1.Endogenous FGF21 attenuates blood-brain barrier disruption in penumbra after delayed recanalization in MCAO rats through FGFR1/PI3K/Akt pathway.
Wen ZHENG ; Wenjun LI ; Yini ZENG ; Hui YUAN ; Heng YANG ; Ru CHEN ; Anding ZHU ; Jinze WU ; Zhi SONG ; Wenguang YAN
Journal of Central South University(Medical Sciences) 2023;48(5):648-662
		                        		
		                        			OBJECTIVES:
		                        			Restoration of blood circulation within "time window" is the principal treating goal for treating acute ischemic stroke. Previous studies revealed that delayed recanalization might cause serious ischemia/reperfusion injury. However, plenty of evidences showed delayed recanalization improved neurological outcomes in acute ischemic stroke. This study aims to explore the role of delayed recanalization on blood-brain barrier (BBB) in the penumbra (surrounding ischemic core) and neurological outcomes after middle cerebral artery occlusion (MCAO).
		                        		
		                        			METHODS:
		                        			Recanalization was performed on the 3rd day after MCAO. BBB disruption was tested by Western blotting, Evans blue dye, and immunofluorescence staining. Infarct volume and neurological outcomes were evaluated on the 7th day after MCAO. The expression of fibroblast growth factor 21 (FGF21), fibroblast growth factor receptor 1 (FGFR1), phosphatidylinositol-3-kinase (PI3K), and serine/threonine kinase (Akt) in the penumbra were observed by immunofluorescence staining and/or Western blotting.
		                        		
		                        			RESULTS:
		                        			The extraversion of Evans blue, IgG, and albumin increased surrounding ischemic core after MCAO, but significantly decreased after recanalization. The expression of Claudin-5, Occludin, and zona occludens 1 (ZO-1) decreased surrounding ischemic core after MCAO, but significantly increased after recanalization. Infarct volume reduced and neurological outcomes improved following recanalization (on the 7th day after MCAO). The expressions of Claudin-5, Occludin, and ZO-1 decreased surrounding ischemic core following MCAO, which were up-regulated corresponding to the increases of FGF21, p-FGFR1, PI3K, and p-Akt after recanalization. Intra-cerebroventricular injection of FGFR1 inhibitor SU5402 down-regulated the expression of PI3K, p-Akt, Occludin, Claudin-5, and ZO-1 in the penumbra, which weakened the beneficial effects of recanalization on neurological outcomes after MCAO.
		                        		
		                        			CONCLUSIONS
		                        			Delayed recanalization on the 3rd day after MCAO increases endogenous FGF21 in the penumbra and activates FGFR1/PI3K/Akt pathway, which attenuates BBB disruption in the penumbra and improves neurobehavior in MCAO rats.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Blood-Brain Barrier/metabolism*
		                        			;
		                        		
		                        			Brain Ischemia
		                        			;
		                        		
		                        			Claudin-5/metabolism*
		                        			;
		                        		
		                        			Infarction, Middle Cerebral Artery/metabolism*
		                        			;
		                        		
		                        			Ischemic Stroke/metabolism*
		                        			;
		                        		
		                        			Occludin/metabolism*
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases/metabolism*
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism*
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Receptor, Fibroblast Growth Factor, Type 1/metabolism*
		                        			;
		                        		
		                        			Reperfusion Injury/metabolism*
		                        			
		                        		
		                        	
2.Soybean isoflavones alleviate cerebral ischemia/reperfusion injury in rats by inhibiting ferroptosis and inflammatory cascade reaction.
Shai LI ; Li LI ; Si Min MIN ; Sai Sai LIU ; Zhi Wen QIN ; Zhi Shang XIONG ; Jian Guo XU ; Bo Wen WANG ; Du Shan DING ; Shi Di ZHAO
Journal of Southern Medical University 2023;43(2):323-330
		                        		
		                        			OBJECTIVE:
		                        			To explore the mechanism that mediates the effect of soybean isoflavones (SI) against cerebral ischemia/reperfusion (I/R) injury in light of the regulation of regional cerebral blood flow (rCBF), ferroptosis, inflammatory response and blood-brain barrier (BBB) permeability.
		                        		
