Organic acids are organic compounds that can be synthesized using biological systems. They often contain one or more low molecular weight acidic groups, such as carboxyl group and sulphonic group. Organic acids are widely used in food, agriculture, medicine, bio-based materials industry and other fields. Yeast has unique advantages of biosafety, strong stress resistance, wide substrate spectrum, convenient genetic transformation, and mature large-scale culture technology. Therefore, it is appealing to produce organic acids by yeast. However, challenges such as low concentration, many by-products and low fermentation efficiency still exist. With the development of yeast metabolic engineering and synthetic biology technology, rapid progress has been made in this field recently. Here we summarize the progress of biosynthesis of 11 organic acids by yeast. These organic acids include bulk carboxylic acids and high-value organic acids that can be produced naturally or heterologously. Finally, future prospects in this field were proposed.
		                        		
		                        		
		                        		
		                        			Saccharomyces cerevisiae/metabolism*
		                        			;
		                        		
		                        			Organic Chemicals
		                        			;
		                        		
		                        			Carboxylic Acids/metabolism*
		                        			;
		                        		
		                        			Metabolic Engineering
		                        			;
		                        		
		                        			Fermentation
		                        			;
		                        		
		                        			Acids
		                        			
		                        		
		                        	
2.Advances in the production of chemicals by organelle compartmentalization in Saccharomyces cerevisiae.
Tao LUAN ; Mengqi YIN ; Ming WANG ; Xiulong KANG ; Jianzhi ZHAO ; Xiaoming BAO
Chinese Journal of Biotechnology 2023;39(6):2334-2358
		                        		
		                        			
		                        			As a generally-recognized-as-safe microorganism, Saccharomyces cerevisiae is a widely studied chassis cell for the production of high-value or bulk chemicals in the field of synthetic biology. In recent years, a large number of synthesis pathways of chemicals have been established and optimized in S. cerevisiae by various metabolic engineering strategies, and the production of some chemicals have shown the potential of commercialization. As a eukaryote, S. cerevisiae has a complete inner membrane system and complex organelle compartments, and these compartments generally have higher concentrations of the precursor substrates (such as acetyl-CoA in mitochondria), or have sufficient enzymes, cofactors and energy which are required for the synthesis of some chemicals. These features may provide a more suitable physical and chemical environment for the biosynthesis of the targeted chemicals. However, the structural features of different organelles hinder the synthesis of specific chemicals. In order to ameliorate the efficiency of product biosynthesis, researchers have carried out a number of targeted modifications to the organelles grounded on an in-depth analysis of the characteristics of different organelles and the suitability of the production of target chemicals biosynthesis pathway to the organelles. In this review, the reconstruction and optimization of the biosynthesis pathways for production of chemicals by organelle mitochondria, peroxisome, golgi apparatus, endoplasmic reticulum, lipid droplets and vacuole compartmentalization in S. cerevisiae are reviewed in-depth. Current difficulties, challenges and future perspectives are highlighted.
		                        		
		                        		
		                        		
		                        			Saccharomyces cerevisiae/metabolism*
		                        			;
		                        		
		                        			Saccharomyces cerevisiae Proteins/metabolism*
		                        			;
		                        		
		                        			Golgi Apparatus/metabolism*
		                        			;
		                        		
		                        			Metabolic Engineering
		                        			;
		                        		
		                        			Vacuoles/metabolism*
		                        			
		                        		
		                        	
3.Tools for large-scale genetic manipulation of yeast genome.
Jieyi LI ; Hanze TONG ; Yi WU
Chinese Journal of Biotechnology 2023;39(6):2465-2484
		                        		
