1.Hydroxysafflor Yellow A Promotes HaCaT Cell Proliferation and Migration by Regulating HBEGF/EGFR and PI3K/AKT Pathways and Circ_0084443.
Yue ZHANG ; Yan-Wei XIAO ; Jing-Xin MA ; Ao-Xue WANG
Chinese journal of integrative medicine 2024;30(3):213-221
OBJECTIVE:
To investigate the effect and possible mechanism of hydroxysafflor yellow A (HSYA) on human immortalized keratinocyte cell proliferation and migration.
METHODS:
HaCaT cells were treated with HSYA. Cell proliferation was detected by the cell counting kit-8 assay, and cell migration was measured using wound healing assay and Transwell migration assay. The mRNA and protein expression levels of heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF), EGF receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-1α (HIF-1α) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. Circ_0084443-overexpressing HaCaT cells and empty plasmid HaCaT cells were constructed using the lentiviral stable transfection and treated with HSYA. The expression of circ_0084443 was detected by qRT-PCR.
RESULTS:
HSYA (800 µmol/L) significantly promoted HaCaT cell proliferation and migration (P<0.05 or P<0.01). It also increased the mRNA and protein expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and increased the phosphorylation levels of PI3K and AKT (P<0.05 or P<0.01). Furthermore, HSYA promoted HaCaT cell proliferation and migration via the HBEGF/EGFR and PI3K/AKT/mTOR signaling pathways (P<0.01). Circ_0084443 attenuated the mRNA expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α (P<0.05). HSYA inhibited the circ_0084443 expression, further antagonized the inhibition of circ_0084443 on HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and promoted the proliferation of circ_0084443-overexpressing HaCaT cells (P<0.05 or P<0.01). However, HSYA could not influence the inhibitory effect of circ_0084443 on HaCaT cell migration (P>0.05).
CONCLUSION
HSYA played an accelerative role in HaCaT cell proliferation and migration, which may be attributable to activating HBEGF/EGFR and PI3K/AKT signaling pathways, and had a particular inhibitory effect on the keratinocyte negative regulator circ_0084443.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinase
;
Phosphatidylinositol 3-Kinases/metabolism*
;
ErbB Receptors/genetics*
;
TOR Serine-Threonine Kinases/metabolism*
;
Cell Proliferation
;
RNA, Messenger/genetics*
;
Cell Movement
;
Cell Line, Tumor
;
Chalcone/analogs & derivatives*
;
Quinones
2.Angiotensin converting enzyme 2 alleviates infectious bronchitis virus-induced cellular inflammation by suppressing IL-6/JAK2/STAT3 signaling pathway.
Xiaoxia JI ; Huanhuan WANG ; Chang MA ; Zhiqiang LI ; Xinyu DU ; Yuanshu ZHANG
Chinese Journal of Biotechnology 2023;39(7):2669-2683
The goal of this study was to investigate the regulatory effect of angiotensin converting enzyme 2 (ACE2) on cellular inflammation caused by avian infectious bronchitis virus (IBV) and the underlying mechanism of such effect. Vero and DF-1 cells were used as test target to be exposed to recombinant IBV virus (IBV-3ab-Luc). Four different groups were tested: the control group, the infection group[IBV-3ab-Luc, MOI (multiplicity of infection)=1], the ACE2 overexpression group[IBV-3ab Luc+pcDNA3.1(+)-ACE2], and the ACE2-depleted group (IBV-3ab-Luc+siRNA-ACE2). After the cells in the infection group started to show cytopathic indicators, the overall protein and RNA in cell of each group were extracted. real-time quantitative polymerase chain reaction (RT-qPCR) was used to determine the mRNA expression level of the IBV nucleoprotein (IBV-N), glycoprotein 130 (gp130) and cellular interleukin-6 (IL-6). Enzyme linked immunosorbent assay (ELISA) was used to determine the level of IL-6 in cell supernatant. Western blotting was performed to determine the level of ACE2 phosphorylation of janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3). We found that ACE2 was successfully overexpressed and depleted in both Vero and DF-1 cells. Secondly, cytopathic indicators were observed in infected Vero cells including rounding, detaching, clumping, and formation of syncytia. These indicators were alleviated in ACE2 overexpression group but exacerbated when ACE2 was depleted. Thirdly, in the infection group, capering with the control group, the expression level of IBV-N, gp130, IL-6 mRNA and increased significantly (P < 0.05), the IL-6 level was significant or extremely significant elevated in cell supernatant (P < 0.05 or P < 0.01); the expression of ACE2 decreased significantly (P < 0.05); protein phosphorylation level of JAK2 and STAT3 increased significantly (P < 0.05). Fourthly, comparing with the infected group, the level of IBV-N mRNA expression in the ACE2 overexpression group had no notable change (P > 0.05), but the expression of gp130 mRNA, IL-6 level and expression of mRNA were elevated (P < 0.05) and the protein phosphorylation level of JAK2 and STAT3 decreased significantly (P < 0.05). In the ACE2-depleted group, there was no notable change in IBV-N (P > 0.05), but the IL-6 level and expression of mRNA increased significantly (P < 0.05) and the phosphorylation level of JAK2 and STAT3 protein decreased slightly (P > 0.05). The results demonstrated for the first time that ACE2 did not affect the replication of IBV in DF-1 cell, but it did contribute to the prevention of the activation of the IL-6/JAK2/STAT3 signaling pathway, resulting in an alleviation of IBV-induced cellular inflammation in Vero and DF-1 cells.
Animals
;
Chlorocebus aethiops
;
Humans
;
Interleukin-6/genetics*
;
Janus Kinase 2/pharmacology*
;
Infectious bronchitis virus/metabolism*
;
STAT3 Transcription Factor/metabolism*
;
Angiotensin-Converting Enzyme 2/pharmacology*
;
Cytokine Receptor gp130/metabolism*
;
Vero Cells
;
Signal Transduction
;
Inflammation
;
RNA, Messenger
3.Anemoside B4 regulates fatty acid metabolism reprogramming in mice with colitis-associated cancer.
Xin YANG ; Jing JIA ; Xin-Xu XIE ; Meng-Qiang WAN ; Yu-Lin FENG ; Ying-Ying LUO ; Hui OUYANG ; Jun YU
China Journal of Chinese Materia Medica 2023;48(9):2325-2333
The study aimed to investigate the effect of anemoside B4(B4) on fatty acid metabolism in mice with colitis-associated cancer(CAC). The CAC model was established by azoxymethane(AOM)/dextran sodium sulfate(DSS) in mice. Mice were randomly divided into a normal group, a model group, and low-, medium-, and high-dose anemoside B4 groups. After the experiment, the length of the mouse colon and the size of the tumor were measured, and the pathological alterations in the mouse colon were observed using hematoxylin-eosin(HE) staining. The slices of the colon tumor were obtained for spatial metabolome analysis to analyze the distribution of fatty acid metabolism-related substances in the tumor. The mRNA levels of SREBP-1, FAS, ACCα, SCD-1, PPARα, ACOX, UCP-2, and CPT-1 were determined by real-time quantitative PCR(RT-qPCR). The results revealed that the model group showed decreased body weight(P<0.05) and colon length(P<0.001), increased number of tumors, and increased pathological score(P<0.01). Spatial metabolome analysis revealed that the content of fatty acids and their derivatives, carnitine, and phospholipid in the colon tumor was increased. RT-qPCR results indicated that fatty acid de novo synthesis and β-oxidation-related genes, such as SREBP-1, FASN, ACCα, SCD-1, ACOX, UCP-2, and CPT-1 mRNA expression levels increased considerably(P<0.05, P<0.001). After anemoside B4 administration, the colon length increased(P<0.01), and the number of tumors decreased in the high-dose anemoside B4 group(P<0.05). Additionally, spatial metabolome analysis showed that anemoside B4 could decrease the content of fatty acids and their derivatives, carnitine, and phospholipids in colon tumors. Meanwhile, anemoside B4 could also down-regulate the expression of FASN, ACCα, SCD-1, PPARα, ACOX, UCP-2, and CPT-1 in the colon(P<0.05, P<0.01, P<0.001). The findings of this study show that anemoside B4 may inhibit CAC via regulating fatty acid metabolism reprogramming.
Mice
;
Animals
;
Sterol Regulatory Element Binding Protein 1
;
Colitis-Associated Neoplasms
;
PPAR alpha/genetics*
;
Colonic Neoplasms/genetics*
;
Colon
;
Azoxymethane
;
RNA, Messenger
;
Dextran Sulfate
;
Colitis/drug therapy*
;
Mice, Inbred C57BL
;
Disease Models, Animal
4.Acteoside promotes autophagy and apoptosis of hepatoma cells by regulating JNK signaling pathway.
Yu-Jing HE ; Ying ZHENG ; Chu-Yi LI ; Liu-Lu GAO ; Jun-Ke WANG ; Bin LI ; Li-Xia LU ; Pan WANG ; Xiao-Hui YU ; Jiu-Cong ZHANG
China Journal of Chinese Materia Medica 2023;48(9):2343-2351
This study explored the molecular mechanism of acteoside against hepatoma 22(H22) tumor in mice through c-Jun N-terminal kinase(JNK) signaling pathway. H22 cells were subcutaneously inoculated in 50 male BALB/c mice, and then the model mice were classified into model group, low-dose, medium-dose, and high-dose acteoside groups, and cisplatin group. The administration lasted 2 weeks for each group(5 consecutive days/week). The general conditions of mice in each group, such as mental status, diet intake, water intake, activity, and fur were observed. The body weight, tumor volume, tumor weight, and tumor-inhibiting rate were compared before and after administration. Morphological changes of liver cancer tissues were observed based on hematoxylin and eosin(HE) staining, and the expression of phosphorylated(p)-JNK, JNK, B-cell lymphoma-2(Bcl-2), Beclin-1, and light chain 3(LC3) in each tissue was detected by immunohistochemistry and Western blot. qRT-PCR was performed to detect the mRNA expression of JNK, Bcl-2, Beclin-1, and LC3. The general conditions of mice in model and low-dose acteoside groups were poor, while the general conditions of mice in the remaining three groups were improved. The body weight of mice in medium-dose acteoside group, high-dose acteoside group, and cisplatin group was smaller than that in model group(P<0.01). The tumor volume in model group was insignificantly different from that in low-dose acteoside group, and the volume in cisplatin group showed no significant difference from that in high-dose acteoside group. Tumor volume and weight in medium-dose and high-dose acteoside groups and cisplatin group were lower than those in the model group(P<0.001). The tumor-inhibiting rates were 10.72%, 40.32%, 53.79%, and 56.44% in the low-dose, medium-dose, and high-dose acteoside groups and cisplatin group, respectively. HE staining showed gradual decrease in the count of hepatoma cells and increasing sign of cell necrosis in the acteoside and cisplatin groups, and the necrosis was particularly obvious in the high-dose acteoside group and cisplatin group. Immunohistochemical results suggested that the expression of Beclin-1, LC3, p-JNK, and JNK was up-regulated in acteoside and cisplatin groups(P<0.05). The results of immunohistochemistry, Western blot, and qRT-PCR indicated that the expression of Bcl-2 was down-regulated in the medium-dose and high-dose acteoside groups and cisplatin group(P<0.01). Western blot showed that the expression of Beclin-1, LC3, and p-JNK was up-regulated in acteoside and cisplatin groups(P<0.01), and there was no difference in the expression of JNK among groups. qRT-PCR results showed that the levels of Beclin-1 and LC3 mRNA were up-regulated in the acteoside and cisplatin groups(P<0.05), and the level of JNK mRNA was up-regulated in medium-dose and high-dose acteoside groups and cisplatin group(P<0.001). Acteoside promotes apoptosis and autophagy of H22 cells in mice hepatoma cells by up-regulating the JNK signaling pathway, thus inhibiting tumor growth.
Male
;
Animals
;
Mice
;
Cisplatin/pharmacology*
;
Carcinoma, Hepatocellular/genetics*
;
MAP Kinase Signaling System
;
Beclin-1
;
Apoptosis
;
Liver Neoplasms/genetics*
;
Necrosis
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Cell Line, Tumor
;
RNA, Messenger/metabolism*
;
Autophagy
5.Mechanism of Yanghe Decoction against subcutaneous tumor in pulmonary metastasis from breast cancer through HIF-1α signaling pathway regulating glycolysis:based on network pharmacology and animal experiment.
Yang-Jing LIU ; Xiao-Liu LI ; Chao-Qun MA ; De-Xuan CHEN ; Gao-Yuan WANG ; Tai-Yang ZHU
China Journal of Chinese Materia Medica 2023;48(9):2352-2359
This study aims to explore the mechanism of Yanghe Decoction(YHD) against subcutaneous tumor in pulmonary metastasis from breast cancer, which is expected to lay a basis for the treatment of breast carcinoma with YHD. The chemical components of medicinals in YHD, and the targets of the components were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and SwissTargetPrediction. The disease-related targets were searched from GeneCards and Online Mendelian Inheritance in Man(OMIM). Excel was employed to screen the common targets and plot the Venn diagram. The protein-protein interaction network was constructed. R language was used for Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment. A total of 53 female SPF Bablc/6 mice were randomized into normal group(same volume of normal saline, ig), model group(same volume of normal saline, ig), and low-dose and high-dose YHD groups(YHD, ig, 30 days), with 8 mice in normal group and 15 mice in each of the other groups. Body weight and tumor size was measured every day. Curves for body weight variation and growth of tumor in situ were plotted. In the end, the subcutaneous tumor sample was collected and observed based on hematoxylin and eosin(HE) staining. The mRNA and protein levels of hypoxia inducible factor-1α(HIF-1α), pyruvate kinase M2(PKM2), lactate dehydrogenase A(LDHA), and glucose transporter type 1(GLUT1) were detected by PCR and Western blot. A total of 213 active components of YHD and 185 targets against the disease were screened out. The hypothesis that YHD may regulate glycolysis through HIF-1α signaling pathway to intervene in breast cancer was proposed. Animal experiment confirmed that the mRNA and protein levels of HIF-1α, PKM2, LDHA, and GLUT1 in the high-and low-dose YHD groups were lower than those in the model group. YHD has certain inhibitory effect on subcutaneous tumor in pulmonary metastasis from breast cancer in the early stage, which may intervene pulmonary metastasis from breast cancer by regulating glycolysis through HIF-1α signaling pathway.
Female
;
Mice
;
Animals
;
Glucose Transporter Type 1/genetics*
;
Network Pharmacology
;
Animal Experimentation
;
Saline Solution
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
;
Signal Transduction
;
Glycolysis
;
RNA, Messenger
;
Neoplasms/drug therapy*
;
Molecular Docking Simulation
6.Amino acid metabolism characteristics of Banxia Baizhu Tianma Decoction in realizing drug withdrawal based on transcriptomic analysis.
Xin YANG ; Jia-Yi HE ; Xiang-Xin GUO ; Rong TIAN
China Journal of Chinese Materia Medica 2023;48(9):2512-2521
This study aimed to demonstrate the effect of Banxia Baizhu Tianma Decoction(BBTD) on realizing withdrawal of anti-epileptic drugs and explore the relationship between BBTD and the amino acid metabolism by transcriptomic analysis in the rat model of epilepsy induced by lithium chloride-pilocarpine. The rats with epilepsy were divided into a control group(Ctrl), an epilepsy group(Ep), a BBTD & antiepileptic drug integrative group(BADIG), and an antiepileptic drug withdrawal group(ADWG). The Ctrl and Ep were given ultrapure water by gavage for 12 weeks. The BADIG was given BBTD extract and carbamazepine solution by gavage for 12 weeks. The ADWG was given carbamazepine solution and BBTD extract by gavage for the former 6 weeks, and then only given BBTD extract for the latter 6 weeks. The therapeutic effect was evaluated by behavioral observation, electroencephalogram(EEG), and hippocampal neuronal morphological changes. High-throughput sequencing was used to obtain amino acid metabolism-related differen-tial genes in the hippocampus, and the mRNA expression in the hippocampus of each group was verified by real-time quantitative polymerase chain reaction(RT-qPCR). The hub genes were screened out through protein-protein interaction(PPI) network, and Gene Ontology(GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were performed. Two ceRNA networks, namely circRNA-miRNA-mRNA and lncRNA-miRNA-mRNA, were constructed for ADWG vs BADIG. The experimental results showed that compared with those in Ep, rats in ADWG were significantly improved in the behavioral observation, EEG, and hippocampal neuronal impairment. Thirty-four amino acid metabolism-related differential genes were obtained by transcriptomic analysis, and the sequencing results were confirmed by RT-qPCR. Eight hub genes were obtained through PPI network, involving several biological processes, molecular functions, and signal pathways related to amino acid metabolism. Finally, the circRNA-miRNA-mRNA ternary transcription network of 17 circRNA, 5 miRNA, and 2 mRNA, and a lncRNA-miRNA-mRNA ternary network of 10 lncRNA, 5 miRNA, and 2 mRNA were constructed in ADWG vs BADIG. In conclusion, BBTD can effectively achieve the withdrawal of antiepileptic drugs, which may be related to the transcriptomic regulation of amino acid metabolism.
Rats
;
Animals
;
RNA, Circular/genetics*
;
Transcriptome
;
RNA, Long Noncoding/genetics*
;
Anticonvulsants
;
MicroRNAs/genetics*
;
RNA, Messenger
;
Carbamazepine
;
Amino Acids
;
Gene Regulatory Networks
7.Effect of multi-glycosides of Tripterygium wilfordii on renal injury in diabetic kidney disease rats through NLRP3/caspase-1/GSDMD pyroptosis pathway.
Chun-Dong SONG ; Dan SONG ; Ping-Ping JIA ; Feng-Yang DUAN ; Ying DING ; Xian-Qing REN ; Wen-Sheng ZHAI ; Yao-Xian WANG ; Shu-Li HUANG
China Journal of Chinese Materia Medica 2023;48(10):2639-2645
This study investigated the effect of multi-glycosides of Tripterygium wilfordii(GTW) on renal injury in diabetic kidney disease(DKD) rats through Nod-like receptor protein 3(NLRP3)/cysteine-aspartic acid protease-1(caspase-1)/gsdermin D(GSDMD) pyroptosis pathway and the mechanism. To be specific, a total of 40 male SD rats were randomized into the normal group(n=8) and modeling group(n=34). In the modeling group, a high-sugar and high-fat diet and one-time intraperitoneal injection of streptozotocin(STZ) were used to induce DKD in rats. After successful modeling, they were randomly classified into model group, valsartan(Diovan) group, and GTW group. Normal group and model group were given normal saline, and the valsartan group and GTW group received(ig) valsartan and GTW, respectively, for 6 weeks. Blood urea nitrogen(BUN), serum creatinine(Scr), alanine ami-notransferase(ALT), albumin(ALB), and 24 hours urinary total protein(24 h-UTP) were determined by biochemical tests. The pathological changes of renal tissue were observed based on hematoxylin and eosin(HE) staining. Serum levels of interleukin-1β(IL-1β) and interleukin-18(IL-18) were detected by enzyme-linked immunosorbent assay(ELISA). Western blot was used to detect the expression of pyroptosis pathway-related proteins in renal tissue, and RT-PCR to determine the expression of pyroptosis pathway-related genes in renal tissue. Compared with the normal group, the model group showed high levels of BUN, Scr, ALT, and 24 h-UTP and serum levels of IL-1β and IL-18(P<0.01), low level of ALB(P<0.01), severe pathological damage to kidney, and high protein and mRNA levels of NLRP3, caspase-1, and GSDMD in renal tissue(P<0.01). Compared with the model group, valsartan group and GTW group had low levels of BUN, Scr, ALT, and 24 h-UTP and serum levels of IL-1β and IL-18(P<0.01), high level of ALB(P<0.01), alleviation of the pathological damage to the kidney, and low protein and mRNA levels of NLRP3, caspase-1, and GSDMD in renal tissue(P<0.01 or P<0.05). GTW may inhibit pyroptosis by decreasing the expression of NLRP3/caspase-1/GSDMD in renal tissue, thereby relieving the inflammatory response of DKD rats and the pathological injury of kidney.
Rats
;
Male
;
Animals
;
Diabetic Nephropathies/genetics*
;
Interleukin-18/metabolism*
;
Glycosides/pharmacology*
;
Tripterygium
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Rats, Sprague-Dawley
;
Caspase 1/metabolism*
;
Pyroptosis
;
Uridine Triphosphate/pharmacology*
;
Kidney
;
Valsartan/pharmacology*
;
RNA, Messenger/metabolism*
;
Diabetes Mellitus
8.Periplaneta americana extract CⅡ-3 induces senescence of leukemia K562 cells via SIRT1/mTOR signaling pathway.
Si-Yue HE ; Cheng-Gui ZHANG ; Heng LIU ; Yue ZHOU ; Zi-Yun TANG ; Zi-Ying BI ; Lu TIAN ; Min-Rui LI
China Journal of Chinese Materia Medica 2023;48(11):3039-3045
This study aims to investigate the role of slient mating-type information regulation 2 homolog 1(SIRT1)/tuberous sclerosis complex 2(TSC2)/mammalian target of rapamycin(mTOR) signaling pathways in the Periplaneta americana extract CⅡ-3-induced senescence of human leukemia K562 cells. K562 cells were cultured in vitro and treated with 0(control), 5, 10, 20, 40, 80, and 160 μg·mL~(-1) of P. americana extract CⅡ-3. Cell counting kit-8(CCK-8) and flow cytometry were employed to examine the proliferation and cell cycle of the K562 cells. Senescence-associated β-galactosidase stain kit(SA-β-gal) was used to detect the positive rate of senescent cells. Mitochondrial membrane potential was detected by flow cytometry. The relative mRNA level of telomerase reverse transcriptase(TERT) was determined by fluorescence quantitative PCR. The mRNA and protein levels of SIRT1, TSC2, and mTOR were determined by fluorescence quantitative PCR and Western blot, respectively. The results showed that CⅡ-3 significantly inhibited the proliferation of K562 cells and the treatment with 80 μg·mL~(-1) CⅡ-3 for 72 h had the highest inhibition rate. Therefore, 80 μg·mL~(-1) CⅡ-3 treatment for 72 h was selected as the standard for subsequent experiments. Compared with the control group, CⅡ-3 increased the proportion of cells arrested in G_0/G_1 phase, decreased the proportion of cells in S phase, increased the positive rate of SA-β-Gal staining, elevated the mitochondrial membrane potential and down-regulated the mRNA expression of TERT. Furthermore, the mRNA expression of SIRT1 and TSC2 was down-regulated, while the mRNA expression of mTOR was up-regulated. The protein expression of SIRT1 and p-TSC2 was down-regulated, while the protein expression of p-mTOR was up-regulated. The results indicated that P. americana extract CⅡ-3 induced the senescence of K562 cells via the SIRT1/mTOR signaling pathway.
Humans
;
Animals
;
Periplaneta
;
Sirtuin 1/genetics*
;
K562 Cells
;
Signal Transduction
;
TOR Serine-Threonine Kinases/genetics*
;
RNA, Messenger
;
Mammals
9.Shaofu Zhuyu Decoction attenuates fibrosis in endometriosis through regulating PTEN/Akt/mTOR signaling pathway.
Xiu-Jia JI ; Xiao-Hua ZHANG ; Can-Can HUANG ; Zuo-Liang ZHANG ; Hai-Yan MAO ; Bin YUE ; Bing-Yu LIU ; Quan-Sheng WU
China Journal of Chinese Materia Medica 2023;48(12):3207-3214
The present study aimed to investigate the protective role of Shaofu Zhuyu Decoction(SFZY) against endometriosis fibrosis in mice, and decipher the underlying mechanism through the phosphatase and tensin homolog deleted on chromosome ten(PTEN)/protein kinase B(Akt)/mammalian target of rapamycin(mTOR) pathway. Eighty-five BALB/c female mice were randomly assigned into a blank group, a model group, high-, medium, and low-dose SFZY(SFZY-H, SFZY-M, and SFZY-L, respectively) groups, and a gestrinone suspension(YT) group. The model of endometriosis was induced by intraperitoneal injection of uterine fragments. The mice in different groups were administrated with corresponding groups by gavage 14 days after modeling, and the blank group and model group with equal volume of distilled water by gavage. The treatment lasted for 14 days. The body weight, paw withdrawal latency caused by heat stimuli, and total weight of dissected ectopic focus were compared between different groups. The pathological changes of the ectopic tissue were observed via hematoxylin-eosin(HE) and Masson staining. Real-time PCR was employed to measure the mRNA levels of α-smooth muscle actin(α-SMA) and collagen type Ⅰ(collagen-Ⅰ) in the ectopic tissue. The protein levels of PTEN, Akt, mTOR, p-Akt, and p-mTOR in the ectopic tissue were determined by Western blot. Compared with the blank group, the modeling first decreased and then increased the body weight of mice, increased the total weight of ectopic focus, and shortened the paw withdrawal latency. Compared with the model group, SFZY and YT increased the body weight, prolonged the paw withdrawal latency, and decreased the weight of ectopic focus. Furthermore, the drug administration, especially SFZY-H and YT(P<0.01), recovered the pathological and reduced the area of collagen deposition. Compared with the blank group, the modeling up-regulated the mRNA levels of α-SMA and collagen-Ⅰ in the ectopic focus, and such up-regulation was attenuated after drug intervention, especially in the SFZY-H and YT groups(P<0.05,P<0.01). Compared with the blank group, the modeling down-regulated the protein level of PTEN and up-regulated the protein levels of Akt, mTOR, p-Akt, and p-mTOR(P<0.01, P<0.001). Drug administration, especially SFZY-H and YT, restored such changes(P<0.01). SFZY may significantly attenuate the focal fibrosis in the mouse model of endometriosis by regulating the PTEN/Akt/mTOR signaling pathway.
Female
;
Animals
;
Mice
;
Humans
;
Proto-Oncogene Proteins c-akt/genetics*
;
Choristoma
;
Endometriosis/genetics*
;
TOR Serine-Threonine Kinases/genetics*
;
RNA, Messenger
;
Signal Transduction
;
Body Weight
;
Mammals
;
PTEN Phosphohydrolase/genetics*
10.Mechanism of Buyang Huanwu Decoction glycosides against atherosclerotic inflammation through NF-κB signaling pathway.
Xin-Ying FU ; Zheng-Ji SUN ; Qing-Yin LONG ; Wei TAN ; Yan-Jun LI ; Lu WU ; Qing-Hu HE ; Wei ZHANG
China Journal of Chinese Materia Medica 2023;48(1):202-210
This study aims to explore the effect of Buyang Huanwu Decoction glycosides on the inflammatory response of apolipoprotein E~(-/-)(ApoE~(-/-)) mice and RAW264.7 cells through nuclear factor kappa-B(NF-κB) signaling pathway. In the in vivo experiment, ApoE~(-/-) mice were fed with high-fat diets for 12 weeks to induce the animal model of atherosclerosis, and 75 μg·mL~(-1) oxidized low-density lipoprotein(Ox-LDL) incubated RAW264.7 cells for 24 h to establish the atherosclerosis cell model. Automatic biochemical analyzer, hematoxylin-eosin(HE) staining, enzyme-linked immunosorbent assay(ELISA), Western blot, and droplet digital polymerase chain reaction(PCR) were used to determine the blood lipid levels, aortic intimal thickness, inflammatory factor content, NF-κB pathway-related proteins, and mRNA expression levels, and evaluate arterial atherosclerotic lesions and anti-atherosclerotic mechanisms of the drug. The model of atherosclerosis was successfully established in ApoE~(-/-) mice after 12 weeks of feeding with high-fat diets. In the model group, the plasma levels of total cholesterol(TC), triglyceride(TG), and low-density lipoprotein cholesterol(LDL-C) were increased(P<0.01), the intima of the blood vessels was thickened, the levels of inflammatory factors tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6) were increased, and the protein and mRNA expressions of NF-κB and inhibitor of NF-κB(IκBα) were significantly increased as compared with the control group. Compared with the model group, the high-dose Buyang Huanwu Decoction glycoside group decreased the plasma levels of TC, TG, and LDL-C, reduced the plaque area and thickness and the content of inflammatory factor TNF-α, and inhibited the protein and mRNA expressions of NF-κB and IκBα, with the effect same as Buyang Huanwu Decoction. In the in vivo experiment, 75 μg·mL~(-1) Ox-LDL stimulated RAW264.7 cells for 24 h to successfully establish a foam cell model. As compared with the control group, the nuclear amount of NF-κB and the protein and mRNA expressions of IκBα in the model group increased. Compared with the model group, the middle-dose and high-dose Buyang Huanwu Decoction glycoside groups decreased the nuclear amount of NF-κB and the protein and mRNA expressions of IκBα. The above results show that the glycosides are the main effective substances of Buyang Huanwu Decoction against atherosclerosis, which inhibit the NF-κB pathway and reduce the inflammatory response, thus playing the role against atherosclerotic inflammation same as Buyang Huanwu Decoction.
Mice
;
Animals
;
NF-kappa B/metabolism*
;
NF-KappaB Inhibitor alpha/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Glycosides/pharmacology*
;
Cholesterol, LDL
;
Atherosclerosis/genetics*
;
Signal Transduction
;
Inflammation/drug therapy*
;
Interleukin-6
;
Apolipoproteins E/pharmacology*
;
RNA, Messenger/metabolism*

Result Analysis
Print
Save
E-mail