		                        			METHODS:
		                        			A total of 120 male SD rats were equally randomized into sham-operated group (Sham group), cerebral I/R injury group and SI pretreatment group (SI group). Focal cerebral I/R injury was induced in the latter two groups using a modified monofilament occlusion technique, and the intraoperative changes of real-time cerebral cortex blood flow were monitored using a laser Doppler flowmeter (LDF). The postoperative changes of cerebral pathological morphology and the ultrastructure of the neurons and the BBB were observed with optical and transmission electron microscopy. The neurological deficits of the rats was assessed, and the severities of cerebral infarction, brain edema and BBB disruption were quantified. The contents of Fe2+, GSH, MDA and MPO in the ischemic penumbra were determined with spectrophotometric tests. Serum levels of TNF-α and IL-1βwere analyzed using ELISA, and the expressions of GPX4, MMP-9 and occludin around the lesion were detected with Western blotting and immunohistochemistry.
		                        		
		                        			RESULTS:
		                        			The rCBF was sharply reduced in the rats in I/R group and SI group after successful insertion of the monofilament. Compared with those in Sham group, the rats in I/R group showed significantly increased neurological deficit scores, cerebral infarction volume, brain water content and Evans blue permeability (P < 0.01), decreased Fe2+ level, increased MDA level, decreased GSH content and GPX4 expression (P < 0.01), increased MPO content and serum levels of TNF-α and IL-1β (P < 0.01), increased MMP-9 expression and lowered occludin expression (P < 0.01). All these changes were significantly ameliorated in rats pretreated with IS prior to I/R injury (P < 0.05 or 0.01).
		                        		
		                        			CONCLUSION
		                        			SI preconditioning reduces cerebral I/R injury in rats possibly by improving rCBF, inhibiting ferroptosis and inflammatory response and protecting the BBB.
		                        		
		                        		
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Matrix Metalloproteinase 9/metabolism*
		                        			;
		                        		
		                        			Soybeans/metabolism*
		                        			;
		                        		
		                        			Occludin/metabolism*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Ferroptosis
		                        			;
		                        		
		                        			Blood-Brain Barrier/ultrastructure*
		                        			;
		                        		
		                        			Brain Ischemia/metabolism*
		                        			;
		                        		
		                        			Cerebral Infarction
		                        			;
		                        		
		                        			Reperfusion Injury/metabolism*
		                        			;
		                        		
		                        			Isoflavones/therapeutic use*
		                        			;
		                        		
		                        			Infarction, Middle Cerebral Artery
		                        			
		                        		
		                        	
3.Stigmasterol protects human brain microvessel endothelial cells against ischemia-reperfusion injury through suppressing EPHA2 phosphorylation.
Suping LI ; Fei XU ; Liang YU ; Qian YU ; Nengwei YU ; Jing FU
Chinese Journal of Natural Medicines (English Ed.) 2023;21(2):127-135
		                        		
		                        			
		                        			Stigmasterol is a plant sterol with anti-apoptotic, anti-oxidative and anti-inflammatory effect through multiple mechanisms. In this study, we further assessed whether it exerts protective effect on human brain microvessel endothelial cells (HBMECs) against ischemia-reperfusion injury and explored the underlying mechanisms. HBMECs were used to establish an in vitro oxygen and glucose deprivation/reperfusion (OGD/R) model, while a middle cerebral artery occlusion (MCAO) model of rats were constructed. The interaction between stigmasterol and EPHA2 was detected by surface plasmon resonance (SPR) and cellular thermal shift assay (CETSA). The results showed that 10 μmol·L-1 stigmasterol significantly protected cell viability, alleviated the loss of tight junction proteins and attenuated the blood-brain barrier (BBB) damage induced by OGD/R in thein vitro model. Subsequent molecular docking showed that stigmasterol might interact with EPHA2 at multiple sites, including T692, a critical gatekeep residue of this receptor. Exogenous ephrin-A1 (an EPHA2 ligand) exacerbated OGD/R-induced EPHA2 phosphorylation at S897, facilitated ZO-1/claudin-5 loss, and promoted BBB leakage in vitro, which were significantly attenuated after stigmasterol treatment. The rat MCAO model confirmed these protective effects in vivo. In summary, these findings suggest that stigmasterol protects HBMECs against ischemia-reperfusion injury by maintaining cell viability, reducing the loss of tight junction proteins, and attenuating the BBB damage. These protective effects are at least meditated by its interaction with EPHA2 and inhibitory effect on EPHA2 phosphorylation.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Stigmasterol
		                        			;
		                        		
