1.A recurrent homozygous missense mutation in CCDC103 causes asthenoteratozoospermia due to disorganized dynein arms.
Muhammad ZUBAIR ; Ranjha KHAN ; Ao MA ; Uzma HAMEED ; Mazhar KHAN ; Tanveer ABBAS ; Riaz AHMAD ; Jian-Teng ZHOU ; Wasim SHAH ; Ansar HUSSAIN ; Nisar AHMED ; Ihsan KHAN ; Khalid KHAN ; Yuan-Wei ZHANG ; Huan ZHANG ; Li-Min WU ; Qing-Hua SHI
Asian Journal of Andrology 2022;24(3):255-259
Asthenoteratozoospermia is one of the most severe types of qualitative sperm defects. Most cases are due to mutations in genes encoding the components of sperm flagella, which have an ultrastructure similar to that of motile cilia. Coiled-coil domain containing 103 (CCDC103) is an outer dynein arm assembly factor, and pathogenic variants of CCDC103 cause primary ciliary dyskinesia (PCD). However, whether CCDC103 pathogenic variants cause severe asthenoteratozoospermia has yet to be determined. Whole-exome sequencing (WES) was performed for two individuals with nonsyndromic asthenoteratozoospermia in a consanguineous family. A homozygous CCDC103 variant segregating recessively with an infertility phenotype was identified (ENST00000035776.2, c.461A>C, p.His154Pro). CCDC103 p.His154Pro was previously reported as a high prevalence mutation causing PCD, though the reproductive phenotype of these PCD individuals is unknown. Transmission electron microscopy (TEM) of affected individuals' spermatozoa showed that the mid-piece was severely damaged with disorganized dynein arms, similar to the abnormal ultrastructure of respiratory ciliary of PCD individuals with the same mutation. Thus, our findings expand the phenotype spectrum of CCDC103 p.His154Pro as a novel pathogenic gene for nonsyndromic asthenospermia.
Asthenozoospermia/pathology*
;
Dyneins/genetics*
;
Homozygote
;
Humans
;
Male
;
Microtubule-Associated Proteins
;
Mutation
;
Mutation, Missense
;
Sperm Tail/metabolism*
2. Enhancing pharmaceutical potential and oral bioavailability of Allium cepa nanosuspension in male albino rats using response surface methodology
Fatiqa ZAFAR ; Nazish JAHAN ; Shaukat ALI ; Saba JAMIL ; Riaz HUSSAIN ; Saba ASLAM
Asian Pacific Journal of Tropical Biomedicine 2022;12(1):26-38
Objective: To enhance the pharmaceutical potential and oral bioavailability of quercetin contents of Allium cepa peel extract by novel nanosuspension technology. Methods: Nanoprecipitation approach was successfully used for the formulation of nanosuspension. To obtain pharmaceutical-grade nanosuspension with minimum particle size and polydispersity index, sodium lauryl sulphate was selected as a stabilizer. Important formulation parameters were statistically optimized by the response surface methodology approach. The optimized nanosuspension was subjected to stability and in vitro dissolution testing and characterized by scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and zeta sizer. To evaluate the preeminence of nanosuspension over coarse suspension, comparative bioavailability studies were carried out in male albino rats. The pharmaceutical potential of developed nanosuspension was evaluated by antioxidant, antimicrobial, and toxicity studies. Results: The optimized nanosuspension showed an average particle size of 275.5 nm with a polydispersity index and zeta potential value of 0.415 and -48.8 mV, respectively. Atomic force microscopy revealed that the average particle size of nanosuspension was below 100 nm. The formulated nanosuspension showed better stability under refrigerated conditions. Nanosuspension showed an improved dissolution rate and a 2.14-fold greater plasma concentration of quercetin than coarse suspension. Moreover, the formulated nanosuspension exhibited enhanced antioxidant and antimicrobial potential and was non-toxic. Conclusions: Optimization of nanosuspension effectively improves the pharmaceutical potential and oral bioavailability of Allium cepa extract.
3. Molecular detection of Leishmania species in human and animals from cutaneous leishmaniasis endemic areas of Waziristan, Khyber Pakhtunkhwa, Pakistan
Mubashir HUSSAIN ; Shahzad MUNIR ; Taj Ali KHAN ; Niaz Ullah MUHAMMAD ; Bahar KHATTAK ; Abdullah KHAN ; Humaira MAZHAR ; Maira RIAZ ; Shahzad MUNIR ; Nawaz Haider BASHIR ; Abdullah JALAL ; Irfan AHMED ; Zulqarnain BALOCH ; Muhammad Ameen JAMAL ; Kashif RAHIM ; Noha WATANY
Asian Pacific Journal of Tropical Medicine 2018;11(8):495-500
Objectives: To detect Leishmania species in human patients, animal reservoirs and Phlebotomus sandflies in Waziristan, Pakistan. Methods: Tissue smears and aspirates from 448 cutaneous leishmaniasis (CL) suspected patients were analyzed. To sort out role of the reservoir hosts, skin scrapings, spleen and liver samples from 104 rodents were collected. Furthermore, buffy coat samples were obtained from 60 domestic animals. Sandflies were also trapped. All human, animals and sandfly samples were tested by microscopy, kinetoplastic PCR and internal transcribed spacer 1 (ITS1) PCR followed by restriction fragment length polymorphism for detection of Leishmania species. Results: An overall prevalence of 3.83% and 5.21% through microscopy and ITS1 PCR respectively was found. However, the statistically non-significant correlation was found between area, gender, and number of lesions. The presence of rodents, sandflies, domestic animals and internally displaced people increased the risk of CL. Using ITS1-PCR-RFLP, Leishmania tropica (L. tropica) was confirmed in 106 samples while 25 of the isolates were diagnosed as Leishmania major (L. major). Similarly, 3/104 rodents were positive for L. major and 14 pools of DNA samples containing Phlebotomus sergenti sandflies were positive for L. tropica. None of samples from domestic animals were positive for leishmaniasis. Conclusions: In the present study, L. tropica and L. major are found to be the main causative agents of CL in study area. Movement of internally displaced people from CL endemic areas presents a risk for nearby CL free areas. To the best of our knowledge, we report for the first time L. major infection in rodents (Rattus rattus) and L. tropica in Phlebotomus sergenti sandflies trapped in Waziristan, Pakistan.

Result Analysis
Print
Save
E-mail