1.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
2.Application of Nanomaterials in The Prevention and Treatment of Radiation-induced Injury
Qing-Qing WANG ; Ya LIU ; Wei LIU ; Wei LONG
Progress in Biochemistry and Biophysics 2025;52(7):1728-1744
Radiation-induced injury is a key factor in determining the prognosis of patients undergoing radiotherapy, highlighting the significant clinical importance of developing drugs for radiation prevention and treatment. Especially in oncology, radiation-induced injury remains a pivotal determinant of therapeutic outcomes, because of its direct correlation with normal tissue damage during radiotherapy. Efforts to mitigate or treat such injury are thus paramount in enhancing the overall safety and efficacy of cancer treatment. Novel nanomedicines with prolonged systemic circulation, versatile drug-loading capacities, enhanced tissue retention, and stimuli responsiveness exhibit unique advantages in the treatment and prevention of radiation-induced diseases, as they can be designed based on the specific microenvironment of radiation-damaged tissues, which offers innovative solutions to address the limitations of conventional radioprotectors such as short half-life, poor tissue targeting, and systemic side effects. This review thus aims to provide an overview of recent advance in the design and application of nanomaterials for radiation prevention and treatment. Generally, ionizing radiation damages cells either by inducing DNA double-strand breaks or through the generation of reactive oxygen species (ROS). The resulting oxidative stress would disrupt the structural integrity of cell membranes, proteins, and nucleic acids, leading to apoptosis, chronic inflammation, and systemic effects across multiple systems, including hematopoietic system, gastrointestinal tract, skin, lungs, brain, and heart. Radiation protection strategies focus on scavenging ROS, stimulating cellular repair and regeneration, inducing tissue hypoxia, and inhibiting apoptotic pathways. Recent advances in nanomedicine have introduced novel approaches for targeted and efficient radiation protection and treatment. For radiation-induced hematopoietic injury, nanoparticles can been designed to promote red and white blood cell regeneration while reducing oxidative stress. To address radiation-induced gastrointestinal injuries, nanomaterials enable localized antioxidant delivery and extended intestinal retention, effectively relieving radiation enteritis by scavenging ROS and modulating gut microbiota. For radiation-induced skin injuries, self-assembling peptide hydrogels that mimic the extracellular matrix can serve as effective scaffolds for wound healing. These hydrogels exhibit excellent antioxidant properties, stimulating angiogenesis, and accelerating the recovery of radiation dermatitis. In cases of radiation-induced brain damage, nanoparticles were designed to cross the blood-brain barrier to rescue neuronal damage and protect cognitive function. This review provides an in-depth insight into the mechanisms underlying radiation-induced injuries and highlights how nanomaterial were construtced according to the specific injury. Therefore, nanotechnology endowers durgs with transformative potential for preventing and treating radiation-induced injuries. Despite significant progress in nanomedicine, there are still challenges in long-term biocompatibility, precise targeting of damaged tissues, and scalable manufacturing. In addition, an in-depth understanding of the interactions between nanomaterials and biological systems remains to be covered. Future efforts should focus on optimizing design strategies, enhancing clinical translatability, and ensuring long-term safety, ultimately improving patient outcomes. Besides, expanding research into other radiation-induced diseases, such as radiation-induced ophthalmic disorders and hepatic injuries, may diversify therapeutic options.
3.Stability study of umbilical cord mesenchymal stem cells formulation in large-scale production
Wang-long CHU ; Tong-jing LI ; Yan SHANGGUAN ; Fang-tao HE ; Jian-fu WU ; Xiu-ping ZENG ; Tao GUO ; Qing-fang WANG ; Fen ZHANG ; Zhen-zhong ZHONG ; Xiao LIANG ; Jun-yuan HU ; Mu-yun LIU
Acta Pharmaceutica Sinica 2024;59(3):743-750
Umbilical cord mesenchymal stem cells (UC-MSCs) have been widely used in regenerative medicine, but there is limited research on the stability of UC-MSCs formulation during production. This study aims to assess the stability of the cell stock solution and intermediate product throughout the production process, as well as the final product following reconstitution, in order to offer guidance for the manufacturing process and serve as a reference for formulation reconstitution methods. Three batches of cell formulation were produced and stored under low temperature (2-8 ℃) and room temperature (20-26 ℃) during cell stock solution and intermediate product stages. The storage time intervals for cell stock solution were 0, 2, 4, and 6 h, while for intermediate products, the intervals were 0, 1, 2, and 3 h. The evaluation items included visual inspection, viable cell concentration, cell viability, cell surface markers, lymphocyte proliferation inhibition rate, and sterility. Additionally, dilution and culture stability studies were performed after reconstitution of the cell product. The reconstitution diluents included 0.9% sodium chloride injection, 0.9% sodium chloride injection + 1% human serum albumin, and 0.9% sodium chloride injection + 2% human serum albumin, with dilution ratios of 10-fold and 40-fold. The storage time intervals after dilution were 0, 1, 2, 3, and 4 h. The reconstitution culture media included DMEM medium, DMEM + 2% platelet lysate, 0.9% sodium chloride injection, and 0.9% sodium chloride injection + 1% human serum albumin, and the culture duration was 24 h. The evaluation items were viable cell concentration and cell viability. The results showed that the cell stock solution remained stable for up to 6 h under both low temperature (2-8 ℃) and room temperature (20-26 ℃) conditions, while the intermediate product remained stable for up to 3 h under the same conditions. After formulation reconstitution, using sodium chloride injection diluted with 1% or 2% human serum albumin maintained a viability of over 80% within 4 h. It was observed that different dilution factors had an impact on cell viability. After formulation reconstitution, cultivation in medium with 2% platelet lysate resulted in a cell viability of over 80% after 24 h. In conclusion, the stability of cell stock solution within 6 h and intermediate product within 3 h meets the requirements. The addition of 1% or 2% human serum albumin in the reconstitution diluent can better protect the post-reconstitution cell viability.
4.Study on the potential allergen and mechanism of pseudo-allergic reactions induced by combined using of Reduning injection and penicillin G injection based on metabolomics and bioinformatics
Yu-long CHEN ; You ZHAI ; Xiao-yan WANG ; Wei-xia LI ; Hui ZHANG ; Ya-li WU ; Liu-qing YANG ; Xiao-fei CHEN ; Shu-qi ZHANG ; Lu NIU ; Ke-ran FENG ; Kun LI ; Jin-fa TANG ; Ming-liang ZHANG
Acta Pharmaceutica Sinica 2024;59(2):382-394
Based on the strategy of metabolomics combined with bioinformatics, this study analyzed the potential allergens and mechanism of pseudo-allergic reactions (PARs) induced by the combined use of Reduning injection and penicillin G injection. All animal experiments and welfare are in accordance with the requirements of the First Affiliated Experimental Animal Ethics and Animal Welfare Committee of Henan University of Chinese Medicine (approval number: YFYDW2020002). Based on UPLC-Q-TOF/MS technology combined with UNIFI software, a total of 21 compounds were identified in Reduning and penicillin G mixed injection. Based on molecular docking technology, 10 potential allergens with strong binding activity to MrgprX2 agonist sites were further screened. Metabolomics analysis using UPLC-Q-TOF/MS technology revealed that 34 differential metabolites such as arachidonic acid, phosphatidylcholine, phosphatidylserine, prostaglandins, and leukotrienes were endogenous differential metabolites of PARs caused by combined use of Reduning injection and penicillin G injection. Through the analysis of the "potential allergen-target-endogenous differential metabolite" interaction network, the chlorogenic acids (such as chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, and isochlorogenic acid A) and