		                        			Phosphorylation
		                        			;
		                        		
		                        			Endothelial Cells
		                        			;
		                        		
		                        			Molecular Docking Simulation
		                        			;
		                        		
		                        			Reperfusion Injury
		                        			;
		                        		
		                        			Blood-Brain Barrier
		                        			;
		                        		
		                        			Glucose
		                        			;
		                        		
		                        			Microvessels
		                        			;
		                        		
		                        			Oxygen
		                        			
		                        		
		                        	
4.The destructive role of soluble Robo4 secreted by the M1-polarized-microglia during cerebral ischemia-reperfusion in blood-brain barrier integrity.
Jin-Long HUANG ; Chen LI ; Liang-Liang YANG ; Yang GAO ; Pu-Yuan ZHAO ; Zhi-Gang YANG
Acta Physiologica Sinica 2022;74(4):513-524
		                        		
		                        			
		                        			This project was aimed to investigate the role and the underlying mechanism of microglia polarization on blood-brain barrier (BBB) during cerebral ischemia-reperfusion. After construction of the mouse model of cerebral ischemia-reperfusion, upregulated IL-6 and TNF-α in peripheral blood and increased IL-6 and iNOS in ischemia tissues were confirmed. The supernatant expression of TNF-α and IL-6, as well as IL-6, iNOS and CD86 mRNA, was significantly increased in the of Bv-2 cells after oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in vitro. For further understanding the expression pattern of RNAs, the next-generation RNA sequencing was performed and upregulation of Robo4 (roundabout guidance receptor 4) was found both in M1-polarized and OGD/R treated Bv-2 cells, which was also confirmed by RT-qPCR. Extracellular soluble Robo4 (sRobo4) protein also increased in the supernatant of M1-polarized and OGD/R treated Bv-2 cells. Treating bEND3 cells with the Robo4 recombinant protein, M1-polarized Bv-2 cell supernatant or OGD/R Bv-2 cell supernatant decreased trans-endothelial electrical resistance (TEER), suggesting the injury of BBB. In addition, Robo4 was also highly expressed in the serum of patients who experienced acute ischemia stroke and mechanical thrombectomy operation. All the results suggest that increased secretion of Robo4 by M1-polarized-microglia during cerebral ischemia-reperfusion is most likely one of the causes of BBB injury, and Robo4 may be one of the therapeutic targets for BBB functional protection.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Blood-Brain Barrier/metabolism*
		                        			;
		                        		
		                        			Brain Ischemia/drug therapy*
		                        			;
		                        		
		                        			Glucose/metabolism*
		                        			;
		                        		
		                        			Interleukin-6/metabolism*
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Microglia/metabolism*
		                        			;
		                        		
		                        			Oxygen/metabolism*
		                        			;
		                        		
		                        			Receptors, Cell Surface/metabolism*
		                        			;
		                        		
		                        			Reperfusion
		                        			;
		                        		
		                        			Reperfusion Injury/drug therapy*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			
		                        		
		                        	
5.Protection of salidroside on endothelial cell barrier in cerebral ischemia-reperfusion model rats.
Wen-Ting SONG ; Hui CAO ; Ye-Hao ZHANG ; Xiao-Yu ZHENG ; Jian-Xun LIU
China Journal of Chinese Materia Medica 2022;47(19):5284-5291
		                        		
		                        			
		                        			This study aims to observe the therapeutic effect of salidroside on cerebral ischemia-reperfusion(I/R) model rats, and to specifically explore the protection of salidroside on endothelial cell barrier after I/R and the mechanism. In the experiment, SD rats were randomized into sham group, model group, and high-, medium-, and low-dose(10, 5, and 2.5 mg·kg~(-1)) salidroside groups. The suture method was used to induce I/R in rats. The infarct area, neurobehavioral evaluation, and brain water content were used to evaluate the efficacy of salidroside. As for the experiment on the mechanism, high-dose and low-dose salidroside groups were designed. The pathological morphology was observed based on hematoxylin and eosin(HE) staining, and ultrastructure of vascular endothelial cells based on transmission electron microscopy. The content of nitric oxide(NO) in serum, four indexes of blood coagulation, and the content of von Willebrand factor(vWF) in plasma were measured. Western blot(WB) and immunofluorescence(IF) were employed to determine the expression of tight junction proteins(ZO-1, occluding, and claudin-1) and matrix metalloproteinase 9(MMP-9) in the cortex. The results showed that the model group had obvious neurological deficit, obvious infarct in the right brain tissue, and significant increase in water content in brain tissue compared with the sham group. Compared with the model group, high-dose and low-dose salidroside groups showed decrease in neurobehavioral score, and the high-, medium-, and low-dose salidroside groups demonstrated obviously small infarct area and significant decrease in water content in brain tissue. The results of HE staining and transmission electron microscopy showed that rats had necrosis of neurons, damage of original physiological structure of endothelial cells, and disintegration of the tight junction between endothelial cells after I/R compared with the sham group. Compared with the model group, the high-dose and low-dose salidroside groups showed alleviation of neuron injury and intact physiological structure of endothelial cells. The model group had significantly lower serum level of NO, significantly higher plasma levels of vWF and fibrinogen(FIB), and significantly shorter thrombin time(TT) and prothrombin time(PT) than the sham group. Compared with model group, the high-dose and low-dose salidroside groups increased the serum content of NO in serum, decreased the plasma levels of FIB and vWF, and significantly prolonged TT and PT. WB and IF results showed that the model group had significantly lower levels of ZO-1, occluding, and claudin-1 among endothelial cells and significantly higher level of MMP-9 than the sham group. Compared with the model group, high-dose and low-dose salidroside significantly increased the levels of ZO-1, occluding, and claudin-1 in the cortex. The above experimental results show that salidroside has clear therapeutic effect on I/R rats and protects the brain. To be specific, it alleviates the damage of endothelial cells by increasing NO synthesis in endothelial cells, inhibiting coagulation reaction and MMP-9 expression, up-regulating the expression of ZO-1, occludin, and claudin-1, thereby protecting the brain.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Matrix Metalloproteinase 9/metabolism*
		                        			;
		                        		
		                        			Endothelial Cells/metabolism*
		                        			;
		                        		
		                        			Reperfusion Injury/metabolism*
		                        			;
		                        		
		                        			Blood-Brain Barrier
		                        			;
		                        		
		                        			Claudin-1/therapeutic use*
		                        			;
		                        		
		                        			von Willebrand Factor/therapeutic use*
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Brain Ischemia/metabolism*
		                        			;
		                        		
		                        			Cerebral Infarction
		                        			;
		                        		
		                        			Reperfusion
		                        			;
		                        		
		                        			Water/metabolism*
		                        			
		                        		
		                        	
6.Protective effect of safflower yellow injection against rat MIRI by TLR-NF-κB inflammatory pathway.
Ling-Mei LI ; Jian-Hua FU ; Hao GUO ; Xiao HAN ; Lei LI ; Gao-Jie XIN ; Yu-Wei ZHAO ; Qiong ZHANG ; Qiu-Sheng ZHENG ; Jian-Xun LIU
China Journal of Chinese Materia Medica 2019;44(12):2566-2571
		                        		