		                        			
		                        			Large-scale genetic manipulation of the genome refers to the genetic modification of large fragments of DNA using knockout, integration and translocation. Compared to small-scale gene editing, large-scale genetic manipulation of the genome allows for the simultaneous modification of more genetic information, which is important for understanding the complex mechanisms such as multigene interactions. At the same time, large-scale genetic manipulation of the genome allows for larger-scale design and reconstruction of the genome, and even the creation of entirely new genomes, with great potential in reconstructing complex functions. Yeast is an important eukaryotic model organism that is widely used because of its safety and easiness of manipulation. This paper systematically summarizes the toolkit for large-scale genetic manipulation of the yeast genome, including recombinase-mediated large-scale manipulation, nuclease-mediated large-scale manipulation, de novo synthesis of large DNA fragments and other large-scale manipulation tools, and introduces their basic working principles and typical application cases. Finally, the challenges and developments in large-scale genetic manipulation are presented.
		                        		
		                        		
		                        		
		                        			DNA
		                        			;
		                        		
		                        			Gene Editing
		                        			;
		                        		
		                        			Genetic Engineering
		                        			;
		                        		
		                        			Saccharomyces cerevisiae/genetics*
		                        			;
		                        		
		                        			Translocation, Genetic
		                        			
		                        		
		                        	
4.Functional analysis on sucrose transporters in sweet potato.
Yiran LIU ; Zhengdan WU ; Weitai WU ; Chaobin YANG ; Cairui CHEN ; Kai ZHANG
Chinese Journal of Biotechnology 2023;39(7):2772-2793
		                        		
		                        			
		                        			Sweet potato is an important food crop that can also be used as an industrial raw material. Sucrose is the main form of long-distance carbohydrate transport in plants, and sucrose transporter (SUT) regulates the transmembrane transport and distribution of sucrose during plant growth and metabolism. Moreover, SUT plays a key role in phloem mediated source-to-sink sucrose transport and physiological activities, supplying sucrose for the sink tissues. In this study, the full-length cDNA sequences of IbSUT62788 and IbSUT81616 were obtained by rapid amplification of cDNA ends (RACE) cloning according to the transcripts of the two SUT coding genes which were differentially expressed in sweet potato storage roots with different starch properties. Phylogenetic analysis was performed to clarify the classification of IbSUT62788 and IbSUT81616. The subcellular localization of IbSUT62788 and IbSUT81616 was determined by transient expression in Nicotiana benthamiana. The function of IbSUT62788 and IbSUT81616 in sucrose and hexose absorption and transport was identified using yeast functional complementarity system. The expression pattern of IbSUT62788 and IbSUT81616 in sweet potato organs were analyzed by real-time fluorescence quantitative PCR (RT-qPCR). Arabidopsis plants heterologous expressing IbSUT62788 and IbSUT81616 genes were obtained using floral dip method. The differences in starch and sugar contents between transgenic and wild-type Arabidopsis were compared. The results showed IbSUT62788 and IbSUT81616 encoded SUT proteins with a length of 505 and 521 amino acids, respectively, and both proteins belonged to the SUT1 subfamily. IbSUT62788 and IbSUT81616 were located in the cell membrane and were able to transport sucrose, glucose and fructose in the yeast system. In addition, IbSUT62788 was also able to transport mannose. The expression of IbSUT62788 was higher in leaves, lateral branches and main stems, and the expression of IbSUT81616 was higher in lateral branches, stems and storage roots. After IbSUT62788 and IbSUT81616 were heterologously expressed in Arabidopsis, the plants grew normally, but the biomass increased. The heterologous expression of IbSUT62788 increased the soluble sugar content, leaf size and 1 000-seed weight of Arabidopsis plants. Heterologous expression of IbSUT81616 increased starch accumulation in leaves and root tips and 1 000-seed weight of seeds, but decreased soluble sugar content. The results obtained in this study showed that IbSUT62788 and IbSUT81616 might be important genes regulating sucrose and sugar content traits in sweet potato. They might carry out physiological functions on cell membrane, such as transmembrane transport of sucrose, sucrose into and out of sink tissue, as well as transport and unloading of sucrose into phloem. The changes in traits result from their heterologous expression in Arabidopsis indicates their potential in improving the yield of other plants or crops. The results obtained in this study provide important information for revealing the functions of IbSUT62788 and IbSUT81616 in starch and glucose metabolism and formation mechanism of important quality traits in sweet potato.
		                        		
		                        		
		                        		
		                        			Ipomoea batatas/metabolism*
		                        			;
		                        		
		                        			Arabidopsis/metabolism*
		                        			;
		                        		
		                        			Sucrose/metabolism*
		                        			;
		                        		
		                        			Saccharomyces cerevisiae/metabolism*
		                        			;
		                        		
		                        			DNA, Complementary
		                        			;
		                        		
		                        			Phylogeny
		                        			;
		                        		
		                        			Plants, Genetically Modified/genetics*
		                        			;
		                        		
		                        			Membrane Transport Proteins/metabolism*
		                        			;
		                        		
		                        			Starch/metabolism*
		                        			;
		                        		
		                        			Plant Proteins/metabolism*
		                        			;
		                        		
		                        			Gene Expression Regulation, Plant
		                        			
		                        		
		                        	
5.Construction of cell factories for production of patchoulol in Saccharomyces cerevisiae.
Shuang GUO ; Dong WANG ; Ting-Ting YANG ; Wen-Hao LI ; Rong-Sheng LI ; Guo-Wei ZHANG ; Xue-Li ZHANG ; Zhu-Bo DAI
China Journal of Chinese Materia Medica 2023;48(9):2316-2324
		                        		
		                        			
		                        			Patchoulol is an important sesquiterpenoid in the volatile oil of Pogostemon cablin, and is also considered to be the main contributing component to the pharmacological efficacy and fragrance of P. cablin oil, which has antibacterial, antitumor, antioxidant, and other biological activities. Currently, patchoulol and its essential oil blends are in high demand worldwide, but the traditional plant extraction method has many problems such as wasting land and polluting the environment. Therefore, there is an urgent need for a new method to produce patchoulol efficiently and at low cost. To broaden the production method of patchouli and achieve the heterologous production of patchoulol in Saccharomyces cerevisiae, the patchoulol synthase(PS) gene from P. cablin was codon optimized and placed under the inducible strong promoter GAL1 to transfer into the yeast platform strain YTT-T5, thereby obtaining strain PS00 with the production of(4.0±0.3) mg·L~(-1) patchoulol. To improve the conversion rate, this study used protein fusion method to fuse SmFPS gene from Salvia miltiorrhiza with PS gene, leading to increase the yield of patchoulol to(100.9±7.4) mg·L~(-1) by 25-folds. By further optimizing the copy number of the fusion gene, the yield of patchoulol was increased by 90% to(191.1±32.7) mg·L~(-1). By optimizing the fermentation process, the strain was able to achieve a patchouli yield of 2.1 g·L~(-1) in a high-density fermentation system, which was the highest yield so far. This study provides an important basis for the green production of patchoulol.
		                        		
		                        		
		                        		
		                        			Saccharomyces cerevisiae/metabolism*
		                        			;
		                        		
		                        			Sesquiterpenes/metabolism*
		                        			;
		                        		
		                        			Pogostemon
		                        			;
		                        		
		                        			Oils, Volatile/metabolism*
		                        			
		                        		
		                        	
7.Sterol transport proteins in yeast: a review.
Yu WANG ; Tao WU ; Xuqian FAN ; Haihua RUAN ; Feiyu FAN ; Xueli ZHANG
Chinese Journal of Biotechnology 2023;39(8):3204-3218
		                        		
		                        			
		                        			Sterols are a class of cyclopentano-perhydrophenanthrene derivatives widely present in living organisms. Sterols are important components of cell membranes. In addition, they also have important physiological and pharmacological activities. With the development of synthetic biology and metabolic engineering technology, yeast cells are increasingly used for the heterologous synthesis of sterols in recent years. Nevertheless, since sterols are hydrophobic macromolecules, they tend to accumulate in the membrane fraction of yeast cells and consequently trigger cytotoxicity, which hampers the further improvement of sterols yield. Therefore, revealing the mechanism of sterol transport in yeast, especially understanding the working principle of sterol transporters, is vital for designing strategies to relieve the toxicity of sterol accumulation and increasing sterol yield in yeast cell factories. In yeast, sterols are mainly transported through protein-mediated non-vesicular transport mechanisms. This review summarizes five types of sterol transport-related proteins that have been reported in yeast, namely OSBP/ORPs family proteins, LAM family proteins, ABC transport family proteins, CAP superfamily proteins, and NPC-like sterol transport proteins. These transporters play important roles in intracellular sterol gradient distribution and homeostasis maintenance. In addition, we also review the current status of practical applications of sterol transport proteins in yeast cell factories.
		                        		
		                        		
		                        		
		                        			Saccharomyces cerevisiae/genetics*
		                        			;
		                        		
		                        			Sterols
		                        			;
		                        		
		                        			Phytosterols
		                        			;
		                        		
		                        			Biological Transport
		                        			;
		                        		
		                        			ATP-Binding Cassette Transporters/genetics*
		                        			
		                        		
		                        	
8.Effect of mitophagy related genes on the antioxidant properties of Saccharomyces cerevisiae.
Wanqi CHENG ; Qianyao HOU ; Chunfeng LIU ; Chengtuo NIU ; Feiyun ZHENG ; Qi LI ; Jinjing WANG
Chinese Journal of Biotechnology 2023;39(8):3464-3480
		                        		
		                        			
		                        			Mitophagy is a process whereby cells selectively remove mitochondria through the mechanism of autophagy, which plays an important role in maintaining cellular homeostasis. In order to explore the effect of mitophagy genes on the antioxidant activities of Saccharomyces cerevisiae, mutants with deletion or overexpression of mitophagy genes ATG8, ATG11 and ATG32 were constructed respectively. The results indicated that overexpression of ATG8 and ATG11 genes significantly reduced the intracellular reactive oxygen species (ROS) content upon H2O2 stress for 6 h, which were 61.23% and 46.35% of the initial state, respectively. Notable, overexpression of ATG8 and ATG11 genes significantly increased the mitochondrial membrane potential (MMP) and ATP content, which were helpful to improve the antioxidant activities of the strains. On the other hand, deletion of ATG8, ATG11 and ATG32 caused mitochondrial damage and significantly decreased cell vitality, and caused the imbalance of intracellular ROS. The intracellular ROS content significantly increased to 174.27%, 128.68%, 200.92% of the initial state, respectively, upon H2O2 stress for 6 h. The results showed that ATG8, ATG11 and ATG32 might be potential targets for regulating the antioxidant properties of yeast, providing a new clue for further research.
		                        		
		                        		
		                        		
		                        			Mitophagy/genetics*
		                        			;
		                        		
		                        			Saccharomyces cerevisiae/genetics*
		                        			;
		                        		
		                        			Antioxidants
		                        			;
		                        		
		                        			Hydrogen Peroxide/pharmacology*
		                        			;
		                        		
		                        			Reactive Oxygen Species
		                        			
		                        		
		                        	
9.Construction of a 10rolGLP-1-expressing glucose-lowing Saccharomyces cerevisiae by CRISPR/Cas9 technique.
Jinrui ZHANG ; Jiaming YANG ; Yujie MENG ; Shuguang XING ; Qiqi LIU ; Minggang LI
Chinese Journal of Biotechnology 2023;39(9):3747-3756
		                        		
		                        			
		                        			To develop a novel glucose-lowering biomedicine with potential benefits in the treatment of type 2 diabetes, we used the 10rolGLP-1 gene previously constructed in our laboratory and the CRISPR/Cas9 genome editing technique to create an engineered Saccharomyces cerevisiae strain. The gRNA expression vector pYES2-gRNA, the donor vector pNK1-L-PGK-10rolGLP-1-R and the Cas9 expression vector pGADT7-Cas9 were constructed and co-transformed into S. cerevisiae INVSc1 strain, with the PGK-10rolGLP-1 expressing unit specifically knocked in through homologous recombination. Finally, an S. cerevisiae strain highly expressing the 10rolGLP-1 with glucose-lowering activity was obtained. SDS-PAGE and Western blotting results confirmed that two recombinant strains of S. cerevisiae stably expressed the 10rolGLP-1 and exhibited the desired glucose-lowering property when orally administered to mice. Hypoglycemic experiment results showed that the recombinant hypoglycemic S. cerevisiae strain offered a highly hypoglycemic effect on the diabetic mouse model, and the blood glucose decline was adagio, which can avoid the dangerous consequences caused by rapid decline in blood glucose. Moreover, the body weight and other symptoms such as polyuria also improved significantly, indicating that the orally hypoglycemic S. cerevisiae strain that we constructed may develop into an effective, safe, economic, practical and ideal functional food for type 2 diabetes mellitus treatment.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Saccharomyces cerevisiae/metabolism*
		                        			;
		                        		
		                        			CRISPR-Cas Systems
		                        			;
		                        		
		                        			Glucose/metabolism*
		                        			;
		                        		
		                        			Blood Glucose/metabolism*
		                        			;
		                        		
		                        			Diabetes Mellitus, Type 2/therapy*
		                        			;
		                        		
		                        			Hypoglycemic Agents/metabolism*
		                        			
		                        		
		                        	
10.Expression of BmSPI38 tandem multimers in Escherichia coli and its antifungal activity.
Youshan LI ; Yuan WANG ; Rui ZHU ; Xi YANG ; Meng WEI ; Zhaofeng ZHANG ; Changqing CHEN
Chinese Journal of Biotechnology 2023;39(10):4275-4294
		                        		
		                        			
		                        			The aim of this study was to prepare tandem multimeric proteins of BmSPI38, a silkworm protease inhibitor, with better structural homogeneity, higher activity and stronger antifungal ability by protein engineering. The tandem multimeric proteins of BmSPI38 were prepared by prokaryotic expression technology. The effects of tandem multimerization on the structural homogeneity, inhibitory activity and antifungal ability of BmSPI38 were explored by in-gel activity staining of protease inhibitor, protease inhibition assays and fungal growth inhibition experiments. Activity staining showed that the tandem expression based on the peptide flexible linker greatly improved the structural homogeneity of BmSPI38 protein. Protease inhibition experiments showed that the tandem trimerization and tetramerization based on the linker improved the inhibitory ability of BmSPI38 to microbial proteases. Conidial germination assays showed that His6-SPI38L-tetramer had stronger inhibition on conidial germination of Beauveria bassiana than that of His6-SPI38-monomer. Fungal growth inhibition assay showed that the inhibitory ability of BmSPI38 against Saccharomyces cerevisiae and Candida albicans could be enhanced by tandem multimerization. The present study successfully achieved the heterologous active expression of the silkworm protease inhibitor BmSPI38 in Escherichia coli, and confirmed that the structural homogeneity and antifungal ability of BmSPI38 could be enhanced by tandem multimerization. This study provides important theoretical basis and new strategies for cultivating antifungal transgenic silkworm. Moreover, it may promote the exogenous production of BmSPI38 and its application in the medical field.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antifungal Agents/pharmacology*
		                        			;
		                        		
		                        			Escherichia coli/metabolism*
		                        			;
		                        		
		                        			Proteins/metabolism*
		                        			;
		                        		
		                        			Protease Inhibitors/chemistry*
		                        			;
		                        		
		                        			Bombyx/chemistry*
		                        			;
		                        		
		                        			Saccharomyces cerevisiae/metabolism*
		                        			;
		                        		
		                        			Peptide Hydrolases
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail