1.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
2.Optimization of salt-processing technology for Anemarrhena asphodeloides by Box-Behnken response surface methodology versus GA-BP neural network
Luoxing PAN ; Yiman ZHAO ; Hui YUAN ; Zehua LI ; Dongsheng XUE ; Qing ZHAO
China Pharmacy 2025;36(19):2399-2403
OBJECTIVE To optimize the salt-processing technology for Anemarrhena asphodeloides. METHODS Taking soaking time, stir-frying temperature, and stir-frying time as factors, Box-Behnken response surface methodology was employed to optimize the salt-processing technology of A. asphodeloides using the contents of mangiferin, neomangiferin, isomangiferin, timosaponin BⅡ, timosaponin AⅢ, timosaponin BⅢ, total flavonoids, and total saponins as evaluation indicators. The entropy weight method was applied to determine the weight of each indicator and calculate the comprehensive score. Based on the 17 sets of Box-Behnken response surface methodology results, a genetic algorithm (GA)-back propagation (BP) neural network was used to further optimize the salt-processing technology, with soaking time, stir-frying temperature, and stir-frying time as input layers and the comprehensive score as the output layer. The salt-processing parameters obtained from the two methods were validated and compared to determine the optimal salt-processing technology for A. asphodeloides. RESULTS The optimal salt-processing conditions obtained via the Box-Behnken response surface methodology were as follows: soaking time of 23 min, stir-frying temperature of 160 ℃ , and stir-frying time of 12 min, yielding a comprehensive score of 63.370 2. The GA-BP neural network optimization resulted in the following conditions: soaking time of 24 min, stir-frying temperature of 163 ℃, and stir-frying time of 12 min, with a comprehensive score of 65.163 8. The GA-BP neural network optimization outperformed the results obtained by Box-Behnken response surface methodology. CONCLUSIONS This study successfully optimized the salt-processing technology for A. asphodeloides. Specifically, the technology involves adding 15 mL of 0.1 g/mL saline solution to 50 g of the herbal slices, allowing them to moisten for 24 minutes, and then stir-frying at 163 ℃ for 12 minutes.
3.Molecular Mechanisms Underlying Sleep Deprivation-induced Acceleration of Alzheimer’s Disease Pathology
Si-Ru YAN ; Ming-Yang CAI ; Ya-Xuan SUN ; Qing HUO ; Xue-Ling DAI
Progress in Biochemistry and Biophysics 2025;52(10):2474-2485
Sleep deprivation (SD) has emerged as a significant modifiable risk factor for Alzheimer’s disease (AD), with mounting evidence demonstrating its multifaceted role in accelerating AD pathogenesis through diverse molecular, cellular, and systemic mechanisms. SD is refined within the broader spectrum of sleep-wake and circadian disruption, emphasizing that both acute total sleep loss and chronic sleep restriction destabilize the homeostatic and circadian processes governing glymphatic clearance of neurotoxic proteins. During normal sleep, concentrations of interstitial Aβ and tau fall as cerebrospinal fluid oscillations flush extracellular waste; SD abolishes this rhythm, causing overnight rises in soluble Aβ and tau species in rodent hippocampus and human CSF. Orexinergic neurons sustain arousal, and become hyperactive under SD, further delaying sleep onset and amplifying Aβ production. At the molecular level, SD disrupts Aβ homeostasis through multiple converging pathways, including enhanced production via beta-site APP cleaving enzyme 1 (BACE1) upregulation, coupled with impaired clearance mechanisms involving the glymphatic system dysfunction and reduced Aβ-degrading enzymes (neprilysin and insulin-degrading enzyme). Cellular and histological analyses revealed that these proteinopathies are significantly exacerbated by SD-induced neuroinflammatory cascades characterized by microglial overactivation, astrocyte reactivity, and sustained elevation of pro-inflammatory cytokines (IL-1β, TNF-α, IL-6) through NF‑κB signaling and NLRP3 inflammasome activation, creating a self-perpetuating cycle of neurotoxicity. The synaptic and neuronal consequences of chronic SD are particularly profound and potentially irreversible, featuring reduced expression of critical synaptic markers (PSD95, synaptophysin), impaired long-term potentiation (LTP), dendritic spine loss, and diminished neurotrophic support, especially brain-derived neurotrophic factor (BDNF) depletion, which collectively contribute to progressive cognitive decline and memory deficits. Mechanistic investigations identify three core pathways through which SD exerts its neurodegenerative effects: circadian rhythm disruption via BMAL1 suppression, orexin system hyperactivity leading to sustained wakefulness and metabolic stress, and oxidative stress accumulation through mitochondrial dysfunction and reactive oxygen species overproduction. The review critically evaluates promising therapeutic interventions including pharmacological approaches (melatonin, dual orexin receptor antagonists), metabolic strategies (ketogenic diets, and Mediterranean diets rich in omega-3 fatty acids), lifestyle modifications (targeted exercise regimens, cognitive behavioral therapy for insomnia), and emerging technologies (non-invasive photobiomodulation, transcranial magnetic stimulation). Current research limitations include insufficient understanding of dose-response relationships between SD duration/intensity and AD pathology progression, lack of long-term longitudinal clinical data in genetically vulnerable populations (particularly APOE ε4 carriers and those with familial AD mutations), the absence of standardized SD protocols across experimental models that accurately mimic human chronic sleep restriction patterns, and limited investigation of sex differences in SD-induced AD risk. The accumulated evidence underscores the importance of addressing sleep disturbances as part of multimodal AD prevention strategies and highlights the urgent need for clinical trials evaluating sleep-focused interventions in at-risk populations. The review proposes future directions focused on translating mechanistic insights into precision medicine approaches, emphasizing the need for biomarkers to identify SD-vulnerable individuals, chronotherapeutic strategies aligned with circadian biology, and multi-omics integration across sleep, proteostasis and immune profiles may delineate precision-medicine strategies for at-risk populations. By systematically examining these critical connections, this analysis positions sleep quality optimization as a viable strategy for AD prevention and early intervention while providing a comprehensive roadmap for future mechanistic and interventional research in this rapidly evolving field.
4. Mechanism of EGFR inhibitor AG1478 combined with oxaliplatin in inhibiting PI3K/AKT pathway and promoting autophagy in HI 975 cells
Jin-Qing HUANG ; Yang LI ; Dong-Xue WEI ; Shan JIANG ; Shao-Feng JIANG
Chinese Pharmacological Bulletin 2024;40(2):242-278
Aim To explore the effect of oxaliplatin combined with epidermal growth factor receptor tyrosine kinase inhibitor AG1478 on autophagy in non-small cell lung cancer H1975 cells. Methods H1975 cells were cultured in vitro using gradient concentrations of AG1478 (0, 5, 10, 15, 20, 25, 30, 35, 40 jjimol • IT
5.Novel antibacterial drug target against Gram-negative bacteria: lipopolysaccharide transport protein LptDE and its inhibitors
Yue LI ; Guo-qing LI ; Yuan-yuan TIAN ; Cong-ran LI ; Xin-yi YANG ; Kai-hu YAO ; Xue-fu YOU
Acta Pharmaceutica Sinica 2024;59(2):279-288
The outer membrane composed predominantly of lipopolysaccharide (LPS) is an essential biological barrier for most Gram-negative (G-) bacteria. Lipopolysaccharide transport protein (Lpt) complex LptDE is responsible for the critical final stage of LPS transport and outer membrane assembly. The structure and function of LptDE are highly conserved in most G- bacteria but absent in mammalian cells, and thus LptDE complex is regarded as an attractive antibacterial target. In recent 10 years, the deciphering of the three-dimensional structure of LptDE protein facilities the drug discovery based on such "non
6.Regulatory effect of physiological tensile stress on differentiation of ATDC5 chondrocytes through Nell-1/Ihh signaling pathway
Ziwei DONG ; Huichuan QI ; Jun MA ; Qing XUE ; Jinhan NIE ; Hang YU ; Min HU
Journal of Jilin University(Medicine Edition) 2024;50(1):1-9
Objective:To discuss the regulatory effect of physiological tensile stress on the differentiation of chondrocytes,and to clarify the associated signaling pathway mechanism.Methods:The ATDC5 chondrocytes were cultured in vitro and subjected to physiological tensile stress by four-point bending cell mechanical loading device.Initially,the cells were divided into control group and tensile stress group(2 000 μstrain/2 h group),and further divided into different stress magnitudes(1 000,2 000,and 3 000 μstrain)for 2 h,and 2 000 μstrain for different duration time(1,2,and 4 h)groups;the cells without tensile stress were used as control group.Real-time fluorescence quantitative PCR(RT-qPCR)method was used to detect the expression levels of type Ⅱ collagen(Col-Ⅱ),type Ⅹ collagen(Col-Ⅹ),aggregated proteoglycom(Aggrecan),sex-determining region Y-box protein 9(SOX9),vascular endothelial growth factor(VEGF),proliferating cell nuclear antigen(PCNA),Nel-like molecule tyep 1(Nell-1),Runt-related transcription factor 2(Runx2),Indian hedgehog(Ihh),patched homolog 1(Ptch-1),GLI family zinc finger protein 1(Gli-1),and hedgehog interacting protein 1(Hhip-1)mRNA in the cells in various groups;Western blotting method was used to detect the expression levels of Nell-1,Runx2,and Ihh proteins in the cells in various groups.The ATDC5 cells were divided into control group,cyclopamine group,tensile stress group,and cyclopamine + tensile stress group.RT-qPCR method was used to detect the expression levels of Nell-1,Ihh,Ptch-1,Gli-1,and Hhip-1 mRNA in the cells in various groups;Western blotting method was used to detect the expression levels of Nell-1 and Ihh proteins in the cells in various groups.Results:Compared with control group,the expression levels of Col-Ⅱ,Col-Ⅹ,Aggrecan,SOX9,VEGF,and PCNA mRNA in the cells in 2 000 μstrain/2 h group were significantly increased(P<0.01);after treated with 2 000 μstrain tensile stress for different duration time(1,2,and 4 h)or different tensile stresses(1 000,2 000,and 3 000 μstrain)for 2 h,compared with control group,the expression levels of Runx2 mRNA in the cells in other groups were increased with the prolongation of time or the increasing of tensile stress(P<0.01),and the expression levels of Nell-1,Ihh,Ptch-1,Gli-1,and Hhip-1 mRNA were gradually increased(P<0.01),the expression levels reached the peaking at 2 000 μstrain/2 h,and then decreased but remained significantly higher than that in control group(P<0.01).The Western blotting results showed that the expression levels of Nell-1,Runx2,and Ihh proteins in the cells were consistent with the change trend of mRNA expression levels.After pre-treated with cyclopamine,compared with control group,the expression levels of Ihh,Ptch-1,Gli-1,and Hhip-1 mRNA in the cells in cyclopamine group were significantly decreased(P<0.01),and the expression levels of Ihh,Ptch-1,Gli-1,and Hhip-1 mRNA in the cells in tensile stress and cyclopamine+tensile stress groups were significantly increased(P<0.01);compared with cyclopamine group,the expression levels of Nell-1,Ihh,Ptch-1,Gli-1,and Hhip-1 mRNA in the cells in cyclopamine+tensile stress group were significantly increased(P<0.01);compared with tensile stress group,the expression levels of Ihh,Ptch-1,Gli-1,and Hhip-1 mRNA in the cells in cyclopamine + tensile stress group were significantly decreased(P<0.01).Compared with control group,the expression level of Ihh protein in the cells in cyclopamine group was significantly decreased(P<0.01),but there was no significant difference in expression level of Nell-1 protein in the cells between control group and cyclopamine group(P>0.05),while the expression levels of Nell-1 and Ihh proteins in the cells in tensile stress group and cyclopamine + tensile stress group were significantly increased(P<0.01);compared with cyclopamine group,the expression levels of Nell-1 and Ihh proteins in the cells in tensile stress group and cyclopamine + tensile stress group were significantly increased(P<0.01);compared with tensile stress group,in the expression levels of Nell-1 and Ihh proteins in the cells in cyclopamine + tensile stress group had no significant differences(P>0.05).Conclusion:After stimulated with physiological tensile stress,Nell-1 can activate the Ihh signaling pathway upstream,and regulate the differentiation of the ATDC5 chondrocytes.
7.Portable Electrochemical Sensor for Sensitive Detection of Azo Dyes Sunset Yellow and Tartrazine
Xue-Qing CHANG ; Zi-Qi WANG ; Li-Ping LU
Chinese Journal of Analytical Chemistry 2024;52(1):62-71
A polymethionine(p-Met)-modified laser-induced graphene(LIG)electrode was constructed and integrated with portable electrochemical workstations and handheld computer to achieve on-site,simultaneous detection of azo dyes sunset yellow(SY)and tartrazine(Tz)in environmental water.Firstly,the sensor interface with the best electrical conductivity was obtained by optimizing the laser processing parameters,and then the electrochemical responses of SY and Tz were improved by electropolymerization of methionine on the surface of LIG.Finally,a portable electrochemical sensor platform was built by connecting p-Met/LIG,a small electrochemical workstation and a handheld computer application program.Differential pulse voltammetry(DPV)was used to determine these two dyes.SY showed a good linear relationship in the concentration range of 0.2-20 μmol/L and 20-100 μmol/L,the detection limit was as low as 0.001 μmol/L.Tz showed a good linear relationship in concentration range of 0.3-40 μmol/L and 40-100 μmol/L,and the detection limits was as low as 0.005 μmol/L.p-Met/LIG also had excellent anti-interference performance and reproducibility.The portable electrochemical platform was applied to real-time detection of real water samples,and the results showed that the platform was expected to be applied in field detection of SY and Tz in real environmental water bodies.
8.Establishment of a Method for Galvanic Vestibular Stimulation-vestibular Evoked Myogenic Potentials in Healthy Children
Zichen CHEN ; Juan HU ; Feiyun CHEN ; Hui YANG ; Yanfei CHEN ; Tingting XUE ; Fangyuan YANG ; Yuzhong ZHANG ; Qiong WU ; Yulian JIN ; Xiaoyong REN ; Qing ZHANG
Journal of Audiology and Speech Pathology 2024;32(2):100-106
Objective To establish the methods of galvanic vestibular stimulation-vestibular evoked myogenic potentials(GVS-VEMPs)in healthy children and to obtain the normal value of GVS-cVEMP and GVS-oVEMP in these children in China.Methods Twenty(3~14 years)healthy children and 24 healthy adults(18~30 years)were enrolled for conventional examinations of GVS-cVEMP and GVS-oVEMP.Using the galvanic stimulation in-tensity under 3 mA/1 ms for children and 5 mA/1 ms for adults.The characteristics of elicitation and parameter re-sults of GVS-cVEMP and GVS-oVEMP in children and adults,as well as the pain scores and the elicitation of differ-ent stimulus intensities in the two age groups were recorded.Results The elicitation of GVS-cVEMP and GVS-oVEMP were both 100.0%in children and adult groups.The p1 latency,n1 latency and p1-n1 interval latency of GVS-cVEMP were 10.46±1.84 ms,16.98±2.12 ms and 6.52±1.42 ms respectively in children group,the n1 la-tency and p1-n1 interval latency were significantly shorter than the adult group(P<0.05).The n1 latency,p1 la-tency and p1-n1 interval latency of GVS-oVEMP were 8.87±1.40 ms,12.25±1.80 ms and 3.39±1.07 ms re-spectively in children group with no significant difference between the two groups.The thresholds of GVS-cVEMP and GVS-oVEMP in children group were significantly lower than adult group(P<0.01),but no differences were found in adult group regarding on the amplitude and interaural amplitude asymmetry ratio.In addition,with the in-crease of the intensity of galvanic stimulation,the correlation between pain scores and the elicitation rates of GVS-cVEMP and GVS-oVEMP also increased.Conclusion Using appropriate stimulus intensity and recording methods,GVS-cVEMP and GVS-oVEMP could be successfully assessed and detected in healthy children over 3 years old and adolescents.The latency of GVS-cVEMP in children is slightly shorter than that in adults,therefore we recommend selecting the matched age group for assessment in the children group.
9.Hotspots and frontiers of human resource allocation research in public hospitals:a CiteSpace-based analysis of domestic and international studies
Ling YIN ; Tong ZHAO ; Jinping DI ; Fangjie WANG ; Haixiang SUN ; Qing ZHANG ; Xue ZHENG ; Wei CAO
Modern Hospital 2024;24(3):340-347,350
Objective To investigate the current status,evolving hotspots,and emerging trends in the field of human re-source allocation research in public hospitals,both domestically and internationally,to provide a reference for future research di-rections in China.Methods CiteSpace was used to conduct a visual analysis of the research literature on human resource alloca-tion in public hospitals based on China National Knowledge Infrastructure(CNKI)and the Web of Science(WOS).The analysis encompassed co-authorship,institutional collaboration,keyword co-occurrence and clustering,and burst detection.Results A total of 1 417 Chinese articles and 981 international articles were included.Domestic research in this field focused more on healthcare reform and management,resource allocation,hierarchical diagnosis,and treatment,and informatization and efficiency improvement.On the contrary,international research primarily centered on the employee satisfaction,healthcare system quality,work environment and medical staff.Future trends in domestic research included cost reduction,efficiency enhancement,and a greater emphasis on public welfare in public hospitals,while international research was beginning to explore the influence of polit-ical concepts in this field.Conclusion Compared to international research,domestic research needs to further improve its theo-retical and localized understanding,broaden its research scope,explore the interdisciplinary collaboration opportunities,and delve into research directions such as the application of artificial intelligence and automation technology in healthcare services,management of a diverse workforce,and innovative management techniques and applications.
10.Analysis of intraoperative frozen section diagnosis of 1 263 pulmonary nodules
Xiang ZHOU ; Xiaolong LIANG ; Bin YOU ; Qing CAO ; Hongmiao LIU ; Hongying ZHAO ; Xue LI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2024;31(01):78-84
Objective To explore the key points and difficulties of intraoperative frozen section diagnosis of pulmonary diseases. Methods The intraoperative frozen section and postoperative paraffin section results of pulmonary nodule patients in Beijing Chaoyang Hospital, Capital Medical University from January 2021 to January 2022 were collected. The main causes of misdiagnosis in frozen section diagnosis were analyzed, and the main points of diagnosis and differential diagnosis were summarized. Results According to the inclusion criteria, a total of 1 263 frozen section diagnosis results of 1 178 patients were included in the study, including 475 males and 703 females, with an average age of 58.7 (23-86) years. In 1 263 frozen section diagnosis results, the correct diagnosis rate was 95.65%, and the misdiagnosis rate was 4.35%. There were 55 misdiagnoses, including 18 (3.44%) invasive adenocarcinoma, 17 (5.82%) adenocarcinoma in situ, 7 (35.00%) mucinous adenocarcinoma, 4 (2.09%) minimally invasive adenocarcinoma, 3 (100.00%) IgG4 related diseases, 2 (66.67%) mucinous adenocarcinoma in situ, 1 (16.67%) atypical adenomatous hyperplasia, 1 (14.29%) sclerosing pulmonary cell tumor, 1 (33.33%) bronchiolar adenoma, and 1 (100.00%) papillary adenoma. Conclusion Intraoperative frozen section diagnosis still has its limitations. Clinicians need to make a comprehensive judgment based on imaging examination and clinical experience.

Result Analysis
Print
Save
E-mail