1.Hyperoside Alleviates LPS-induced Inflammation in Zebrafish Model via TLR4/MyD88/NF-κB Pathway
Qing LAN ; Anna WANG ; Feifei ZHOU ; Keqian LIU ; Zhao LI ; Wenjing YU ; Shuyao TANG ; Ping LI ; Shaowu CHENG ; Sisi DENG ; Zhenyan SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(22):63-72
		                        		
		                        			
		                        			ObjectiveTo investigate the intervention effects and mechanisms of the flavonoid hyperoside (Hyp) on lipopolysaccharide (LPS)-induced inflammation in the zebrafish model. MethodsZebrafish larvae were either microinjected with 0.5 g·L-1 LPS or immersed in 1 g·L-1 LPS for the modeling of inflammation. The larvae were then treated with Hyp at 25, 50, and 100 mg·L-1 through immersion for four consecutive days. The inflammatory phenotypes were assessed by analyzing the mortality rate, malformation rate, body length, and yolk sac area ratio. Behavioral tests were conducted to evaluate the inflammatory stress responses, and macrophage migration was observed by fluorescence microscopy. Additionally, the mRNA levels of inflammation-related genes, including interleukin-1β (IL-1β), interleukin-6 (IL-6), chemokine C-C motif ligand 2 (CCL2), chemokine C-X3-C motif receptor 1 (CX3CR1), chemokine C-C motif receptor 2 (CCR2), and genes associated with the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor-kappa B (NF-κB) signaling pathway, were measured by Real-time quantitative polymerase chain reaction(Real-time PCR). ResultsCompared with the pure water injection group, the model group exhibited increased mortality, malformation rates and yolk sac area ratio (P0.01), reduced body length (P0.01), increased total swimming distance and high-speed swimming duration (P0.01), and up-regulated mRNA levels of TLR4, MyD88, NF-κB, IL-1β, IL-6, CCL2, CX3CR1, and CCR2 (P0.01). Hyp at low, medium and high doses, as well as aspirin, reduced the mortality and malformation rates (P0.05,P0.01), increased the body length (P0.05,P0.01), decreased the yolk sac area ratio (P0.01), reduced the high-speed swimming duration (P0.01), and down-regulated the mRNA levels of TLR4, MyD88, NF-κB, IL-1β, IL-6, CCL2, CX3CR1, and CCR2 (P0.05,P0.01) compared with the model group. ConclusionHyp may modulate the TLR4/MyD88/NF-κB pathway to ameliorate inflammatory phenotypes and alleviate stress conditions in zebrafish, thereby exerting the anti-inflammatory effect. 
		                        		
		                        		
		                        		
		                        	
2.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
		                        		
		                        			
		                        			The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases. 
		                        		
		                        		
		                        		
		                        	
3.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
		                        		
		                        			
		                        			Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future. 
		                        		
		                        		
		                        		
		                        	
4.Therapeutic Study on The Inhibition of Neuroinflammation in Ischemic Stroke by Induced Regulatory T Cells
Tian-Fang KANG ; Ai-Qing MA ; Li-Qi CHEN ; Han GONG ; Jia-Cheng OUYANG ; Fan PAN ; Hong PAN ; Lin-Tao CAI
Progress in Biochemistry and Biophysics 2025;52(4):946-956
		                        		
		                        			
		                        			ObjectiveNeuroinflammation plays a crucial role in both the onset and progression of ischemic stroke, exerting a significant impact on the recovery of the central nervous system. Excessive neuroinflammation can lead to secondary neuronal damage, further exacerbating brain injury and impairing functional recovery. As a result, effectively modulating and reducing neuroinflammation in the brain has become a key therapeutic strategy for improving outcomes in ischemic stroke patients. Among various approaches, targeting immune regulation to control inflammation has gained increasing attention. This study aims to investigate the role of in vitro induced regulatory T cells (Treg cells) in suppressing neuroinflammation after ischemic stroke, as well as their potential therapeutic effects. By exploring the mechanisms through which Tregs exert their immunomodulatory functions, this research is expected to provide new insights into stroke treatment strategies. MethodsNaive CD4+ T cells were isolated from mouse spleens using a negative selection method to ensure high purity, and then they were induced in vitro to differentiate into Treg cells by adding specific cytokines. The anti-inflammatory effects and therapeutic potential of Treg cells transplantation in a mouse model of ischemic stroke was evaluated. In the middle cerebral artery occlusion (MCAO) model, after Treg cells transplantation, their ability to successfully migrate to the infarcted brain region and their impact on neuroinflammation levels were examined. To further investigate the role of Treg cells in stroke recovery, the changes in cytokine expression and their effects on immune cell interactions was analyzed. Additionally, infarct size and behavioral scores were measured to assess the neuroprotective effects of Treg cells. By integrating multiple indicators, the comprehensive evaluation of potential benefits of Treg cells in the treatment of ischemic stroke was performed. ResultsTreg cells significantly regulated the expression levels of both pro-inflammatory and anti-inflammatory cytokines in vitro and in vivo, effectively balancing the immune response and suppressing excessive inflammation. Additionally, Treg cells inhibited the activation and activity of inflammatory cells, thereby reducing neuroinflammation. In the MCAO mouse model, Treg cells were observed to accumulate in the infarcted brain region, where they significantly reduced the infarct size, demonstrating their neuroprotective effects. Furthermore, Treg cell therapy notably improved behavioral scores, suggesting its role in promoting functional recovery, and increased the survival rate of ischemic stroke mice, highlighting its potential as a promising therapeutic strategy for stroke treatment. ConclusionIn vitro induced Treg cells can effectively suppress neuroinflammation caused by ischemic stroke, demonstrating promising clinical application potential. By regulating the balance between pro-inflammatory and anti-inflammatory cytokines, Treg cells can inhibit immune responses in the nervous system, thereby reducing neuronal damage. Additionally, they can modulate the immune microenvironment, suppress the activation of inflammatory cells, and promote tissue repair. The therapeutic effects of Treg cells also include enhancing post-stroke recovery, improving behavioral outcomes, and increasing the survival rate of ischemic stroke mice. With their ability to suppress neuroinflammation, Treg cell therapy provides a novel and effective strategy for the treatment of ischemic stroke, offering broad application prospects in clinical immunotherapy and regenerative medicine. 
		                        		
		                        		
		                        		
		                        	
5.Characteristic Expression of Multiple Neurotransmitters Oscillation Imbabance in Brains of 1 028 Patients with Depression
Anqi WANG ; Xuemei QING ; Yanshu PAN ; Pingfa ZHANG ; Ying ZHANG ; Jian LI ; Cheng ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):278-286
		                        		
		                        			
		                        			ObjectiveTo analyze the characteristic expression patterns of six neurotransmitters including 5-hydroxytryptamine (5-HT), dopamine (DA), acetylcholine (ACh), norepinephrine (NE), inhibitory neurotransmitter (INH), and excitatory neurotransmitter (EXC) in the whole brain and different brain regions of depression patients by Search of Encephalo Telex (SET), providing new ideas for the study of heterogeneous etiology of depression. Methods(1) A retrospective study was conducted on supra-slow signals of EEG fluctuations in 1 028 patients with depression. The SET system was used to obtain the expression information of six neurotransmitters in the whole brain and 12 brain regions: left frontal region (F3), right frontal region (F4), left central region (C3), right central region (C4), left parietal region (P3), right parietal region (P4), left occipital region (O1), right occipital region (O2), left anterior temporal region (F7), right anterior temporal region (F8), left posterior temporal region (T5), and right posterior temporal region (T6). The expression information of each neurotransmitter was compared with the normal model, and it was found that single neurotransmitter was in one of three states: increased, decreased, or normal expression. The simultaneous expression states of six neurotransmitters in the brain space were referred to as the expression pattern of multiple neurotransmitters. (2) A MySQL database was established to analyze the actual expression patterns of different neurotransmitters in the whole brain of patients with depression. (3) Factor analysis was conducted to further analyze the characteristic rules of 78 variables of neurotransmitters in the whole brain and 12 brain regions in depression patients. Results(1) The expression of single neurotransmitters in the whole brain and different brain regions of the total depression population showed one of three expression states (increased/decreased/normal), being normal in the majority. The decreased and increased expression of 5-HT, ACh, DA, INH, EXC, and NE in the whole brain occurred in 6% and 25%, 31% and 17%, 36% and 9%, 15% and 31%, 32% and 14%, and 22% and 22%, respectively. (2) The antagonizing pairs of neurotransmitters (EXC/INH, DA/5-HT, and ACh/NE) showed significant antagonistic relationships in the whole brain and different brain regions, with a strong negative correlation between EXC and INH (P<0.01, |r| values ranging from 0.69 to 0.76), a strong negative correlation between DA and 5-HT (P<0.01, |r| values ranging from 0.83 to 0.90), and a moderate negative correlation between ACh and NE (P<0.01, with |r| values ranging from 0.56 to 0.66). Meanwhile, non-antagonizing pairs of neurotransmitters in the whole brain and different brain regions also showed correlations, with DA/NE (P<0.01, |r| values ranging from 0.38 to 0.46) and NE/EXC (P<0.01, |r| values ranging from 0.56 to 0.61) showing weak and moderate negative correlations, respectively, and DA/EXC showing a weak positive correlation (P<0.01, |r| values ranging from 0.38 to 0.47). (3) The six neurotransmitters in the 1 028 patients with depression presented a total of 170 expression patterns in the whole brain. The top 30 expression patterns were reported in this paper, with a cumulative rate of 60.60%, including patterns ① INH+/5-HT-/ACh+/DA+/NE-/EXC- (9.05%), ② INH+/5-HT-/ACh↓/DA+/NE-/EXC- (4.57%), and ③ INH+/5-HT-/ACh+/DA+/NE↓/EXC- (3.31%). That is, the proportion of depression patients with normal levels of all the six neurotransmitters was 9.05%, and the patients with at least one neurotransmitter abnormality accounted for 91.95%. (4) The factor analysis extracted 22 common factors from 78 variables in the whole brain and different brain regions. These common factors showed the absolute values of loadings ranging from 0.32 to 0.86 and the eigenvalues (F) ranging from 1.03 to 13.43, with a cumulative contribution rate of 76.82%. The characteristic expression patterns included ① AChP3↓/AChW↓/AChC3↓/AChF3↓/AChO1↓/AChT5↓/AChF7↓/NEP3↑/NEW↑/NEC3↑/NEF3↑/NEO1↑/NET5↑/NEF7↑ (F=13.43, whole brain), ② 5-HTO2↑/DAO2↓/5-HTP4↑/DAP4↓/5-HTW↑/DAW↓/5-HTC4↑/DAC4↓ (F=5.94), and ③ EXCF4↓/DAF4↓/NEF4↑/INHF4↑/5-HTF4↑/AChF4↓ (F=5.33). ConclusionThe actual 170 expression patterns of 6 neurotransmitters in the whole brain of 1 028 depression patients indicate that depression is a heterogeneous disease with individualized characteristics. The 22 characteristic expression patterns in the whole brain and 12 brain regions verify the pathogenesis hypothesis of multi-neurotransmitters oscillation imbalance in brains of depression patients. In summary, this study provides new guidance for the etiology, diagnosis, and treatment of depression and establishes a methodological foundation for the effectiveness evaluation of individualized treatment of depression by traditional Chinese medicine based on the objective biological markers. 
		                        		
		                        		
		                        		
		                        	
6.Characteristic Expression of Multiple Neurotransmitters Oscillation Imbabance in Brains of 1 028 Patients with Depression
Anqi WANG ; Xuemei QING ; Yanshu PAN ; Pingfa ZHANG ; Ying ZHANG ; Jian LI ; Cheng ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):278-286
		                        		
		                        			
		                        			ObjectiveTo analyze the characteristic expression patterns of six neurotransmitters including 5-hydroxytryptamine (5-HT), dopamine (DA), acetylcholine (ACh), norepinephrine (NE), inhibitory neurotransmitter (INH), and excitatory neurotransmitter (EXC) in the whole brain and different brain regions of depression patients by Search of Encephalo Telex (SET), providing new ideas for the study of heterogeneous etiology of depression. Methods(1) A retrospective study was conducted on supra-slow signals of EEG fluctuations in 1 028 patients with depression. The SET system was used to obtain the expression information of six neurotransmitters in the whole brain and 12 brain regions: left frontal region (F3), right frontal region (F4), left central region (C3), right central region (C4), left parietal region (P3), right parietal region (P4), left occipital region (O1), right occipital region (O2), left anterior temporal region (F7), right anterior temporal region (F8), left posterior temporal region (T5), and right posterior temporal region (T6). The expression information of each neurotransmitter was compared with the normal model, and it was found that single neurotransmitter was in one of three states: increased, decreased, or normal expression. The simultaneous expression states of six neurotransmitters in the brain space were referred to as the expression pattern of multiple neurotransmitters. (2) A MySQL database was established to analyze the actual expression patterns of different neurotransmitters in the whole brain of patients with depression. (3) Factor analysis was conducted to further analyze the characteristic rules of 78 variables of neurotransmitters in the whole brain and 12 brain regions in depression patients. Results(1) The expression of single neurotransmitters in the whole brain and different brain regions of the total depression population showed one of three expression states (increased/decreased/normal), being normal in the majority. The decreased and increased expression of 5-HT, ACh, DA, INH, EXC, and NE in the whole brain occurred in 6% and 25%, 31% and 17%, 36% and 9%, 15% and 31%, 32% and 14%, and 22% and 22%, respectively. (2) The antagonizing pairs of neurotransmitters (EXC/INH, DA/5-HT, and ACh/NE) showed significant antagonistic relationships in the whole brain and different brain regions, with a strong negative correlation between EXC and INH (P<0.01, |r| values ranging from 0.69 to 0.76), a strong negative correlation between DA and 5-HT (P<0.01, |r| values ranging from 0.83 to 0.90), and a moderate negative correlation between ACh and NE (P<0.01, with |r| values ranging from 0.56 to 0.66). Meanwhile, non-antagonizing pairs of neurotransmitters in the whole brain and different brain regions also showed correlations, with DA/NE (P<0.01, |r| values ranging from 0.38 to 0.46) and NE/EXC (P<0.01, |r| values ranging from 0.56 to 0.61) showing weak and moderate negative correlations, respectively, and DA/EXC showing a weak positive correlation (P<0.01, |r| values ranging from 0.38 to 0.47). (3) The six neurotransmitters in the 1 028 patients with depression presented a total of 170 expression patterns in the whole brain. The top 30 expression patterns were reported in this paper, with a cumulative rate of 60.60%, including patterns ① INH+/5-HT-/ACh+/DA+/NE-/EXC- (9.05%), ② INH+/5-HT-/ACh↓/DA+/NE-/EXC- (4.57%), and ③ INH+/5-HT-/ACh+/DA+/NE↓/EXC- (3.31%). That is, the proportion of depression patients with normal levels of all the six neurotransmitters was 9.05%, and the patients with at least one neurotransmitter abnormality accounted for 91.95%. (4) The factor analysis extracted 22 common factors from 78 variables in the whole brain and different brain regions. These common factors showed the absolute values of loadings ranging from 0.32 to 0.86 and the eigenvalues (F) ranging from 1.03 to 13.43, with a cumulative contribution rate of 76.82%. The characteristic expression patterns included ① AChP3↓/AChW↓/AChC3↓/AChF3↓/AChO1↓/AChT5↓/AChF7↓/NEP3↑/NEW↑/NEC3↑/NEF3↑/NEO1↑/NET5↑/NEF7↑ (F=13.43, whole brain), ② 5-HTO2↑/DAO2↓/5-HTP4↑/DAP4↓/5-HTW↑/DAW↓/5-HTC4↑/DAC4↓ (F=5.94), and ③ EXCF4↓/DAF4↓/NEF4↑/INHF4↑/5-HTF4↑/AChF4↓ (F=5.33). ConclusionThe actual 170 expression patterns of 6 neurotransmitters in the whole brain of 1 028 depression patients indicate that depression is a heterogeneous disease with individualized characteristics. The 22 characteristic expression patterns in the whole brain and 12 brain regions verify the pathogenesis hypothesis of multi-neurotransmitters oscillation imbalance in brains of depression patients. In summary, this study provides new guidance for the etiology, diagnosis, and treatment of depression and establishes a methodological foundation for the effectiveness evaluation of individualized treatment of depression by traditional Chinese medicine based on the objective biological markers. 
		                        		
		                        		
		                        		
		                        	
7. Ligustilide delays senescence of auditory cortex in mice by inhibiting ferritinophagy
Ying-Dong ZHOU ; Meng-Xian ZHANG ; Qing-Ling WANG ; Hao-Ran KANG ; Zhi-Cheng ZHANG ; Xiang-Dong GUO ; Qing-Lin WANG ; Ya-Min LIU
Chinese Pharmacological Bulletin 2024;40(3):455-461
		                        		
		                        			
		                        			 Aim To investigate the mechanism of ligu aged 2 months of the same strain were used as the constilide (LIG) in delaying the senescence of auditory trol (Ctrl) group. Auditory brainstem response test was cortex and treating central presbycusis. Methods used to detect the auditory threshold of mice before and Forty C57BL/6J mice aged 13 months were randomly di after treatment. Levels of serum MDA and activity of vided into ligustilide low-dose(L-LIG) group, ligustil serum SOD were detected to display the level of oxidative ide medium-dose (M-LIG) group, ligustilide high-dose stress. The pathological changes of auditory cortex were (H-LIG) group and aging (Age) group, and 10 mice observed by HE staining. Ferroptosis was observed by 
		                        		
		                        		
		                        		
		                        	
8.Research progress of IDO1-mediated tryptophan metabolism in sepsis
Xiao-di ZHAO ; Cheng-yan MA ; Hua-qing CUI ; Yu-chen WANG ; Xiao-guang CHEN ; Sen ZHANG
Acta Pharmaceutica Sinica 2024;59(2):289-297
		                        		
		                        			
		                        			 Sepsis is a condition characterized by organ dysfunction resulting from the systemic inflammatory response triggered by an infection. Excessive inflammation and immunosuppression are intertwined, and severe cases may even develop into multiple organ failure. Studies have shown that indoleamine 2,3-dioxygenase 1-mediated tryptophan metabolism is involved in the occurrence and development of sepsis, and elevated plasma kynurenine levels and Kyn/Trp ratios are early indicators of sepsis development. In this paper, we provide a comprehensive summary of the role of IDO1 in the acute inflammatory phase of sepsis, late immunosuppression, and organ damage. This includes its regulation of inflammatory state, immune cell function, blood pressure, and other aspects. Additionally, we analyze preclinical studies on targeted IDO1 drugs. An in-depth understanding and study of IDO may help to understand the pathogenesis and clinical significance of sepsis and multiple organ damage from a new perspective and provide new research ideas for exploring its prevention and treatment methods. 
		                        		
		                        		
		                        		
		                        	
9.Advances in antitumor research of bifunctional small molecule inhibitors targeting heat shock protein 90
Hong-ping ZHU ; Xin XIE ; Rui QIN ; Wei HUANG ; Yan-qing LIU ; Cheng PENG ; Gu HE ; Bo HAN
Acta Pharmaceutica Sinica 2024;59(1):1-16
		                        		
		                        			
		                        			 The heat shock protein 90 (Hsp90) protein family is a cluster of highly conserved molecules that play an important role in maintaining cellular homeostasis. Hsp90 and its co-chaperones regulate a variety of pathways and cellular functions, such as cell growth, cell cycle control and apoptosis. Hsp90 is closely associated with the occurrence and development of tumors and other diseases, making it an attractive target for cancer therapeutics. Inhibition of Hsp90 expression can affect multiple oncogenic pathways simultaneously. Most Hsp90 small molecule inhibitors are in clinical trials due to their low efficacy, toxicity or drug resistance, but they have obvious synergistic anti-tumor effect when used with histone deacetylase (HDAC) inhibitors, tubulin inhibitors or topoisomerase II (Topo II) inhibitors. To address this issue, the design of Hsp90 dual-target inhibitors can improve efficacy and reduce drug resistance, making it an effective tumor treatment strategy. In this paper, the domain and biological function of Hsp90 are briefly introduced, and the design, discovery and structure-activity relationship of Hsp90 dual inhibitors are discussed, in order to provide reference for the discovery of novel Hsp90 dual inhibitors and clinical drug research from the perspective of medicinal chemistry. 
		                        		
		                        		
		                        		
		                        	
10.Data Mining of Medication Rules for the Treatment of Atopic Dermatitis the Children by Chinese Medical Master XUAN Guo-Wei
Jin-Dian DONG ; Cheng-Cheng GE ; Yue PEI ; Shu-Qing XIONG ; Jia-Fen LIANG ; Qin LIU ; Xiu-Mei MO ; Hong-Yi LI
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(3):752-758
		                        		
		                        			
		                        			Objective Data mining technology was used to mine the medication rules of the prescriptions used in the treatment of pediatric atopic dermatitis by Chinese medical master XUAN Guo-Wei.Methods The medical records of effective cases of pediatric atopic dermatitis treated by Professor XUAN Guo-Wei at outpatient clinic were collected,and then the medical data were statistically analyzed using frequency statistics,association rule analysis and cluster analysis.Results A total of 242 prescriptions were included,involving 101 Chinese medicinals.There were 23 commonly-used herbs,and the 16 high-frequency herbs(frequency>100 times)were Glycyrrhizae Radix et Rhizoma,Saposhnikoviae Radix,Glehniae Radix,Perillae Folium,Ophiopogonis Radix,Cynanchi Paniculati Radix et Rhizoma,Microctis Folium,Dictamni Cortex,Scrophulariae Radix,Coicis Semen,Cicadae Periostracum,Lilii Bulbus,Rehmanniae Radix,Kochiae Fructus,Sclerotium Poriae Pararadicis,and Euryales Semen.The analysis of the medicinal properties showed that most of the herbs were sweet and cold,and mainly had the meridian tropism of the spleen,stomach and liver meridians.The association rule analysis yielded 24 commonly-used drug combinations and 20 association rules.Cluster analysis yielded 2 core drug combinations.Conclusion For the treatment of pediatric atopic dermatitis,Professor XUAN Guo-Wei focuses on the clearing,supplementing and harmonizing therapies,and the medication principle of"supporting the healthy-qi to eliminate the pathogen,and balancing the yin and yang"is applied throughout the treatment.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail