1.Shank3 Overexpression Leads to Cardiac Dysfunction in Mice by Disrupting Calcium Homeostasis in Cardiomyocytes
Tae Hee KO ; Yoonhee KIM ; Chunmei JIN ; Byeongil YU ; Minju LEE ; Phuong Kim LUONG ; Tran Nguyet TRINH ; Yeji YANG ; Hyojin KANG ; Yinhua ZHANG ; Ruiying MA ; Kwangmin YOO ; Jungmin CHOI ; Jin Young KIM ; Sun-Hee WOO ; Kihoon HAN ; Jong-Il CHOI
Korean Circulation Journal 2025;55(2):100-117
Background and Objectives:
SH3 and multiple ankyrin repeat domains 3 (Shank3) proteins play crucial roles as neuronal postsynaptic scaffolds. Alongside neuropsychiatric symptoms, individuals with SHANK3 mutations often exhibit symptoms related to dysfunctions in other organs, including the heart. However, detailed insights into the cardiac functions of Shank3 remain limited. This study aimed to characterize the cardiac phenotypes of Shank3-overexpressing transgenic mice and explore the underlying mechanisms.
Methods:
Cardiac histological analysis, electrocardiogram and echocardiogram recordings were conducted on Shank3-overexpressing transgenic mice. Electrophysiological properties, including action potentials and L-type Ca2+ channel (LTCC) currents, were measured in isolated cardiomyocytes. Ca2+ homeostasis was assessed by analyzing cytosolic Ca2+transients and sarcoplasmic reticulum Ca2+ contents. Depolarization-induced cell shortening was examined in cardiomyocytes. Immunoprecipitation followed by mass spectrometrybased identification was employed to identify proteins in the cardiac Shank3 interactome.Western blot and immunocytochemical analyses were conducted to identify changes in protein expression in Shank3-overexpressing transgenic cardiomyocytes.
Results:
The hearts of Shank3-overexpressing transgenic mice displayed reduced weight and increased fibrosis. In vivo, sudden cardiac death, arrhythmia, and contractility impairments were identified. Shank3-overexpressing transgenic cardiomyocytes showed prolonged action potential duration and increased LTCC current density. Cytosolic Ca2+ transients were increased with prolonged decay time, while sarcoplasmic reticulum Ca2+ contents remained normal. Cell shortening was augmented in Shank3-overexpressing transgenic cardiomyocytes. The cardiac Shank3 interactome comprised 78 proteins with various functions. Troponin I levels were down-regulated in Shank3-overexpressing transgenic cardiomyocytes.
Conclusions
This study revealed cardiac dysfunction in Shank3-overexpressing transgenic mice, potentially attributed to changes in Ca2+ homeostasis and contraction, with a notable reduction in troponin I.
2.Shank3 Overexpression Leads to Cardiac Dysfunction in Mice by Disrupting Calcium Homeostasis in Cardiomyocytes
Tae Hee KO ; Yoonhee KIM ; Chunmei JIN ; Byeongil YU ; Minju LEE ; Phuong Kim LUONG ; Tran Nguyet TRINH ; Yeji YANG ; Hyojin KANG ; Yinhua ZHANG ; Ruiying MA ; Kwangmin YOO ; Jungmin CHOI ; Jin Young KIM ; Sun-Hee WOO ; Kihoon HAN ; Jong-Il CHOI
Korean Circulation Journal 2025;55(2):100-117
Background and Objectives:
SH3 and multiple ankyrin repeat domains 3 (Shank3) proteins play crucial roles as neuronal postsynaptic scaffolds. Alongside neuropsychiatric symptoms, individuals with SHANK3 mutations often exhibit symptoms related to dysfunctions in other organs, including the heart. However, detailed insights into the cardiac functions of Shank3 remain limited. This study aimed to characterize the cardiac phenotypes of Shank3-overexpressing transgenic mice and explore the underlying mechanisms.
Methods:
Cardiac histological analysis, electrocardiogram and echocardiogram recordings were conducted on Shank3-overexpressing transgenic mice. Electrophysiological properties, including action potentials and L-type Ca2+ channel (LTCC) currents, were measured in isolated cardiomyocytes. Ca2+ homeostasis was assessed by analyzing cytosolic Ca2+transients and sarcoplasmic reticulum Ca2+ contents. Depolarization-induced cell shortening was examined in cardiomyocytes. Immunoprecipitation followed by mass spectrometrybased identification was employed to identify proteins in the cardiac Shank3 interactome.Western blot and immunocytochemical analyses were conducted to identify changes in protein expression in Shank3-overexpressing transgenic cardiomyocytes.
Results:
The hearts of Shank3-overexpressing transgenic mice displayed reduced weight and increased fibrosis. In vivo, sudden cardiac death, arrhythmia, and contractility impairments were identified. Shank3-overexpressing transgenic cardiomyocytes showed prolonged action potential duration and increased LTCC current density. Cytosolic Ca2+ transients were increased with prolonged decay time, while sarcoplasmic reticulum Ca2+ contents remained normal. Cell shortening was augmented in Shank3-overexpressing transgenic cardiomyocytes. The cardiac Shank3 interactome comprised 78 proteins with various functions. Troponin I levels were down-regulated in Shank3-overexpressing transgenic cardiomyocytes.
Conclusions
This study revealed cardiac dysfunction in Shank3-overexpressing transgenic mice, potentially attributed to changes in Ca2+ homeostasis and contraction, with a notable reduction in troponin I.
3.Shank3 Overexpression Leads to Cardiac Dysfunction in Mice by Disrupting Calcium Homeostasis in Cardiomyocytes
Tae Hee KO ; Yoonhee KIM ; Chunmei JIN ; Byeongil YU ; Minju LEE ; Phuong Kim LUONG ; Tran Nguyet TRINH ; Yeji YANG ; Hyojin KANG ; Yinhua ZHANG ; Ruiying MA ; Kwangmin YOO ; Jungmin CHOI ; Jin Young KIM ; Sun-Hee WOO ; Kihoon HAN ; Jong-Il CHOI
Korean Circulation Journal 2025;55(2):100-117
Background and Objectives:
SH3 and multiple ankyrin repeat domains 3 (Shank3) proteins play crucial roles as neuronal postsynaptic scaffolds. Alongside neuropsychiatric symptoms, individuals with SHANK3 mutations often exhibit symptoms related to dysfunctions in other organs, including the heart. However, detailed insights into the cardiac functions of Shank3 remain limited. This study aimed to characterize the cardiac phenotypes of Shank3-overexpressing transgenic mice and explore the underlying mechanisms.
Methods:
Cardiac histological analysis, electrocardiogram and echocardiogram recordings were conducted on Shank3-overexpressing transgenic mice. Electrophysiological properties, including action potentials and L-type Ca2+ channel (LTCC) currents, were measured in isolated cardiomyocytes. Ca2+ homeostasis was assessed by analyzing cytosolic Ca2+transients and sarcoplasmic reticulum Ca2+ contents. Depolarization-induced cell shortening was examined in cardiomyocytes. Immunoprecipitation followed by mass spectrometrybased identification was employed to identify proteins in the cardiac Shank3 interactome.Western blot and immunocytochemical analyses were conducted to identify changes in protein expression in Shank3-overexpressing transgenic cardiomyocytes.
Results:
The hearts of Shank3-overexpressing transgenic mice displayed reduced weight and increased fibrosis. In vivo, sudden cardiac death, arrhythmia, and contractility impairments were identified. Shank3-overexpressing transgenic cardiomyocytes showed prolonged action potential duration and increased LTCC current density. Cytosolic Ca2+ transients were increased with prolonged decay time, while sarcoplasmic reticulum Ca2+ contents remained normal. Cell shortening was augmented in Shank3-overexpressing transgenic cardiomyocytes. The cardiac Shank3 interactome comprised 78 proteins with various functions. Troponin I levels were down-regulated in Shank3-overexpressing transgenic cardiomyocytes.