		                        			
		                        			This study was to investigate the mechanism of safflower yellow injection for regulating inflammatory response against myocardial ischemia-reperfusion injury( MIRI) in rats. Male Wistar rats were randomly divided into sham operation group,model group,Hebeishuang group,safflower yellow injection high,medium and low dose groups. MIRI model was established by ligating left anterior descending coronary artery. Myocardial histopathological changes were observed by HE staining; myocardial infarct size was detected by TTC staining; content and changes of tumor necrosis factor-α( TNF-α) and interleukin-6( IL-6),serum creatine kinase( CK),aspartate aminotransferase( AST),and lactate dehydrogenase( LDH) were detected by biochemical method or enzyme-linked immunosorbent assay( ELISA). Western blot assay was used to detect the protein expression of Toll-like receptor 4( TLR4) and nuclear factor-κB( NF-κB p65) in myocardial tissues. The results showed that as compared with the sham operation group,the myocardial arrangement of the model group was disordered,with severe edemain the interstitial,significantly increased area of myocardial infarction,increased activities of AST,CK and LDH in serum,and significantly increased contents of TNF-α and IL-6; the expression levels of TLR4 and NF-κB( p65) protein in myocardial tissues were also increased. As compared with the model group,the myocardial tissues were arranged neatlyin the Hebeishuang group and safflower yellow injection high,medium and low dose groups; the edema was significantly reduced; the myocardial infarct size was significantly reduced; the serum AST,CK,LDH activity and TNF-α,IL-6 levels were significantly decreased,and the expression levels of TLR4 and NF-κB( p65) protein in myocardial tissues were decreased. As compared with the Hebeishuang group,the myocardial infarct size was larger in the safflower yellow injection high,medium and low dose groups; the activities of AST,CK and LDH in serum and the contents of TNF-α and IL-6 in serum were higher,but there was no statistically significant difference in the expression levels of TLR4 and NF-κB( p65) protein in tissues. It is suggested that safflower yellow injection has a significant anti-MIRI effect,and its mechanism may be related to the regulation of TLR-NF-κB pathway to inhibit inflammatory response.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Anti-Inflammatory Agents
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Aspartate Aminotransferases
		                        			;
		                        		
		                        			blood
		                        			;
		                        		
		                        			Chalcone
		                        			;
		                        		
		                        			analogs & derivatives
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Creatine Kinase
		                        			;
		                        		
		                        			blood
		                        			;
		                        		
		                        			Interleukin-6
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			L-Lactate Dehydrogenase
		                        			;
		                        		
		                        			blood
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Myocardial Reperfusion Injury
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Wistar
		                        			;
		                        		
		                        			Toll-Like Receptor 4
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Transcription Factor RelA
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
7.Protective Effects and Mechanisms of Shenhua Tablet () on Toll-Like Receptors in Rat Model of Renal Ischemia-Reperfusion Injury.
Qing-Ping LI ; Ri-Bao WEI ; Xi YANG ; Xiao-Yong ZHENG ; Ting-Yu SU ; Meng-Jie HUANG ; Zhong YIN ; Xiang-Mei CHEN
Chinese journal of integrative medicine 2019;25(1):37-44
		                        		
		                        			OBJECTIVES:
		                        			To investigate the protective effects and potential mechanisms of Shenhua Tablet (, SHT) on the toll-like receptors (TLRs)-mediated signaling pathways in a rat model of kidney ischemia-reperfusion injury (IRI).
		                        		
		                        			METHODS:
		                        			Sixty male Wistar rats were randomly divided into 5 groups: sham surgery, model control, astragaloside (150 mg•kg•d), low- and high-dose SHT (1.5 and 3.0 g•kg•d, repectively) groups. One week after drug treatment, rats underwent surgery to establish the IRI models. At 24 h and 72 h after the modeling, serum creatinine (Scr) and blood urea nitrogen (BUN) were analyzed; pathological damage were scored after periodic acid-Schiffstaining. TLR2, TLR4 and myeloid differentiation factor 88 (MyD88) protein and mRNA expressions were detected by inmmunohistochemistry, Western blot and qPCR. Tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) protein expressions were detected by enzyme linked immunosorbent assay.
		                        		
		                        			RESULTS:
		                        			Compared with the sham group, the model group exhibited severe change in renal function (Scr: 189.42±21.50, P<0.05), pathological damage (damage score: 4.50±0.55, P<0.05), and the expression levels of TLR2, TLR4, MyD88, TNF-α, IL-6 were significantly higher than other groups. Meanwhile, the levels of TLRs in model group showed upward tendency from 24 to 72 h, unparalleled with pathological and functional changes. The aforementioned parameters were alleviated to a certain extent, and, in addition to TLRs, presented the obvious downward trending from the 24 to 72 h after the intervention in the SHT and astragaloside groups relative to the model (P<0.05); in particular, the most significant mitigation of these changes was observed in the SHT-H group (P<0.05).
		                        		
		                        			CONCLUSION
		                        			TLRs may be an important spot to treat and research in acute kidney injury. SHT could effectively mitigate renal injuries and promote recovery of IRI injuries through suppression of degeneration induced by up-regulation of TLR2 and TLR4 expression levels in the MyD88-dependent signaling pathway and exhibit some dose dependence.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Kidney
		                        			;
		                        		
		                        			blood supply
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Myeloid Differentiation Factor 88
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Wistar
		                        			;
		                        		
		                        			Reperfusion Injury
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			prevention & control
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Tablets
		                        			;
		                        		
		                        			Toll-Like Receptors
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			genetics
		                        			
		                        		
		                        	
8.Study on acute kidney injury model induced by renal ischemia-reperfusion in rats.
Qin GONG ; Mu-Lan WANG ; Sha-Sha ZUO ; Yuan-Li ZHANG ; Xi XU ; Lu-Ling HE ; Yu-Lin FENG ; Li-Jun DU ; Jun LI
China Journal of Chinese Materia Medica 2019;44(5):996-1003
		                        		
		                        			
		                        			In this study,in-depth systematic evaluation of rat of acute kidney injury(AKI) caused by renal arteriovenous ligation was conducted to better master and apply this model for drug research. Male SD rats of 2-3 months old were employed in this study.The left kidney was removed,and the right kidney received ligation for 40 min and reperfusion for 24 h. Serum creatinine(Crea),urea nitrogen(BUN) and the renal tissue sections were assayed as the basic indicators to evaluate their renal function. The mRNA expression of inflammatory necrosis factors and apoptotic factors was used to evaluate the mechanism of molecular pathophysiological changes. The results showed that the serum Crea and BUN caused by ligation of both renal arteries and veins were significantly higher than those of rats with renal artery ligation. After renal arteriovenous ligation for 40 min and reperfusion for 24 h in rats,the serum Crea of the rats varied from less than 100 μmol·L-1 to more than 430 μmol·L-1. Among them,5 rats showed less than 100 μmol·L-1 serum Crea,20 rats with 100-200 μmol·L-1 serum Crea and 12 rats with more than 430 μmol·L-1. Rats with serum Crea between 300-430 μmol·L-1 accounted for 66.3%(122/184) of the total number of the experiment rats. After 72 h reperfusion,serum Crea in the group of Crea 370-430 μmol·L-1 continued to increase,while the serum Crea in the group of Crea 200-300 μmol·L-1 and the group of Crea 300-370 μmol·L-1 recovered quickly. No matter serum Crea was elevated or decreased,the renal tubules showed pathological changes such as vacuolar degeneration or even necrosis. The mRNA expression levels of Toll-like receptor(TLR4),tumor necrosis factor(TNF-α) and interleukin(IL-6) in renal tissueswere significantly up-regulated,and the effect was most obvious in the group of serum Crea 370-430 μmol·L-1. The study indicated that the model for AKI caused by renal arteriovenous ligation and reperfusion is easy to operate,and the serum Crea and BUN have the characteristics of continuous increase,beneficial to the observation of drug effects. This acute kidney injury is mainly related to the pathophysiological response of inflammatory necrosis.
		                        		
		                        		
		                        		
		                        			Acute Kidney Injury
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Blood Urea Nitrogen
		                        			;
		                        		
		                        			Creatinine
		                        			;
		                        		
		                        			blood
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Kidney
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Kidney Tubules
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Ligation
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Renal Artery
		                        			;
		                        		
		                        			Reperfusion Injury
		                        			
		                        		
		                        	
9.tPA Helpers in the Treatment of Acute Ischemic Stroke: Are They Ready for Clinical Use?
Journal of Stroke 2019;21(2):160-174
		                        		
		                        			
		                        			Tissue plasminogen activator (tPA) is the only therapeutic agent approved to treat patients with acute ischemic stroke. The clinical benefits of tPA manifest when the agent is administered within 4.5 hours of stroke onset. However, tPA administration, especially delayed administration, is associated with increased intracranial hemorrhage (ICH), hemorrhagic transformation (HT), and mortality. In the ischemic brain, vascular remodeling factors are upregulated and microvascular structures are destabilized. These factors disrupt the blood brain barrier (BBB). Delayed recanalization of the vessels in the presence of relatively matured infarction appears to damage the BBB, resulting in HT or ICH, also known as reperfusion injury. Moreover, tPA itself activates matrix metalloproteases, further aggravating BBB disruption. Therefore, attenuation of edema, HT, or ICH after tPA treatment is an important therapeutic strategy that may enable clinicians to extend therapeutic time and increase the probability of excellent outcomes. Recently, numerous agents with various mechanisms have been developed to interfere with various steps of ischemia/reperfusion injuries or BBB destabilization. These agents successfully reduce infarct volume and decrease the incidence of ICH and HT after delayed tPA treatment in various animal stroke models. However, only some have entered into clinical trials; the results have been intriguing yet unsatisfactory. In this narrative review, I describe such drugs and discuss the problems and future directions. These “tPA helpers” may be clinically used in the future to increase the efficacy of tPA in patients with acute ischemic stroke.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Blood-Brain Barrier
		                        			;
		                        		
		                        			Brain
		                        			;
		                        		
		                        			Edema
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Incidence
		                        			;
		                        		
		                        			Infarction
		                        			;
		                        		
		                        			Intracranial Hemorrhages
		                        			;
		                        		
		                        			Metalloproteases
		                        			;
		                        		
		                        			Mortality
		                        			;
		                        		
		                        			Neuroprotection
		                        			;
		                        		
		                        			Reperfusion Injury
		                        			;
		                        		
		                        			Stroke
		                        			;
		                        		
		                        			Tissue Plasminogen Activator
		                        			;
		                        		
		                        			Vascular Remodeling
		                        			
		                        		
		                        	
10.Renal sympathetic nerve activation via α₂-adrenergic receptors in chronic kidney disease progression
Hee Seong JANG ; Jinu KIM ; Babu J PADANILAM
Kidney Research and Clinical Practice 2019;38(1):6-14
		                        		
		                        			
		                        			Chronic kidney disease (CKD) is increasing worldwide without an effective therapeutic strategy. Sympathetic nerve activation is implicated in CKD progression, as well as cardiovascular dysfunction. Renal denervation is beneficial for controlling blood pressure (BP) and improving renal function through reduction of sympathetic nerve activity in patients with resistant hypertension and CKD. Sympathetic neurotransmitter norepinephrine (NE) via adrenergic receptor (AR) signaling has been implicated in tissue homeostasis and various disease progressions, including CKD. Increased plasma NE level is a predictor of survival and the incidence of cardiovascular events in patients with end-stage renal disease, as well as future renal injury in subjects with normal BP and renal function. Our recent data demonstrate that NE derived from renal nerves causes renal inflammation and fibrosis progression through alpha-2 adrenergic receptors (α₂-AR) in renal fibrosis models independent of BP. Sympathetic nerve activation-associated molecular mechanisms and signals seem to be critical for the development and progression of CKD, but the exact role of sympathetic nerve activation in CKD progression remains undefined. This review explores the current knowledge of NE-α₂-AR signaling in renal diseases and offers prospective views on developing therapeutic strategies targeting NE-AR signaling in CKD progression.
		                        		
		                        		
		                        		
		                        			Blood Pressure
		                        			;
		                        		
		                        			Denervation
		                        			;
		                        		
		                        			Disease Progression
		                        			;
		                        		
		                        			Fibrosis
		                        			;
		                        		
		                        			Homeostasis
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Hypertension
		                        			;
		                        		
		                        			Incidence
		                        			;
		                        		
		                        			Inflammation
		                        			;
		                        		
		                        			Kidney Failure, Chronic
		                        			;
		                        		
		                        			Neurotransmitter Agents
		                        			;
		                        		
		                        			Norepinephrine
		                        			;
		                        		
		                        			Plasma
		                        			;
		                        		
		                        			Prospective Studies
		                        			;
		                        		
		                        			Receptors, Adrenergic
		                        			;
		                        		
		                        			Receptors, Adrenergic, alpha-2
		                        			;
		                        		
		                        			Renal Insufficiency, Chronic
		                        			;
		                        		
		                        			Reperfusion Injury
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail