1.Effect of Rhei Radix et Rhizoma Before and After Steaming with Wine on Intestinal Flora and Immune Environment in Constipation Model Mice
Yaya BAI ; Rui TIAN ; Yajun SHI ; Chongbo ZHAO ; Jing SUN ; Li ZHANG ; Yonggang YAN ; Yuping TANG ; Qiao ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):192-199
ObjectiveTo study on the different therapeutic effects and potential mechanisms of Rhei Radix et Rhizoma(RH) before and after steaming with wine on constipation model mice. MethodsFifty-four male ICR mice were randomly divided into control group, model group, lactulose group(1.5 mg·kg-1), high, medium and low dose groups of RH and RH steaming with wine(PRH)(8, 4, 1 g·kg-1). Except for the control group, the constipation model was replicated by gavage of loperamide hydrochloride(6 mg·kg-1) in the other groups. After 2 weeks of modeling, each administration group was gavaged with the corresponding dose of drug solution, and the control and model groups were given an equal volume of normal saline, 1 time/d for 2 consecutive weeks. After administration, the feces were collected for 16S rRNA sequencing, the levels of gastrin(GAS), motilin(MTL), interleukin-6(IL-6), γ-interferon(IFN-γ) in the colonic tissue were detected by enzyme-linked immunosorbent assay(ELISA), the histopathological changes of colon were observed by hematoxylin-eosin(HE) staining, flow cytometry was used to detect the proportion changes of CD4+, CD8+ and regulatory T cell(Treg) in peripheral blood. ResultsCompared with the control group, the model group showed significantly decrease in fecal number in 24 h, fecal quality and fecal water rate(P<0.01), the colon was seen to have necrotic shedding of mucosal epithelium, localized intestinal glands in the lamina propria were degenerated, necrotic and atrophied, a few lymphocytes were seen to infiltrate in the necrotic area in a scattered manner, the contents of GAS and MTL, the proportions of CD4+, CD8+ and Treg were significantly reduced(P<0.01), the contents of IL-6 and IFN-γ were significantly elevated(P<0.05, P<0.01). Compared with the model group, the fecal number in 24 h, fecal quality and fecal water rate of high-dose groups of RH and PRH were significantly increased(P<0.05, P<0.01), the pathological damage of the colon was alleviated to varying degrees, the contents of GAS, MTL, IL-6 and IFN-γ were significantly regressed(P<0.05, P<0.01), and the proportions of CD4+ and CD8+ were significantly increased(P<0.01), although the proportion of Treg showed an upward trend, there was no significant difference. In addition, the results of intestinal flora showed that the number of amplicon sequence variant(ASV) and Alpha diversity were decreased in the model group compared with the control group, and there was a significant difference in Beta diversity, with a decrease in the relative abundance of Lactobacillus and an increase in the relative abundances of Bacillus and Helicobacter. Compared with the model group, the ASV number and Alpha diversity were increased in the high-dose groups of RH and PRH, and there was a trend of regression of Beta diversity to the control group, the relative abundance of Lactobacillus increased, and the relative abundances of Bacillus and Helicobacter decreased. ConclusionRH and PRH can improve dysbacteriosis, promote immune system activation, inhibit the release of inflammatory factors for enhancing the gastrointestinal function, which may be one of the potential mechanisms of their therapeutic effect on constipation.
2.Action mechanism of Coptidis Rhizoma Alkaloids against cerebral ischemia based on transcriptome sequencing
Liangliang TIAN ; Rui ZHOU ; Guangzhao CAO ; Jingjing ZHANG
Chinese Journal of Tissue Engineering Research 2025;29(19):4161-4171
BACKGROUND:Coptis chinensis can clear heat,dry dampness,relieve fire,and detoxify.Coptis chinensis and its components have a significant protective effect on cerebral ischemia.The action mechanism of anti-cerebral ischemia of Coptidis Rhizoma Alkaloids was explored based on network pharmacology and transcriptome sequencing. OBJECTIVE:Based on the study of the protective effects of Coptidis Rhizoma Alkaloids on cerebral ischemia of rats,the action mechanism of Coptidis Rhizoma Alkaloids intervention in cerebral ischemia was investigated by using network pharmacology and transcriptome sequencing technology. METHODS:The SD rats were randomly divided into sham operation group,ischemia/reperfusion group,positive drug group,and Coptidis Rhizoma Alkaloids group.The ischemia/reperfusion model of middle cerebral artery occlusion was prepared by modified thread method in the latter three groups.No thread was inserted and the other operations were the same in the sham operation group.TTC staining,Longa 5 neurological deficient score,hematoxylin and eosin staining,and Nissl staining were used to evaluate the protective effect of Coptidis Rhizoma Alkaloids on ischemia/reperfusion model rats.Transcriptome sequencing was performed on the brain tissues of rats in sham operation group,ischemia/reperfusion group,and Coptidis Rhizoma Alkaloids group.Differentially expressed genes,gene Ontology analysis,Kyoto encyclopedia of genes and genomes analysis,and Correlation Analysis of Transcriptomics and Network Pharmacology were used to elucidate the effect of Coptidis Rhizoma Alkaloids on cerebral ischemia.Finally,ELISA and immunofluorescence staining were used to verify the key targets of Coptidis Rhizoma Alkaloids in the intervention of cerebral ischemia. RESULTS AND CONCLUSION:(1)Coptidis Rhizoma Alkaloids treatment decreased the Longa 5 neurological deficit scores and cerebral infarction area of ischemia/reperfusion model rats,increased the number of neurons and Nissl bodies.(2)Differentially expressed gene after Coptidis Rhizoma Alkaloids treatment analyzed by functional enrichment analysis of gene ontology includes biological processes such as inflammatory reaction and positive regulation of mitogen-activated protein kinase cascade.The enrichment analysis of Kyoto gene and genome encyclopedia analysis pathway mainly involves interleukin-17 signaling pathway,neuroactive ligand-receptor interaction,cyclic adenosine-3′,5′-mconophosphate signaling pathway and so on.(3)Analysis of transcriptomics showed that the main genes regulated by Coptidis Rhizoma Alkaloids were prostaglandin endoperoxide synthase 2,brain derived neurotrophic factor,and transient receptor potential A1.(4)Network pharmacology analysis revealed that nine components in Coptidis Rhizoma Alkaloids may exert their effects by associating with 87 targets related to prostaglandin endoperoxide synthase 2,brain derived neurotrophic factor,and transient receptor potential A1.(5)ELISA and immunofluorescence staining results further confirmed that Coptidis Rhizoma Alkaloids regulated the expression of prostaglandin endoperoxide synthase 2,brain derived neurotrophic factor,and transient receptor potential A1.(6)It is concluded that Coptidis Rhizoma Alkaloids treatment can significantly improve the injury in ischemia/reperfusion model rats,possibly by regulating prostaglandin endoperoxide synthase 2,brain derived neurotrophic factor,and transient receptor potential A1.
3.Inhibition of HDAC3 Promotes Psoriasis Development in Mice Through Regulating Th17
Fan XU ; Xin-Rui ZHANG ; Yang-Chen XIA ; Wen-Ting LI ; Hao CHEN ; An-Qi QIN ; Ai-Hong ZHANG ; Yi-Ran ZHU ; Feng TIAN ; Quan-Hui ZHENG
Progress in Biochemistry and Biophysics 2025;52(4):1008-1017
ObjectiveTo investigate the influence of histone deacetylase 3 (HDAC3) on the occurrence, development of psoriasis-like inflammation in mice, and the relative immune mechanisms. MethodsHealthy C57BL/6 mice aged 6-8 weeks were selected and randomly divided into 3 groups: control group (Control), psoriasis model group (IMQ), and HDAC3 inhibitor RGFP966-treated psoriasis model group (IMQ+RGFP966). One day prior to the experiment, the back hair of the mice was shaved. After a one-day stabilization period, the mice in Control group was treated with an equal amount of vaseline, while the mice in IMQ group was treated with imiquimod (62.5 mg/d) applied topically on the back to establish a psoriasis-like inflammation model. The mice in IMQ+RGFP966 group received intervention with a high dose of the HDAC3-selective inhibitor RGFP966 (30 mg/kg) based on the psoriasis-like model. All groups were treated continuously for 5 d, during which psoriasis-like inflammation symptoms (scaling, erythema, skin thickness), body weight, and mental status were observed and recorded, with photographs taken for documentation. After euthanasia, hematoxylin-eosin (HE) staining was used to assess the effect of RGFP966 on the skin tissue structure of the mice, and skin thickness was measured. The mRNA and protein expression levels of HDAC3 in skin tissues were detected using reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB), respectively. Flow cytometry was employed to analyze neutrophils in peripheral blood and lymph nodes, CD4+ T lymphocytes, CD8+ T lymphocytes in peripheral blood, and IL-17A secretion by peripheral blood CD4+ T lymphocytes. Additionally, spleen CD4+ T lymphocyte expression of HDAC3, CCR6, CCR8, and IL-17A secretion levels were analyzed. Immunohistochemistry was used to detect the localization and expression levels of HDAC3, IL-17A, and IL-10 in skin tissues. ResultsCompared with the Control group, the IMQ group exhibited significant psoriasis-like inflammation, characterized by erythema, scaling, and skin wrinkling. Compared with the IMQ group, RGFP966 exacerbated psoriasis-like inflammatory symptoms, leading to increased hyperkeratosis. The psoriasis area and severity index (PASI) skin symptom scores were higher in the IMQ group than those in the Control group, and the scores were further elevated in the IMQ+RGFP966 group compared to the IMQ group. Skin thickness measurements showed a trend of IMQ+RGFP966>IMQ>Control. The numbers of neutrophils in the blood and lymph nodes increased sequentially in the Control, IMQ, and IMQ+RGFP966 groups, with a similar trend observed for CD4+ and CD8+ T lymphocytes in the blood. In skin tissues, compared with the Control group, the mRNA and protein levels of HDAC3 decreased in the IMQ group, but RGFP966 did not further reduce these expressions. HDAC3 was primarily located in the nucleus. Compared with the Control group, the nuclear HDAC3 content decreased in the skin tissues of the IMQ group, and RGFP966 further reduced nuclear HDAC3. Compared with the Control and IMQ groups, RGFP966 treatment decreased HDAC3 expression in splenic CD4+ and CD8+ T cells. RGFP966 treatment increased the expression of CCR6 and CCR8 in splenic CD4+ T cells and enhanced IL-17A secretion by peripheral blood and splenic CD4+ T lymphocytes. Additionally, compared with the IMQ group, RGFP966 reduced IL-10 protein levels and upregulated IL-17A expression in skin tissues. ConclusionRGFP966 exacerbates psoriatic-like inflammatory responses by inhibiting HDAC3, increasing the secretion of the cytokine IL-17A, and upregulating the expression of chemokines CCR8 and CCR6.
4.Role of ATG12 in The Development of Disease
Wei LIU ; Rui TIAN ; Ce-Fan ZHOU ; Jing-Feng TANG
Progress in Biochemistry and Biophysics 2025;52(5):1081-1098
Autophagy, a highly conserved cellular degradation mechanism, maintains intracellular homeostasis by removing damaged organelles and abnormal proteins. Its dysregulation is closely associated with various diseases. Autophagy-related protein 12 (ATG12), a core member of the ubiquitin-like protein family, covalently binds to ATG5 through a ubiquitin-like conjugation system to form the ATG12-ATG5-ATG16L1 complex. This complex directly regulates the formation and maturation of autophagosomes, making ATG12 a key molecule in the initiation of autophagy. Recent studies have revealed that ATG12 functions extend far beyond the classical autophagy context. It promotes apoptosis by binding to anti-apoptotic proteins of the Bcl-2 family (e.g., Bcl-2 and Mcl-1) and enhances host antiviral immunity by regulating the NF-κB and interferon signaling pathways. Moreover, ATG12 deficiency can lead to mitochondrial biogenesis impairment, energy metabolism disorders, and substrate-dependent metabolic shifts, underscoring its pivotal role in cellular metabolic homeostasis. At the disease level, dysregulation of ATG12 expression is closely linked to tumorigenesis and cancer progression. By modulating the dynamic balance between autophagy and apoptosis, ATG12 influences cancer cell proliferation, metastasis, and chemoresistance. Notably, ATG12 is abnormally overexpressed in multiple cancers, including breast, liver, and gastric cancer, highlighting its potential as a therapeutic target. Furthermore, in neurodegenerative diseases such as Parkinson’s disease, ATG12 mitigates protein toxicity by enhancing mitochondrial autophagy. In cardiovascular diseases, it alleviates ischemia-reperfusion injury by regulating cardiomyocyte autophagy and apoptosis, demonstrating its broad regulatory role across various pathological conditions. Genetic studies further underscore the clinical significance of ATG12. Polymorphisms in the ATG12 gene (e.g., rs26537 and rs26538) have been significantly associated with the risk of head and neck squamous cell carcinoma, hepatocellular carcinoma, and atrophic gastritis. Notably, the risk allele of rs26537 enhances ATG12 promoter activity, leading to its overexpression and promoting tumorigenesis. These findings provide a molecular basis for individualized risk assessment and targeted interventions based on ATG12 genotype. Despite significant progress, many aspects of ATG12 biology remain unclear. The precise regulatory mechanisms of its post-translational modifications (e.g., ubiquitination and acetylation) are yet to be fully elucidated. Additionally, the molecular pathways underlying its non-canonical functions, such as metabolic regulation and immune modulation, require further investigation. Moreover, the functional heterogeneity of ATG12 in different tumor microenvironments and its role in drug resistance warrant in-depth exploration. Future research should integrate advanced technologies such as cryo-electron microscopy, single-cell sequencing, and organoid models to decipher the intricate regulatory network of ATG12. Additionally, developing small-molecule inhibitors or gene-editing tools targeting its protein interaction interfaces (e.g., the ATG12-ATG3 binding domain) may help overcome current therapeutic challenges. Through interdisciplinary collaboration and clinical translation, ATG12 holds promise as a next-generation molecular target for precision intervention in autophagy-related diseases. This review summarizes the structure and function of ATG12, its role in autophagy initiation, its physiological functions, and its involvement in disease pathogenesis. Furthermore, it discusses future research directions and potential challenges, emphasizing ATG12’s potential as a biomarker and therapeutic target in autophagy-related diseases.
5.Advances in Lipid-Lowering Therapy for Homozygous Familial Hypercholesterolemia
Rui LI ; Zhuang TIAN ; Shuyang ZHANG
JOURNAL OF RARE DISEASES 2025;4(3):361-369
Homozygous familial hypercholesterolemia (HoFH) is an extremely rare and severe hereditary lipid metabolism disorder, characterized by markedly elevated levels of plasma low-density lipoprotein cholesterol (LDL-C), significantly increasing the risk of atherosclerotic cardiovascular diseases. Among traditional lipid-lowering therapies, the combination of statins and ezetimibe is the basic treatment approach, but its efficacy is limited. In recent years, notable progress has been made in lipid-lowering therapy for HoFH. New drugs such as proprotein convertase subtilisin/kexin type 9 inhibitors and angiopoietin-like protein 3 inhibitors have demonstrated favorable LDL-C-lowering effects and play an active role in treatment. Lipoprotein apheresis can rapidly reduce LDL-C levels and has become an important adjuvant treatment modality. Although approaches like gene therapy and liver transplantation face many challenges, they offer hope for radical cure. Further research is still needed to optimize treatment strategies and regimens for more effective blood lipid management in patients with HoFH.
6.Interpretation of the World Health Organization global report on hypertension 2023
Qin SUN ; Weifan TIAN ; Tingting LUO ; Jing YU ; Dongze LI ; Haihong ZHANG ; Rui ZENG ; Zhi WAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2024;31(02):203-208
The World Health Organization (WHO) released the “Global report on hypertension” on September 19, 2023. This report systematically summarizes the prevalence, mortality, diagnosis and treatment of hypertension in various countries, and elucidates the current situation of hypertension management, and gives a series of suggestions on how to manage hypertension, providing new thinking and inspiration for countries to optimize hypertension management. Through the summary of relevant studies and reports, this paper further reviews the present situation, early identification and management of hypertension.
7. Lycium barbarian seed oil activates Nrf2/ARE pathway to reduce oxidative damage in testis of subacute aging rats
Rui-Ying TIAN ; Wen-Xin MA ; Zi-Yu LIU ; Hui-Ming MA ; Sha-Sha XING ; Na HU ; Chang LIU ; Biao MA ; Jia-Yang LI ; Hu-Jun LIU ; Chang-Cai BAI ; Dong-Mei CHEN
Chinese Pharmacological Bulletin 2024;40(3):490-498
Aim To explore the effects of Lycium berry seed oil on Nrf2/ARE pathway and oxidative damage in testis of subacute aging rats. Methods Fifty out of 60 male SD rats, aged 8 weeks, were subcutaneously injected with 125 mg • kg"D-galactosidase in the neck for 8 weeks to establish a subacute senescent rat model. The presence of senescent cells was observed using P-galactosidase ((3-gal), while testicular morphology was examined using HE staining. Serum levels of testosterone (testosterone, T), follicle-stimulating hormone ( follicle stimulating hormone, FSH ) , luteinizing hormone ( luteinizing hormone, LH ) , superoxide dis-mutase ( superoxide dismutase, SOD ) , glutathione ( glutathione, GSH) and malondialdehyde ( malondial-dehyde, MDA) were measured through ELISA, and the expressions of factors related to aging, oxidative damage, and the Nrf2/ARE pathway were assessed via immunohistochemical analysis and Western blotting. Results After successfully identifying the model, the morphology of the testis was improved and the intervention of Lycium seed oil led to a down-regulation in the expression of [3-gal and -yH2AX. The serum levels of SOD, GSH, T, and FSH increased while MDA and LH decreased (P 0. 05) . Additionally, there was an up-regulated expression of Nrf2, GCLC, NQOl, and SOD2 proteins in testicular tissue ( P 0. 05 ) and nuclear expression of Nrf2 in sertoli cells. Conclusion Lycium barbarum seed oil may reduce oxidative damage in testes of subacute senescent rats by activating the Nrf2/ARE signaling pathway.
8.Cloning and gene functional analysis study of dynamin-related protein GeDRP1E gene in Gastrodia elata
Xin FAN ; Jian-hao ZHAO ; Yu-chao CHEN ; Zhong-yi HUA ; Tian-rui LIU ; Yu-yang ZHAO ; Yuan YUAN
Acta Pharmaceutica Sinica 2024;59(2):482-488
The gene
9.Anti-tumor effects of phytosphingosine on leukemia cells by inducing cell apoptosis
Guancui YANG ; Jinyi LIU ; Peijie JIANG ; Yuxi XU ; Xiaolong TIAN ; Xiaoqi WANG ; Rui WANG ; Shijie YANG ; Qingxiao SONG ; Jin WEI ; Xi ZHANG
Journal of Army Medical University 2024;46(4):359-368
Objective To preliminarily investigate the anti-tumor effects of phytosphingosine(PHS)and the involvement of inducing apoptosis of leukemia cells.Methods Cellular model of leukemia was established in leukemia cell lines K562 and SUP-B15.CCK-8 assay and EdU assay were used to measure the viability and DNA synthesis of K562 and SUP-B15 cells.RNA-seq was carried out to verify the differentially expressed genes(DEGs)after PHS treatment.Gene Ontology(GO)enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analyses were applied to analyze the involved functions and signaling pathways.Comparative Toxicogenomics Database(CTD)and Discovery Studio software were employed to predict the underlying targets of PHS and molecular docking.Cell apoptosis was detected by flow cytometry,mitochondrial membrane potential was evaluated by JC-1 probe,and protein expression of key molecules was validated by Western blotting.Results PHS inhibited the proliferation of K562 and SUP-B15 cells in a time-and dose-dependent manner.The half-maximal inhibitory concentration(IC50)of K562 cells was 17.67 and 12.52 pmol/L for 24 and 48 h,respectively,and the IC50 value of SUP-B15 cells was 17.58 and 14.86 μmol/L for 24 and 48 h,respectively.PHS treatment at a dose of 20 μmol/L for 48 h resulted in significant inhibition of DNA synthesis.GO enrichment analysis of the K562 cells showed that PHS might be involved in positive regulation of apoptotic process,plasma membrane and its integral components,and protein kinase binding and activity.Reverse predictive analysis showed that BCL-2 protein was the most likely target of PHS.PHS significantly increased the apoptotic rate of leukemia cells(P<0.05)in a dose-dependent manner,reduced the mitochondrial membrane potential,and down-regulated BCL-2 level(P<0.05)and up-regulated the levels of Cleaved caspase-3 and Cleaved caspase-9(P<0.05).Conclusion PHS may inhibit the proliferation of leukemia cells by inducing mitochondria-dependent apoptosis,possibly through PHS and BCL-2 interaction.
10.Construction and evaluation of a universal influenza mRNA vaccine
Yuying TIAN ; Zhuoya DENG ; Cong LI ; Fang SUN ; Rui CAO ; Penghui YANG
Journal of Army Medical University 2024;46(7):725-731
Objective To construct a universal influenza mRNA vaccine and evaluate its immunogenicity.Methods The antigen sequence of hemagglutinin(HA),nucleoprotein(NP)and matrix protein 2 ectodomain(M2e)in influenza A/California/04/2009 was optimized.HA,NP and 3 tandem M2e(3M2e)were cloned into pcDNA3.1 vector,respectively.Then the mRNAs were synthesized by linearization,in vitro transcription,enzymatic capping and enzymatic tailing,and named as mRNA-HA,mRNA-NP and mRNA-3M2e,respectively.The protein expression of the 3 kinds of mRNAs in 293T cells was detected by immunofluorescence assay.Comb-mRNA vaccine was prepared by enveloped mRNA-HA,mRNA-NP and mRNA-3M2e with lipid nanoparticles,respectively,and the particle size and potential were identified.Twenty-eight 6-week-old female BALB/c mice(18~22 g)were randomly divided into LNP group(n=14)and Comb-mRNA group(n=14).Hemagglutination inhibition(HI)method and microneutralization(MN)test were used to evaluate the serum antibody titer induced by Comb-mRNA vaccines.The mice were infected by 5LD50 wild-type H1 N1 influenza virus to evaluate the protective efficacy.Results The mRNA-HA,mRNA-NP and mRNA-3M2e were successfully constructed,and the 3 mRNAs could be expressed in 293T cells.The average size of mRNA encapsulated by lipid nanoparticles was 119.53±6.5 nm,and the average potential was-8.23±1.3 mV.The geometric mean titer(GMT)of HI and MN in the Comb-mRNA group were 179.6 and 201.6,compared with the LNP group.The ratio of IFN-γ+CD4+/CD8+Tcells was increased.The Comb-mRNA group could provide protection against 5LD50 wild type influenza H1 N1 virus after 2 weeks of booster immunization.Conclusion Comb-mRNA,an influenza vaccine candidate,can induce immune responses and protect mice from influenza virus challenge.

Result Analysis
Print
Save
E-mail