Conclusions
This study revealed cardiac dysfunction in Shank3-overexpressing transgenic mice, potentially attributed to changes in Ca2+ homeostasis and contraction, with a notable reduction in troponin I.
4.Shank3 Overexpression Leads to Cardiac Dysfunction in Mice by Disrupting Calcium Homeostasis in Cardiomyocytes
Tae Hee KO ; Yoonhee KIM ; Chunmei JIN ; Byeongil YU ; Minju LEE ; Phuong Kim LUONG ; Tran Nguyet TRINH ; Yeji YANG ; Hyojin KANG ; Yinhua ZHANG ; Ruiying MA ; Kwangmin YOO ; Jungmin CHOI ; Jin Young KIM ; Sun-Hee WOO ; Kihoon HAN ; Jong-Il CHOI
Korean Circulation Journal 2025;55(2):100-117
Background and Objectives:
SH3 and multiple ankyrin repeat domains 3 (Shank3) proteins play crucial roles as neuronal postsynaptic scaffolds. Alongside neuropsychiatric symptoms, individuals with SHANK3 mutations often exhibit symptoms related to dysfunctions in other organs, including the heart. However, detailed insights into the cardiac functions of Shank3 remain limited. This study aimed to characterize the cardiac phenotypes of Shank3-overexpressing transgenic mice and explore the underlying mechanisms.
Methods:
Cardiac histological analysis, electrocardiogram and echocardiogram recordings were conducted on Shank3-overexpressing transgenic mice. Electrophysiological properties, including action potentials and L-type Ca2+ channel (LTCC) currents, were measured in isolated cardiomyocytes. Ca2+ homeostasis was assessed by analyzing cytosolic Ca2+transients and sarcoplasmic reticulum Ca2+ contents. Depolarization-induced cell shortening was examined in cardiomyocytes. Immunoprecipitation followed by mass spectrometrybased identification was employed to identify proteins in the cardiac Shank3 interactome.Western blot and immunocytochemical analyses were conducted to identify changes in protein expression in Shank3-overexpressing transgenic cardiomyocytes.
Results:
The hearts of Shank3-overexpressing transgenic mice displayed reduced weight and increased fibrosis. In vivo, sudden cardiac death, arrhythmia, and contractility impairments were identified. Shank3-overexpressing transgenic cardiomyocytes showed prolonged action potential duration and increased LTCC current density. Cytosolic Ca2+ transients were increased with prolonged decay time, while sarcoplasmic reticulum Ca2+ contents remained normal. Cell shortening was augmented in Shank3-overexpressing transgenic cardiomyocytes. The cardiac Shank3 interactome comprised 78 proteins with various functions. Troponin I levels were down-regulated in Shank3-overexpressing transgenic cardiomyocytes.
Conclusions
This study revealed cardiac dysfunction in Shank3-overexpressing transgenic mice, potentially attributed to changes in Ca2+ homeostasis and contraction, with a notable reduction in troponin I.
5.Efficacy of Differential Dosage of Pueraria in Gegen Qinliantang on Acute Enteritis Model in Mice
Ruiying ZHANG ; Ping WANG ; Di ZHANG ; Hongfa CHENG ; Ying ZHANG ; Zhu DENG ; Hui FENG ; Min LIU ; Yang TANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):197-204
ObjectiveTo investigate whether there are differences in the efficacy of Gegen Qinliantang with different contents of Puerariae Lobatae Radix on the acute enteritis (AE) model mice and provide a scientific basis for the interpretation of Gegen Qinliantang in the treatment of "Xie Re Li". MethodsA total of 112 male BALB/c mice were randomly divided into a blank group,model group,single Puerariae Lobatae Radix group,non-Puerariae Lobatae Radix group,regular dose Gegen Qinliantang group (regular dose group),half-dose Puerariae Lobatae Radix group,and doubled-dose Puerariae Lobatae Radix group, with 16 mice in each group. Hematoxylin-eosin (HE) staining was used to observe the pathological changes of the colon tissue. Western blot was employed to detect the expression of ZO-1 (a protein in the tight junction) and Occludin in the colon tissue, as well as the changes of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). ResultsCompared with the blank group,the DAI scores of the mice in the model group were significantly higher (P<0.05),and the histopathological sections of their colon tissues showed mucosal damage,glandular atrophy,disordered arrangement,and a large number of inflammatory cells infiltration,and the expression of ZO-1 and Occludin proteins in their colon tissues was significantly down-regulated (P<0.05,P<0.01). The expression of inflammatory factors TNF-α and IL-1β was significantly up-regulated (P<0.05,P<0.01). Compared with the model group,the DAI scores of mice in all dosing groups decreased significantly (P<0.05),with the most significant effect in the regular dose group. After 7 d of drug administration,the regular dose group had the best impact on the repair of colonic mucosa in the AE mouse model. The regular dose group significantly down-regulated the expression of TNF-α (P<0.05) and significantly up-regulated the expression of ZO-1 protein (P<0.05). The doubled-dose Puerariae Lobatae Radix group significantly down-regulated the expression of IL-1β protein (P<0.01),and there was no significant difference between all dosing groups and the model group in terms of the expression of Occludin protein. After 14 d of drug administration,the best effect on the repair of colonic mucosa in the AE mouse model was observed in the doubled dose Puerariae Lobatae Radix group. All groups except the non-Puerariae Lobatae Radix group significantly down-regulated the expression of TNF-α (P<0.01). Meanwhile,the regular dose group and doubled-dose Puerariae Lobatae Radix group significantly elevated the expression level of Occludin protein (P<0.01). The doubled-dose Puerariae Lobatae Radix group also significantly inhibited the expression of IL-1β protein (P<0.05) and up-regulated ZO-1 protein expression (P<0.05). ConclusionGegen Qinliantang can reduce the pathological damage of colon tissue, protect the barrier function and structure of intestinal epithelial cells, and reduce the expression of inflammatory factors, so as to achieve the therapeutic effect of AE model mice. When comparing the therapeutic efficacy of Gegen Qinliantang containing different Gegen contents, Gegen Qinliantang with the proportion of the original formula of Zhongjing was the most effective in AE model mice.
6.Efficacy of Differential Dosage of Pueraria in Gegen Qinliantang on Acute Enteritis Model in Mice
Ruiying ZHANG ; Ping WANG ; Di ZHANG ; Hongfa CHENG ; Ying ZHANG ; Zhu DENG ; Hui FENG ; Min LIU ; Yang TANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):197-204
ObjectiveTo investigate whether there are differences in the efficacy of Gegen Qinliantang with different contents of Puerariae Lobatae Radix on the acute enteritis (AE) model mice and provide a scientific basis for the interpretation of Gegen Qinliantang in the treatment of "Xie Re Li". MethodsA total of 112 male BALB/c mice were randomly divided into a blank group,model group,single Puerariae Lobatae Radix group,non-Puerariae Lobatae Radix group,regular dose Gegen Qinliantang group (regular dose group),half-dose Puerariae Lobatae Radix group,and doubled-dose Puerariae Lobatae Radix group, with 16 mice in each group. Hematoxylin-eosin (HE) staining was used to observe the pathological changes of the colon tissue. Western blot was employed to detect the expression of ZO-1 (a protein in the tight junction) and Occludin in the colon tissue, as well as the changes of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). ResultsCompared with the blank group,the DAI scores of the mice in the model group were significantly higher (P<0.05),and the histopathological sections of their colon tissues showed mucosal damage,glandular atrophy,disordered arrangement,and a large number of inflammatory cells infiltration,and the expression of ZO-1 and Occludin proteins in their colon tissues was significantly down-regulated (P<0.05,P<0.01). The expression of inflammatory factors TNF-α and IL-1β was significantly up-regulated (P<0.05,P<0.01). Compared with the model group,the DAI scores of mice in all dosing groups decreased significantly (P<0.05),with the most significant effect in the regular dose group. After 7 d of drug administration,the regular dose group had the best impact on the repair of colonic mucosa in the AE mouse model. The regular dose group significantly down-regulated the expression of TNF-α (P<0.05) and significantly up-regulated the expression of ZO-1 protein (P<0.05). The doubled-dose Puerariae Lobatae Radix group significantly down-regulated the expression of IL-1β protein (P<0.01),and there was no significant difference between all dosing groups and the model group in terms of the expression of Occludin protein. After 14 d of drug administration,the best effect on the repair of colonic mucosa in the AE mouse model was observed in the doubled dose Puerariae Lobatae Radix group. All groups except the non-Puerariae Lobatae Radix group significantly down-regulated the expression of TNF-α (P<0.01). Meanwhile,the regular dose group and doubled-dose Puerariae Lobatae Radix group significantly elevated the expression level of Occludin protein (P<0.01). The doubled-dose Puerariae Lobatae Radix group also significantly inhibited the expression of IL-1β protein (P<0.05) and up-regulated ZO-1 protein expression (P<0.05). ConclusionGegen Qinliantang can reduce the pathological damage of colon tissue, protect the barrier function and structure of intestinal epithelial cells, and reduce the expression of inflammatory factors, so as to achieve the therapeutic effect of AE model mice. When comparing the therapeutic efficacy of Gegen Qinliantang containing different Gegen contents, Gegen Qinliantang with the proportion of the original formula of Zhongjing was the most effective in AE model mice.
7.Construction of the quality evaluation scale of specification of management for humanistic caring in outpatients and its reliability and validity testing
Lixia YUE ; Na CUI ; Xu CHE ; Heng ZHANG ; Hongxia WANG ; Shujie GUO ; Hongling SHI ; Ruiying YU ; Xia XIN ; Xiaohuan CHEN ; Li WANG ; Zhiwei ZHI ; Lei TAN ; Xican ZHENG
Chinese Medical Ethics 2024;37(11):1366-1377
Objective:To construct the quality evaluation scale of specification of management for humanistic caring in outpatients and test its reliability and validity.Methods:Referring to the group standards in Specification of Management for Humanistic Caring in Outpatients released by the China Association for Life Care,as well as relevant guidelines and literature,a pool of items for the quality evaluation scale of specification of management for humanistic caring in outpatients was formed.After expert consultation and expert argumentation,a quality evaluation scale of specification of management for humanistic caring in outpatients was constructed.From January to February 2024,243 hospital managers from 5 hospitals in Zhengzhou were selected as survey subjects to conduct item analysis,and reliability and validity testing on the scale.Results:Two rounds of expert inquiry and two rounds of expert argumentation were conducted,with questionnaire response rates of 92.00%and 100.00%,respectively,and expert authority coefficients of 0.952.In the second round of the expert inquiry scale,the mean importance score of the first-level indicators was 4.80 to 5.00,the full score ratio was 88.00%to 100.00%,the coefficient of variation was 0.04 to 0.17,and Kendall's coefficient of concordance was 0.857(P<0.001);the mean importance score of the second-level indicators was 4.60 to 5.00,the full score ratio was 80.00%to 100.00%,the coefficient of variation was 0.00 to 0.21,and Kendall's coefficient of concordance was 0.775(P<0.001);the mean importance score of the third-level indicators was 4.60 to 5.00,the full score ratio was 76.00%to 100.00%,the coefficient of variation was 0.00 to 0.21,and Kendall's coefficient of concordance was 0.830(P<0.001).Finally,a quality evaluation scale of specification of management for humanistic caring in outpatients was formed,including 5 first-level indicators,25 second-level indicators,and 58 third-level indicators.Exploratory factor analysis produced 5 common factors with a cumulative variance contribution rate of 74.628%.The Pearson correlation coefficients between the five-factor scores ranged from 0.648 to 0.798,and the correlation coefficients between the factor scores and the total score of the scale ranged from 0.784 to 0.938.The scale-level content validity index(S-CVI)of the scale was 0.945,the item-content validity index(I-CVI)was 0.725 to 1.000,the Cronbach's alpha coefficient of the total scale was 0.973,and the retest reliability coefficient was 0.934.Conclusion:The constructed quality evaluation scale of specification of management for humanistic caring in outpatients has good scientific validity and reliability,and can be used as an evaluation tool for specification of management for humanistic caring in outpatients.
8.Explorations of Clinical Teaching and Training Model for Refresher Anesthesiologists
Manjiao MA ; Lulu MA ; Ruiying WANG ; Xiuhua ZHANG
Medical Journal of Peking Union Medical College Hospital 2024;15(2):462-465
9.Establishment of a LASSO-Logistic Regression-based Risk Prediction Model for Early Recurrence of Siewert Ⅱ/Ⅲ Adenocarcinoma of Esophagogastric Junction Post-Surgery
Zuyu ZHANG ; Hong WEI ; Qian LIU ; Yaoqiang WANG ; Xueyan FAN ; Ruiying LUO ; Changjiang LUO
Medical Journal of Peking Union Medical College Hospital 2024;15(3):604-615
To investigate the risk factors for early relapse after curative resection of Siewert type Ⅱ/Ⅲ adenocarcinoma of esophagogastric junction (AEG) and construct a visual predictive model. A retrospective analysis was conducted on the clinicopathological data of patients diagnosed with Siewert type Ⅱ/Ⅲ AEG who underwent curative resection at the Second Hospital of Lanzhou University from January 2016 to March 2021. The samples were randomly divided into a training group and a validation group in a 7∶3 ratio. The LASSO-Logistic regression method was used to select variables predictive of early recurrence of Siewert type Ⅱ/Ⅲ AEG and construct a predictive model for early recurrence. The model was validated through 1000 bootstrap resampling. Receiver operating characteristic (ROC) curves were drawn, and area under the curve (AUC), calibration curves, and decision curve analysis (DCA) were used to evaluate the model's stability. According to the inclusion and exclusion criteria of this study, a total of 320 Siewert type Ⅱ/Ⅲ AEG patients were included, with 122 experiencing recurrence within two years. LASSO-Logistic regression analysis revealed AJCC staging, degree of differentiation, CA199, CEA, NLR, and tumor maximum diameter as independent predictive factors for early recurrence of Siewert type Ⅱ/Ⅲ AEG. A predictive model was constructed with these factors and depicted as a nomogram. For the training group, the AUC of the ROC curve was 0.836(95% CI: 0.785-0.887), with a sensitivity of 81.4% and a specificity of 85.6%;for the validation group, the AUC was 0.812(95% CI: 0.711-0.912), with a sensitivity of 80.6% and a specificity of 87.7%. Calibration curves for both the training and validation groups displayed curves close to the reference line, indicating high model stability. The DCA curve showed that the model provided a good net benefit with threshold probabilities between 0.05 and 0.75. A multivariate model developed using LASSO-Logistic regression could predict early relapse in patients with Siewert type Ⅱ/Ⅲ AEG, which may be instrumental in assessing patient prognoses and in guiding postoperative surveillance and management for patients with Siewert type Ⅱ/Ⅲ AEG.
10.Associations between disorders in activities of daily living and heavy metal concentrations in elderly people
Tingjun LI ; Jiansheng CAI ; Ruiying LI ; Jie XIAO ; Zeyan YE ; Yuqian CHENG ; Zhe LIU ; Zhiyong ZHANG
Journal of Environmental and Occupational Medicine 2024;41(9):995-1003
Background Heavy metals may play an important role in environmental risk factors associated disorders of activities of daily living (ADL) in older adults. Objective To investigate the associations between plasma levels of six heavy metals (zinc, arsenic, cadmium, lead, manganese, and copper) and ADL disorders in older adults. Methods A cross-sectional survey was conducted from 2018 to 2019 among

Result Analysis
Print
Save
E-mail