1.Pharmacological properties and mechanisms of Notoginsenoside R1 in ischemia-reperfusion injury.
Chinese Journal of Traumatology 2023;26(1):20-26
Panax notoginseng is an ancient Chinese medicinal plant that has great clinical value in regulating cardiovascular disease in China. As a single component of panax notoginosides, notoginsenoside R1 (NGR1) belongs to the panaxatriol group. Many reports have demonstrated that NGR1 exerts multiple pharmacological effects in ischemic stroke, myocardial infarction, acute renal injury, and intestinal injury. Here, we outline the available reports on the pharmacological effects of NGR1 in ischemia-reperfusion (I/R) injury. We also discuss the chemistry, composition and molecular mechanism underlying the anti-I/R injury effects of NGR1. NGR1 had significant effects on reducing cerebral infarct size and neurological deficits in cerebral I/R injury, ameliorating the impaired mitochondrial morphology in myocardial I/R injury, decreasing kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin in renal I/R injury and attenuating jejunal mucosal epithelium injury in intestinal I/R injury. The various organ anti-I/R injury effects of NGR1 are mainly through the suppression of oxidative stress, apoptosis, inflammation, endoplasmic reticulum stress and promotion of angiogenesis and neurogenesis. These findings provide a reference basis for future research of NGR1 on I/R injury.
Humans
;
Reperfusion Injury/prevention & control*
;
Inflammation
;
China
;
Apoptosis
2.Acacetin protects rats from cerebral ischemia-reperfusion injury by regulating TLR4/NLRP3 signaling pathway.
Lan-Ming LIN ; Zheng-Yu SONG ; Jin HU
China Journal of Chinese Materia Medica 2023;48(22):6107-6114
This study aims to investigate the mechanism of acacetin in protecting rats from cerebral ischemia-reperfusion injury via the Toll-like receptor 4(TLR4)/NOD-like receptor protein 3(NLRP3) signaling pathway. Wistar rats were randomized into sham, model, low-and high-dose acacetin, and nimodipine groups, with 10 rats in each group. The rat model of middle cerebral artery occlusion(MCAO) was established with the improved suture method in other groups except the sham group. The neurological deficit score and cerebral infarction volume of each group were evaluated 24 h after modeling. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of interleukin-1β(IL-1β), IL-6, tumor necrosis factor-α(TNF-α), malondialdehyde(MDA), supe-roxide dismutase(SOD), and glutathione(GSH). Western blot was employed to determine the expression levels of B-cell lymphonoma-2(Bcl-2), Bcl-2-associated X protein(Bax), and TLR4/NLRP3 signaling pathway-related proteins(TLR4, p-NF-κB/NF-κB, NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1β, and cleaved IL-1β) in the rat brain tissue. Hematoxylin-eosin(HE) staining was employed to reveal the histopathological changes in the ischemic area. Compared with the sham group, the modeling of MCAO increased the neurological deficit score and cerebral infarction volume, elevated the IL-1β, IL-6, TNF-α, and MDA levels and lowered the SOD and GSH levels in the brain tissue(P<0.05). Compared with the MCAO model group, low-and high-dose acacetin and nimodipine decreased the neurological deficit score and cerebral infarction volume, lowered the IL-1β, IL-6, TNF-α, and MDA levels and elevated the SOD and GSH levels in the brain tissue(P<0.05). Compared with the sham group, the model group showed up-regulated protein levels of Bax, TLR4, p-NF-κB/NF-κB, NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1β, and cleaved IL-1β and down-regulated protein level of Bcl-2 in the brain tissue(P<0.05). Compared with the MCAO model group, the acacetin and nimodipine groups showed down-regulated protein levels of Bax, TLR4, p-NF-κB/NF-κB, NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1β, and cleaved IL-1β and up-regulated protein level of Bcl-2 in the brain tissue(P<0.05). In conclusion, acacetin regulates the TLR4/NLRP3 signaling pathway to inhibit neuroinflammatory response and oxidative stress, thus exerting the protective effect on cerebral ischemia-reperfusion injury in rats.
Rats
;
Animals
;
NF-kappa B/metabolism*
;
bcl-2-Associated X Protein
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Rats, Sprague-Dawley
;
Caspase 1/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
Nimodipine/pharmacology*
;
Interleukin-6
;
Rats, Wistar
;
Signal Transduction
;
Infarction, Middle Cerebral Artery
;
Reperfusion Injury/prevention & control*
;
Superoxide Dismutase/metabolism*
3.Research advances in prevention and treatment of cerebral ischemia-reperfusion injury by targeting mitochondrial quality control.
Xuan WEI ; Ji-Yong LIU ; Wen-Li ZHANG ; Zhi-Gang MEI
China Journal of Chinese Materia Medica 2022;47(16):4305-4313
Cerebral ischemia-reperfusion injury(CIRI) is an important factor hindering the recovery of ischemic stroke patients after blood flow recanalization. Mitochondria, serving as the "energy chamber" of cells, have multiple important physiological functions, such as supplying energy, metabolizing reactive oxygen species, storing calcium, and mediating programmed cell death. During CIRI, oxidative stress, calcium overload, inflammatory response, and other factors can easily lead to neuronal mitochondrial dyshomeostasis, which is the key pathological link leading to secondary injury. As reported, the mitochondrial quality control(MQC) system, mainly including mitochondrial biosynthesis, kinetics, autophagy, and derived vesicles, is an important endogenous mechanism to maintain mitochondrial homeostasis and plays an important protective role in the damage of mitochondrial structure and function caused by CIRI. This paper reviewed the mechanism of MQC and the research progress on MQC-targeting therapy of CIRI in recent 10 years to provide theoretical references for exploring new strategies for the prevention and treatment of ischemic stroke with traditional Chinese medicine.
Brain Ischemia/prevention & control*
;
Calcium/metabolism*
;
Humans
;
Ischemic Stroke
;
Mitochondria/pathology*
;
Reactive Oxygen Species/metabolism*
;
Reperfusion Injury/prevention & control*
6.Protective effect of iridoid glycosides of radix scrophulariae on endoplasmic reticulum stress induced by oxygen-glucose deprivation and reperfusion
Jiayi YE ; Hengpei GONG ; Lingfeng WANG ; Zhen HUANG ; Fengmei QIU ; Xiaoming ZHONG
Journal of Zhejiang University. Medical sciences 2020;49(6):705-713
OBJECTIVE:
To investigate the regulatory effect of iridoid glycoside of radix scrophulariae (IGRS) on endoplasmic reticulum stress induced by oxygen-glucose deprivation and reperfusion
METHODS:
Rat pheochromocytoma PC12 cells were pretreated with IGRS (50, 100, 200 μg/mL) for 24h, and the
RESULTS:
The damage caused by OGD/R to PC12 cells was significantly reduced by IGRS, with significant effect on increasing survival rate and reducing LDH release (all
CONCLUSIONS
IGRS has neuroprotective effect, which may alleviate cerebral ischemia-reperfusion injury by regulating SERCA2, maintaining calcium balance, and inhibiting endoplasmic reticulum stress-mediated apoptosis.
Animals
;
Cell Survival/drug effects*
;
Down-Regulation/drug effects*
;
Endoplasmic Reticulum Stress/drug effects*
;
Glucose
;
In Vitro Techniques
;
Iridoid Glycosides/pharmacology*
;
Oxygen
;
PC12 Cells
;
Rats
;
Reperfusion
;
Reperfusion Injury/prevention & control*
;
Snails/chemistry*
7.Garlicin Post-Conditioning Suppresses Adhesion Molecules in a Porcine Model of Myocardial Ischemia-Reperfusion Injury.
Peng YANG ; Jia-Hui LI ; Ai-Li LI ; Jing LI ; Yong WANG ; Shi-Yan REN ; Xian-Lun LI
Chinese journal of integrative medicine 2019;25(1):31-36
OBJECTIVES:
To evaluate whether garlicin post-conditioning can attenuate myocardial ischemiareperfusion injury in a catheter-based porcine model of acute myocardial infarction (AMI) by affecting adhesion molecules integrin β1/CD29 and platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31).
METHODS:
Twenty-two swine were devided into 3 groups: 6 in a sham-operation group, and 8 each in the model and garlicin groups. AMI porcine model was established in the model and garlicin groups. The distal parts of the left anterior descending coronary artery in the animals of the model and garlicin groups were occluded by dilated balloon for 2 h, followed by reperfusion for 3 h. Garlicin (1.88 mg/kg) was injected over a period of 1 h, beginning just before reperfusion, in the garlicin group. Real-time polymerase chain reaction, immunohistochemistry and Western blot were carried out to detect mRNA and protein expressions of CD29 and CD31 3 h after reperfusion.
RESULTS:
Hematoxylin-eosin staining showed a better myocardial structure in the garlicin group after reperfusion. Compared to the model group, garlicin inhibited both the mRNA and protein expression of CD29 and CD31 in reperfusion area and no-reflflow area (P<0.05 respectively).
CONCLUSIONS
Garlicin post-conditioning induced cardio-protection against myocardial ischemia-reperfusion injury in this catheter-based porcine model of AMI. The cardio-protective effect of garlicin is possibly owing to suppression of production of CD29 and CD31, by inhibition of the mRNA expression of CD29 and CD31.
Allyl Compounds
;
pharmacology
;
Animals
;
Disease Models, Animal
;
Disulfides
;
pharmacology
;
Integrin beta1
;
analysis
;
genetics
;
physiology
;
Ischemic Postconditioning
;
Male
;
Myocardial Reperfusion Injury
;
prevention & control
;
Platelet Endothelial Cell Adhesion Molecule-1
;
analysis
;
antagonists & inhibitors
;
genetics
;
RNA, Messenger
;
analysis
;
Swine
8.Protective Effects and Mechanisms of Shenhua Tablet () on Toll-Like Receptors in Rat Model of Renal Ischemia-Reperfusion Injury.
Qing-Ping LI ; Ri-Bao WEI ; Xi YANG ; Xiao-Yong ZHENG ; Ting-Yu SU ; Meng-Jie HUANG ; Zhong YIN ; Xiang-Mei CHEN
Chinese journal of integrative medicine 2019;25(1):37-44
OBJECTIVES:
To investigate the protective effects and potential mechanisms of Shenhua Tablet (, SHT) on the toll-like receptors (TLRs)-mediated signaling pathways in a rat model of kidney ischemia-reperfusion injury (IRI).
METHODS:
Sixty male Wistar rats were randomly divided into 5 groups: sham surgery, model control, astragaloside (150 mg•kg•d), low- and high-dose SHT (1.5 and 3.0 g•kg•d, repectively) groups. One week after drug treatment, rats underwent surgery to establish the IRI models. At 24 h and 72 h after the modeling, serum creatinine (Scr) and blood urea nitrogen (BUN) were analyzed; pathological damage were scored after periodic acid-Schiffstaining. TLR2, TLR4 and myeloid differentiation factor 88 (MyD88) protein and mRNA expressions were detected by inmmunohistochemistry, Western blot and qPCR. Tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) protein expressions were detected by enzyme linked immunosorbent assay.
RESULTS:
Compared with the sham group, the model group exhibited severe change in renal function (Scr: 189.42±21.50, P<0.05), pathological damage (damage score: 4.50±0.55, P<0.05), and the expression levels of TLR2, TLR4, MyD88, TNF-α, IL-6 were significantly higher than other groups. Meanwhile, the levels of TLRs in model group showed upward tendency from 24 to 72 h, unparalleled with pathological and functional changes. The aforementioned parameters were alleviated to a certain extent, and, in addition to TLRs, presented the obvious downward trending from the 24 to 72 h after the intervention in the SHT and astragaloside groups relative to the model (P<0.05); in particular, the most significant mitigation of these changes was observed in the SHT-H group (P<0.05).
CONCLUSION
TLRs may be an important spot to treat and research in acute kidney injury. SHT could effectively mitigate renal injuries and promote recovery of IRI injuries through suppression of degeneration induced by up-regulation of TLR2 and TLR4 expression levels in the MyD88-dependent signaling pathway and exhibit some dose dependence.
Animals
;
Disease Models, Animal
;
Drugs, Chinese Herbal
;
pharmacology
;
Kidney
;
blood supply
;
drug effects
;
Male
;
Myeloid Differentiation Factor 88
;
analysis
;
genetics
;
Rats
;
Rats, Wistar
;
Reperfusion Injury
;
physiopathology
;
prevention & control
;
Signal Transduction
;
drug effects
;
Tablets
;
Toll-Like Receptors
;
analysis
;
drug effects
;
genetics
9.Salvianolic acid A attenuates ischemia reperfusion induced rat brain damage by protecting the blood brain barrier through MMP-9 inhibition and anti-inflammation.
Wen ZHANG ; Jun-Ke SONG ; Xue ZHANG ; Qi-Meng ZHOU ; Guo-Rong HE ; Xiao-Na XU ; Yan RONG ; Wen-Xia ZHOU ; Guan-Hua DU
Chinese Journal of Natural Medicines (English Ed.) 2018;16(3):184-193
Salvianolic acid A (SAA) is a water-soluble component from the root of Salvia Miltiorrhiza Bge, a traditional Chinese medicine, which has been used for the treatment of cerebrovascular diseases for centuries. The present study aimed to determine the brain protective effects of SAA against cerebral ischemia reperfusion injury in rats, and to figure out whether SAA could protect the blood brain barrier (BBB) through matrix metallopeptidase 9 (MMP-9) inhibition. A focal cerebral ischemia reperfusion model was induced by middle cerebral artery occlusion (MCAO) for 1.5-h followed by 24-h reperfusion. SAA was administered intravenously at doses of 5, 10, and 20 mg·kg. SAA significantly reduced the infarct volumes and neurological deficit scores. Immunohistochemical analyses showed that SAA treatments could also improve the morphology of neurons in hippocampus CA1 and CA3 regions and increase the number of neurons. Western blotting analyses showed that SAA downregulated the levels of MMP-9 and upregulated the levels of tissue inhibitor of metalloproteinase 1 (TIMP-1) to attenuate BBB injury. SAA treatment significantly prevented MMP-9-induced degradation of ZO-1, claudin-5 and occludin proteins. SAA also prevented cerebral NF-κB p65 activation and reduced inflammation response. Our results suggested that SAA could be a promising agent to attenuate cerebral ischemia reperfusion injury through MMP-9 inhibition and anti-inflammation activities.
Animals
;
Anti-Inflammatory Agents
;
administration & dosage
;
Blood-Brain Barrier
;
drug effects
;
enzymology
;
immunology
;
Brain
;
Brain Ischemia
;
drug therapy
;
enzymology
;
genetics
;
Caffeic Acids
;
administration & dosage
;
Drugs, Chinese Herbal
;
administration & dosage
;
Humans
;
Lactates
;
administration & dosage
;
Male
;
Matrix Metalloproteinase 9
;
genetics
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Reperfusion Injury
;
enzymology
;
genetics
;
immunology
;
prevention & control
;
Salvia miltiorrhiza
;
chemistry
;
Tissue Inhibitor of Metalloproteinase-1
;
genetics
;
metabolism
;
Transcription Factor RelA
;
genetics
;
immunology
10.Effects of acidification pretreatment for respiratory acidosis on the expression of matrix metalloproteinase-9 in rat lung tissues following ischemia/reperfusion.
Liangchao QU ; Yan JIAO ; Zhangjie JIANG ; Zhiping SONG ; Weilu ZHAO
Journal of Central South University(Medical Sciences) 2018;43(11):1177-1181
To establish rat model of lung ischemia/reperfusion (IR) in vivo, and to explore the effects of acidification pretreatment for respiratory acidosis on the expression of matrix metalloproteinase-9 (MMP-9) and the possible mechanisms.
Methods: A total of 36 male Sprague-Dawley rats were divided into a sham group (S group), a IR group, and an experiment group (RA group) (n=12 in each group). The rat left lung hilum in the S group was dissociated, followed by perfusion without ischemia. After the left lung hilum in the IR group was blocked for 45 min, the rats were followed by reperfusion for 180 min. After left lung hilum in the RA group was dissociated, the respiratory parameters were adjusted so that pressure of end tidal carbon dioxide (PETCO2) reached 56-65 mmHg (1 mmHg=0.133 kPa) for 5 min, then the rats was subjected to IR. Lung tissue wet/dry (W/D) and lung permeability index (LPI) were calculated, while the lung histopathology was observed and the MMP-9 protein expression were measured.
Results: Compared with the control group, the W/D and LPI in the IR group and the RA group increased after reperfusion (both P<0.05), and the levels of W/D and LPI in the group RA were lower than that in the IR group (P<0.05). LPI and pathology scores were significantly lower in the RA group than those in the IR group (both P<0.01). After IR, the expression of MMP9 in the lung tissues in the IR group and the RA group increased significantly (both P<0.01). The expression of MMP-9 protein in the RA group was significantly lower than that in the IR group (P<0.01).
Conclusion: After lung IR injury, the expression of MMP-9 protein, vascular permeability and inflammatory exudation is increased. The acidification pretreatment for respiratory acidosis can inhibit the expression of MMP-9 protein and reduce inflammatory exudation after lung IR, showing a protective effect on lung IR injury.
Acidosis, Respiratory
;
drug therapy
;
prevention & control
;
Animals
;
Gene Expression Regulation, Enzymologic
;
drug effects
;
Lung
;
enzymology
;
Lung Injury
;
enzymology
;
Male
;
Matrix Metalloproteinase 9
;
genetics
;
Rats
;
Rats, Sprague-Dawley
;
Reperfusion Injury
;
drug therapy
;
prevention & control

Result Analysis
Print
Save
E-mail