5.Synthesis and evaluation for anti-HCoV-OC43 activity of novel aloperine derivatives with different core structures
Run-ze MENG ; Yue GONG ; Yu-long SHI ; Kun WANG ; Zong-gen PENG ; Dan-qing SONG
Acta Pharmaceutica Sinica 2024;59(2):404-412
In this study, we designed and synthesized 12 novel aloperine derivatives with different core structures. Among them, compound
6.Serum levels of procalcitonin,interleukin-6 and interleukin-8 in patients with COVID-19 infection at admis-sion and their significance in patient prognosis
Sibo LONG ; Yan CHEN ; Xintong ZHANG ; Yanjun YIN ; Limei YANG ; Maike ZHENG ; Chaohong WANG ; Qing SUN ; Jun YAN ; Yiheng SHI ; Guangli SHI ; Yan ZHAO ; Guirong WANG
The Journal of Practical Medicine 2024;40(4):471-475
Objective To analyze the predictive value of serum levels of procalcitonin(PCT)and cytokines on the prognosis of patients with COVID-19 at admission.Methods From November 2022 to February 2023,patients diagnosed with COVID-19 who were admitted to Beijing Chest Hospital were enrolled.Chemiluminescence was used to detect serum PCT levels,and flow microsphere array was used to detect serum cytokines IL-1β,IL-2,IL-4,IL-5,IL-6,IL-8,IL-10,IL-12p70,IL-17A,IL-17F,IL-22,TNF-α,TNF-β,IFN-γ level.ICU admission,mechanical ventilation and in-hospital death were defined as poor prognosis.After excluding patients with bacterial infection,the relationship between serum PCT and cytokine levels at admission and the prognosis of COVID-19 patients was analyzed.After excluding patients with bacterial infection,the relationship between serum PCT and cytokine levels at admission and the prognosis of COVID-19 patients was analyzed.Results A total of 176 patients with complete data were included,including 134 in the PCT-normal group and 42 in the PCT-elevated group,with a median age of 71.50 years and 71.59%males.Patients in the PCT elevated-group had significantly higher rates of ICU admission(38.41%vs.13.11%,P<0.05),mechanical ventilation(76.92%vs.24.59%,P<0.001)and in-hospital mortality(38.46%vs.6.56%,P<0.001)were significantly higher than those in the PCT-normal group.Serum levels of cytokines IL-6(7.40 pg/mL vs.4.78 pg/mL,P = 0.033 4)and IL-8(10.97 pg/mL vs.5.92 pg/mL,P<0.001)were significantly higher in patients with poor prognosis than in those with good prognosis.The area under the curve for PCT,IL-6,and IL-8 to predict poor prognosis in COVID-19 patients was 0.687,0.660,and 0.746,respectively;sensitivity was 52.78%,55.17%,and 72.41%,respectively;and specificity was 81.58%,74.19%,and 74.19%,respectively,as calculated from the ROC curve.When PCT,IL-6 and IL-8 jointly predict the prognosis of COVID-19 patients,the area under the curve is 0.764,the sensitivity is 70.00%,and the specificity is 80.00%.Conclusion Serum PCT and cytokines IL-6 and IL-8 could be used as predictive markers for poor prognosis in patients with COVID-19.
7.Body hydration status and decompression sickness
Mengru ZHOU ; Baoliang ZHU ; Long QING ; Yingjie ZHOU ; Hongjie YI ; Yewei WANG ; Kun ZHANG ; Weigang XU
Journal of Environmental and Occupational Medicine 2024;41(7):834-840
Hydration status refers to the balance between the intake and discharge of water in the body. When the ingested and discharged water are roughly equal and the body is in water balance, it is the normal hydration status, and when the water intake is too little or too much, it is the "dehydration" or "overhydration status". The hydration status of the body not only affects metabolism, but also affects the functions of the urinary system, cardiovascular system, nervous system, etc. In order to further clarify the relationship between body hydration status and decompression sickness (DCS), this paper reviewed relevant studies and analyzed the interaction between hydration and decompression safety during diving. The primary causes of dehydration in diving are "hyperbaric diuresis", "immersion diuresis", breathing dry gas, heat, and cold. Dehydration not only promotes the occurrence of DCS but also reduces the aerobic work efficiency and athletic performance of divers, as well as affects cognition and mood. A study found that appropriate rehydration before and during diving can reduce the risk of DCS, which possibly associates with the increase of blood volume, plasma surface tension, and vasoconstriction. Fluid therapy is also important for those who already have DCS. This paper analyzed the amount, nature, timing, and effect of rehydration involved in the above links, comprehensively sorted out the relationship between hydration and diving safety, summarized the existing problems, and provided reference for practical application and future research.
8.Improved unilateral puncture PVP based on 3D printing technology for the treatment of osteoporotic vertebral com-pression fracture
Wei-Li JIANG ; Tao LIU ; Qing-Bo ZHANG ; Hui CHEN ; Jian-Zhong BAI ; Shuai WANG ; Jia-Wei CHENG ; Ya-Long GUO ; Gong ZHOU ; Guo-Qi NIU
China Journal of Orthopaedics and Traumatology 2024;37(1):7-14
Objective To investigate the clinical effect of unilateral percutaneous vertebroplasty(PVP)combined with 3D printing technology for the treatment of thoracolumbar osteoporotic compression fracture.Methods A total of 77 patients with thoracolumbar osteoporotic compression fractures from October 2020 to April 2022 were included in the study,all of which were vertebral body compression fractures caused by trauma.According to different treatment methods,they were di-vided into experimental group and control group.Thirty-two patients used 3D printing technology to improve unilateral transpedicle puncture vertebroplasty in the experimental group,there were 5 males and 27 females,aged from 63 to 91 years old with an average of(77.59±8.75)years old.Forty-five patients were treated with traditional bilateral pedicle puncture vertebroplasty,including 7 males and 38 females,aged from 60 to 88 years old with an average of(74.89±7.37)years old.Operation time,intraoperative C-arm X-ray times,anesthetic dosage,bone cement injection amount,bone cement diffusion good and good rate,complications,vertebral height,kyphotic angle(Cobb angle),visual analogue scale(VAS),Oswestry disability index(ODI)and other indicators were recorded before and after surgery,and statistically analyzed.Results All patients were followed up for 6 to 23 months,with preoperative imaging studies,confirmed for thoracolumbar osteoporosis com-pression fractures,two groups of patients with postoperative complications,no special two groups of patients'age,gender,body mass index(BMI),time were injured,the injured vertebral distribution had no statistical difference(P>0.05),comparable data.Two groups of patients with bone cement injection,bone cement dispersion rate,preoperative and postoperative vertebral body height,protruding after spine angle(Cobb angle),VAS,ODI had no statistical difference(P>0.05).The operative time,intra-operative fluoroscopy times and anesthetic dosage were statistically different between the two groups(P<0.05).Compared with the traditional bilateral puncture group,the modified unilateral puncture group combined with 3D printing technology had shorter operation time,fewer intraoperative fluoroscopy times and less anesthetic dosage.The height of anterior vertebral edge,kyphosis angle(Cobb angle),VAS score and ODI of the affected vertebrae were statistically different between two groups at each time point after surgery(P<0.05).Conclusion In the treatment of thoracolumbar osteoporotic compression fractures,3D printing technology is used to improve unilateral puncture PVP,which is convenient and simple,less trauma,short operation time,fewer fluoroscopy times,satisfactory distribution of bone cement,vertebral height recovery and kyphotic Angle correction,and good functional improvement.
9.Predictive value of gait and balance on frailty in community-dwelling older adults in Shanghai,China
Nana WEN ; Xinhui ZHANG ; Qing LONG ; Yuhao WANG ; Qunping YU ; Hanchun ZHANG ; Guohua ZHENG
Chinese Journal of Rehabilitation Theory and Practice 2024;30(6):731-736
Objective To explore the predictive value of gait and balance on the frailty in community-dwelling older adults aged 65 years and older in Shanghai. Methods A total of 414 community-dwelling older adults aged 65 years or older were recruited from Shanghai,from De-cember,2022 to April,2023.They were investigated with Fried's Frailty Phenotype Scale,Timed Up and Go Test(TUGT),one leg standing test(OLST)and self-designed questionnaire.The factors related to frailty were ana-lyzed using multivariate Logistic regression. Results The prevalence of pre-frailty and frailty were 62.8%and 10.9%,respectively.Living in rural residence,older age,low income,smoking,sedentary lifestyle and no regular exercise were the risk factors for frailty among com-munity-dwelling older adults.Time of TUGT increased,and time of closed eyes OLST descreased respectively in the frail older adults(P<0.05).The area under curve was 0.846(95%CI 0.808 to 0.884,P<0.001)as prediction for frailty using the combination of TUGT and closed eye OLST,with a sensitivity of 0.726 and a specificity of 0.817 at the optimal threshold. Conclusion Gait and balance may be a valuable predictor of frailty in community-dwelling older adults in Shanghai.
10.Latent tuberculosis infection among close contacts of positive etiology pul-monary tuberculosis in Chongqing
Rong-Rong LEI ; Hong-Xia LONG ; Cui-Hong LUO ; Ben-Ju YI ; Xiao-Ling ZHU ; Qing-Ya WANG ; Ting ZHANG ; Cheng-Guo WU ; Ji-Yuan ZHONG
Chinese Journal of Infection Control 2024;23(3):265-270
Objective To investigate the current situation and influencing factors of latent tuberculosis infection(LTBI)among close contacts of positive etiology pulmonary tuberculosis(PTB)patients,provide basis for formula-ting intervention measures for LTBI.Methods A multi-stage stratified cluster random sampling method was used to select close contacts of positive etiology PTB patients from 39 districts and counties in Chongqing City as the study objects.Demographic information was collected by questionnaire survey and the infection of Mycobacterium tuberculosis was detected by interferon gamma release assay(IGRA).The influencing factors of LTBI were analyzed by x2 test and binary logistic regression model.Results A total of 2 591 close contacts were included,the male to female ratio was 0.69∶1,with the mean age of(35.72±16.64)years.1 058 cases of LTBI were detected,Myco-bacterium tuberculosis latent infection rate was 40.83%.Univariate analysis showed that the infection rate was dif-ferent among peoples of different age,body mass index(BMI),occupation,education level,marital status,wheth-er they had chronic disease or major surgery history,whether they lived together with the indicator case,and whether the cumulative contact time with the indicator case ≥250 hours,difference were all statistically significant(all P<0.05);infection rate presented increased trend with the increase of age and BMI(both P<0.001),and decreased trend with the increase of education(P<0.05).Logistic regression analysis showed that age 45-54 years old(OR=1.951,95%CI:1.031-3.693),age 55-64 years old(OR=2.473,95%CI:1.279-4.781),other occupations(OR=0.530,95%CI:0.292-0.964),teachers(OR=0.439,95%CI:0.242-0.794),students(OR=0.445,95%CI:0.233-0.851),junior high school education or below(OR=1.412,95%CI:1.025-1.944),BMI<18.5 kg/m2(OR=0.762,95%CI:0.586-0.991),co-living with indicator cases(OR=1.621,95%CI1.316-1.997)and cumu-lative contact time with indicator cases ≥250 hours(OR=1.292,95%CI:1.083-1.540)were the influential fac-tors for LTBI(all P<0.05).Conclusion The close contacts with positive etiology PTB have a high latent infection rate of Mycobacterium tuberculosis,and it is necessary to pay attention to close contacts of high age,farmers,and frequent contact with patients,and take timely targeted interventions to reduce the risk of occurrence of disease.

Result Analysis
Print
Save
E-mail