1.Unveiling and Validating a Modified Method to Assess Cervical Sagittal Alignment as an Effective Substitute for Conventional C2-7 Cobb Angle
Wenpeng LI ; Qiwei WANG ; Qiancheng ZHAO ; Ziliang ZENG ; Xumin HU ; Xin LV ; Liangbin GAO
Clinics in Orthopedic Surgery 2025;17(1):130-137
Background:
Developing and validating a modified parameter, the SYS-G angle (the angle between the lower endplate of the C2 and the upper endplate of C7 vertebrae), as a feasible substitute for the C2–C7 Cobb method in assessing cervical sagittal alignment and exploring its reference range through a large-scale retrospective study.
Methods:
The visibility of the C6, C7 upper, and C7 lower endplates was graded and compared. Baseline data such as height, weight, body mass index (BMI), age, and sex were analyzed for their impact on the visibility of the C7 lower endplate. Values of C2-6 Cobb angle, SYS-G angle, and C2-7 Cobb angle were measured. The intra- and interobserver reliability, differences, and efficacy of evaluation on cervical lordosis of the parameters were compared, and the correlations among the parameters were analyzed. Furthermore, reference ranges for the SYS-G angle were established based on lateral cervical spine x-rays of 825 asymptomatic Chinese adults across different age groups and sexes.
Results:
The visibility of the C7 lower endplates was significantly reduced compared to the C6 lower and C7 upper endplates.Age, weight, BMI, and male sex were identified as factors negatively influencing the visibility of the C7 lower endplate. Both intraobserver and interobserver reliability demonstrated excellence for all tested parameters. The linear regression model unveiled a stronger association of the SYS-G angle with the C2-7 Cobb angle compared to the C2-6 Cobb angle. Furthermore, the SYS-G angle exhibited excellent efficacy in evaluating cervical lordosis. Age displayed a positive correlation with the SYS-G angle, and across every age bracket from 20 to 69 years, men exhibited a higher mean SYS-G angle compared to women.
Conclusions
The visibility of the C7 lower endplate diminishes with increasing age, weight, BMI, and male sex. In cases where the C7 lower endplate is unclear, the SYS-G angle emerges as a reliable method for estimating cervical sagittal morphology. Reference ranges for the SYS-G angle were established across various age groups and sexes among asymptomatic Chinese adults, offering a valuable resource to guide therapeutic interventions for cervical spine disorders and deformities.
2.Unveiling and Validating a Modified Method to Assess Cervical Sagittal Alignment as an Effective Substitute for Conventional C2-7 Cobb Angle
Wenpeng LI ; Qiwei WANG ; Qiancheng ZHAO ; Ziliang ZENG ; Xumin HU ; Xin LV ; Liangbin GAO
Clinics in Orthopedic Surgery 2025;17(1):130-137
Background:
Developing and validating a modified parameter, the SYS-G angle (the angle between the lower endplate of the C2 and the upper endplate of C7 vertebrae), as a feasible substitute for the C2–C7 Cobb method in assessing cervical sagittal alignment and exploring its reference range through a large-scale retrospective study.
Methods:
The visibility of the C6, C7 upper, and C7 lower endplates was graded and compared. Baseline data such as height, weight, body mass index (BMI), age, and sex were analyzed for their impact on the visibility of the C7 lower endplate. Values of C2-6 Cobb angle, SYS-G angle, and C2-7 Cobb angle were measured. The intra- and interobserver reliability, differences, and efficacy of evaluation on cervical lordosis of the parameters were compared, and the correlations among the parameters were analyzed. Furthermore, reference ranges for the SYS-G angle were established based on lateral cervical spine x-rays of 825 asymptomatic Chinese adults across different age groups and sexes.
Results:
The visibility of the C7 lower endplates was significantly reduced compared to the C6 lower and C7 upper endplates.Age, weight, BMI, and male sex were identified as factors negatively influencing the visibility of the C7 lower endplate. Both intraobserver and interobserver reliability demonstrated excellence for all tested parameters. The linear regression model unveiled a stronger association of the SYS-G angle with the C2-7 Cobb angle compared to the C2-6 Cobb angle. Furthermore, the SYS-G angle exhibited excellent efficacy in evaluating cervical lordosis. Age displayed a positive correlation with the SYS-G angle, and across every age bracket from 20 to 69 years, men exhibited a higher mean SYS-G angle compared to women.
Conclusions
The visibility of the C7 lower endplate diminishes with increasing age, weight, BMI, and male sex. In cases where the C7 lower endplate is unclear, the SYS-G angle emerges as a reliable method for estimating cervical sagittal morphology. Reference ranges for the SYS-G angle were established across various age groups and sexes among asymptomatic Chinese adults, offering a valuable resource to guide therapeutic interventions for cervical spine disorders and deformities.
3.Unveiling and Validating a Modified Method to Assess Cervical Sagittal Alignment as an Effective Substitute for Conventional C2-7 Cobb Angle
Wenpeng LI ; Qiwei WANG ; Qiancheng ZHAO ; Ziliang ZENG ; Xumin HU ; Xin LV ; Liangbin GAO
Clinics in Orthopedic Surgery 2025;17(1):130-137
Background:
Developing and validating a modified parameter, the SYS-G angle (the angle between the lower endplate of the C2 and the upper endplate of C7 vertebrae), as a feasible substitute for the C2–C7 Cobb method in assessing cervical sagittal alignment and exploring its reference range through a large-scale retrospective study.
Methods:
The visibility of the C6, C7 upper, and C7 lower endplates was graded and compared. Baseline data such as height, weight, body mass index (BMI), age, and sex were analyzed for their impact on the visibility of the C7 lower endplate. Values of C2-6 Cobb angle, SYS-G angle, and C2-7 Cobb angle were measured. The intra- and interobserver reliability, differences, and efficacy of evaluation on cervical lordosis of the parameters were compared, and the correlations among the parameters were analyzed. Furthermore, reference ranges for the SYS-G angle were established based on lateral cervical spine x-rays of 825 asymptomatic Chinese adults across different age groups and sexes.
Results:
The visibility of the C7 lower endplates was significantly reduced compared to the C6 lower and C7 upper endplates.Age, weight, BMI, and male sex were identified as factors negatively influencing the visibility of the C7 lower endplate. Both intraobserver and interobserver reliability demonstrated excellence for all tested parameters. The linear regression model unveiled a stronger association of the SYS-G angle with the C2-7 Cobb angle compared to the C2-6 Cobb angle. Furthermore, the SYS-G angle exhibited excellent efficacy in evaluating cervical lordosis. Age displayed a positive correlation with the SYS-G angle, and across every age bracket from 20 to 69 years, men exhibited a higher mean SYS-G angle compared to women.
Conclusions
The visibility of the C7 lower endplate diminishes with increasing age, weight, BMI, and male sex. In cases where the C7 lower endplate is unclear, the SYS-G angle emerges as a reliable method for estimating cervical sagittal morphology. Reference ranges for the SYS-G angle were established across various age groups and sexes among asymptomatic Chinese adults, offering a valuable resource to guide therapeutic interventions for cervical spine disorders and deformities.
4.Unveiling and Validating a Modified Method to Assess Cervical Sagittal Alignment as an Effective Substitute for Conventional C2-7 Cobb Angle
Wenpeng LI ; Qiwei WANG ; Qiancheng ZHAO ; Ziliang ZENG ; Xumin HU ; Xin LV ; Liangbin GAO
Clinics in Orthopedic Surgery 2025;17(1):130-137
Background:
Developing and validating a modified parameter, the SYS-G angle (the angle between the lower endplate of the C2 and the upper endplate of C7 vertebrae), as a feasible substitute for the C2–C7 Cobb method in assessing cervical sagittal alignment and exploring its reference range through a large-scale retrospective study.
Methods:
The visibility of the C6, C7 upper, and C7 lower endplates was graded and compared. Baseline data such as height, weight, body mass index (BMI), age, and sex were analyzed for their impact on the visibility of the C7 lower endplate. Values of C2-6 Cobb angle, SYS-G angle, and C2-7 Cobb angle were measured. The intra- and interobserver reliability, differences, and efficacy of evaluation on cervical lordosis of the parameters were compared, and the correlations among the parameters were analyzed. Furthermore, reference ranges for the SYS-G angle were established based on lateral cervical spine x-rays of 825 asymptomatic Chinese adults across different age groups and sexes.
Results:
The visibility of the C7 lower endplates was significantly reduced compared to the C6 lower and C7 upper endplates.Age, weight, BMI, and male sex were identified as factors negatively influencing the visibility of the C7 lower endplate. Both intraobserver and interobserver reliability demonstrated excellence for all tested parameters. The linear regression model unveiled a stronger association of the SYS-G angle with the C2-7 Cobb angle compared to the C2-6 Cobb angle. Furthermore, the SYS-G angle exhibited excellent efficacy in evaluating cervical lordosis. Age displayed a positive correlation with the SYS-G angle, and across every age bracket from 20 to 69 years, men exhibited a higher mean SYS-G angle compared to women.
Conclusions
The visibility of the C7 lower endplate diminishes with increasing age, weight, BMI, and male sex. In cases where the C7 lower endplate is unclear, the SYS-G angle emerges as a reliable method for estimating cervical sagittal morphology. Reference ranges for the SYS-G angle were established across various age groups and sexes among asymptomatic Chinese adults, offering a valuable resource to guide therapeutic interventions for cervical spine disorders and deformities.
5.Inhibition of Oxidative Stress by Wuzi Yanzongwan to Ameliorate Idiopathic Oligoasthenospermia: A Review
Jiacheng ZHANG ; Hangqi HU ; Yuxin JIN ; Qiancheng ZHAO ; Qiuning LIU ; Xiyan XIN ; Yang YE ; Dong LI ; Yutian ZHU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(11):238-244
Idiopathic oligoasthenospermia (IO) has been increasingly emphasized in the diagnosis and treatment of male infertility. Oxidative stress damage directly affects sperm quality and spermatogenesis, constituting a major causative factor of IO. Firstly, due to its high content of polyunsaturated fatty acids, the sperm plasma membrane is highly sensitive to reactive oxygen species (ROS), leading to lipid peroxidation accumulation and even inducing ferroptosis. Secondly, deficient downstream key proteins in the base excision repair pathway render sperm unable to repair extensive DNA oxidative damage under oxidative stress. Simultaneously, under oxidative stress, the apoptotic pathway of sperm is cascade-activated, causing rapid loss of motility. ROS further disrupts the hypothalamic-pituitary-gonadal axis, inhibiting testosterone production and ultimately affecting spermatogenesis. Wuzi Yanzongwan,in line with traditional Chinese medicine theory of treating IO through "nourishing kidney essence and harmonizing Yin and Yang", clinically demonstrates its ability to improve sperm morphology, count, and motility, thereby enhancing male fertility. The research on the pharmacological constituents of Wuzi Yanzongwan primarily involves establishing a characteristic spectrum of Chinese medicine to achieve quality control and exploring the pharmacology of effective components. Studies have found that its main active ingredients consist of flavonoids and phenylpropanoids. Specifically, compounds such as hyperin, acteoside, kaempferol, and schisandrin A are identified as the primary active substances and quality control components. These compounds exhibit strong antioxidant activity and have been partly applied in research related to reproductive endocrine disorders. Tripterygium glycoside is primarily used for modeling of oxidative stress-induced IO. It leads to the accumulation of various lipid peroxides in testicular tissues and concurrently compromises the body's antioxidant capacity. Mechanistic studies have found that Wuzi Yanzongwan can inhibit elevated ROS levels in IO models and enhance the body's antioxidant capacity, thereby ameliorating inflammation, suppressing cell apoptosis, promoting testosterone production, and ultimately alleviating the decline in sperm quality and spermatogenesis caused by oxidative stress.
6.The gas discharge visualization (GDV) order parameter model based on the principle of mastering both permanence and change
XIN Yu ; ZHANG Lei ; ZHAO Qiancheng ; SHE Yurong ; SHE Zhensu ; SONG Shuna
Digital Chinese Medicine 2024;7(3):231-240
Methods:
This paper introduces the concept of “order parameters” and proposes a method for establishing an order parameter model of gas discharge visualization (GDV) based on the principle of “mastering both permanence and change (MBPC)”. The method involved the following three steps. First, average luminous intensity () and average area () of the GDV images were calculated to construct the phase space, and the score of the health questionnaire was calculated as the health deviation index (H). Second, the k-means++ clustering method was employed to identify subclasses with the same health characteristics based on the data samples, and to statistically determine the symptom-specific frequencies of the subclasses. Third, the distance (d)
7.Multilevel Pedicle Subtraction Osteotomy for Correction of Thoracolumbar Kyphosis in Ankylosing Spondylitis: Clinical Effect and Biomechanical Evaluation
Xin LV ; Yelidana NUERTAI ; Qiwei WANG ; Di ZHANG ; Xumin HU ; Jiabao LIU ; Ziliang ZENG ; Renyuan HUANG ; Zhihao HUANG ; Qiancheng ZHAO ; Wenpeng LI ; Zhilei ZHANG ; Liangbin GAO
Neurospine 2024;21(1):231-243
Objective:
To compare the clinical outcomes and biomechanical characteristics of 1-, 2-, and 3-level pedicle subtraction osteotomy (PSO), and establish selection criteria based on preoperative radiographic parameters.
Methods:
Patients undergone PSO to treat ankylosing spondylitis from February 2009 to May 2019 in Sun Yat-sen Memorial Hospital of Sun Yat-sen University were enrolled. According to the quantity of osteotomy performed, the participants were divided into group A (1-level PSO, n = 24), group B (2-level PSO, n = 19), and group C (3-level PSO, n = 11). Clinical outcomes were assessed before surgery and at the final follow-up. Comparisons of the radiographic parameters and quality-of-life indicators were performed among and within these groups, and the selection criteria were established by regression. Finite element analysis was conducted to compare the biomechanical characteristics of the spine treated with different quantity of osteotomies under different working conditions.
Results:
Three-level PSO improved the sagittal parameters more significantly, but resulted in longer operative time and greater blood loss (p < 0.05). Greater stress was found in the proximal screws and proximal junction area of the vertebra in the model simulating 1-level PSO. Larger stress of screws and vertebra was observed at the distal end in the model simulating 3-level PSO.
Conclusion
Multilevel PSO works better for larger deformity correction than single-level PSO by allowing greater sagittal parameter correction and obtaining a better distribution of stress in the hardware construct, although with longer operation time and greater blood loss. Three-level osteotomy is recommended for the patients with preoperative of global kyphosis > 85.95°, T1 pelvic angle > 62.3°, sagittal vertical alignment > 299.55 mm, and pelvic tilt+ chin-brow vertical angle > 109.6°.
8.Multilevel Pedicle Subtraction Osteotomy for Correction of Thoracolumbar Kyphosis in Ankylosing Spondylitis: Clinical Effect and Biomechanical Evaluation
Xin LV ; Yelidana NUERTAI ; Qiwei WANG ; Di ZHANG ; Xumin HU ; Jiabao LIU ; Ziliang ZENG ; Renyuan HUANG ; Zhihao HUANG ; Qiancheng ZHAO ; Wenpeng LI ; Zhilei ZHANG ; Liangbin GAO
Neurospine 2024;21(1):231-243
Objective:
To compare the clinical outcomes and biomechanical characteristics of 1-, 2-, and 3-level pedicle subtraction osteotomy (PSO), and establish selection criteria based on preoperative radiographic parameters.
Methods:
Patients undergone PSO to treat ankylosing spondylitis from February 2009 to May 2019 in Sun Yat-sen Memorial Hospital of Sun Yat-sen University were enrolled. According to the quantity of osteotomy performed, the participants were divided into group A (1-level PSO, n = 24), group B (2-level PSO, n = 19), and group C (3-level PSO, n = 11). Clinical outcomes were assessed before surgery and at the final follow-up. Comparisons of the radiographic parameters and quality-of-life indicators were performed among and within these groups, and the selection criteria were established by regression. Finite element analysis was conducted to compare the biomechanical characteristics of the spine treated with different quantity of osteotomies under different working conditions.
Results:
Three-level PSO improved the sagittal parameters more significantly, but resulted in longer operative time and greater blood loss (p < 0.05). Greater stress was found in the proximal screws and proximal junction area of the vertebra in the model simulating 1-level PSO. Larger stress of screws and vertebra was observed at the distal end in the model simulating 3-level PSO.
Conclusion
Multilevel PSO works better for larger deformity correction than single-level PSO by allowing greater sagittal parameter correction and obtaining a better distribution of stress in the hardware construct, although with longer operation time and greater blood loss. Three-level osteotomy is recommended for the patients with preoperative of global kyphosis > 85.95°, T1 pelvic angle > 62.3°, sagittal vertical alignment > 299.55 mm, and pelvic tilt+ chin-brow vertical angle > 109.6°.
9.Multilevel Pedicle Subtraction Osteotomy for Correction of Thoracolumbar Kyphosis in Ankylosing Spondylitis: Clinical Effect and Biomechanical Evaluation
Xin LV ; Yelidana NUERTAI ; Qiwei WANG ; Di ZHANG ; Xumin HU ; Jiabao LIU ; Ziliang ZENG ; Renyuan HUANG ; Zhihao HUANG ; Qiancheng ZHAO ; Wenpeng LI ; Zhilei ZHANG ; Liangbin GAO
Neurospine 2024;21(1):231-243
Objective:
To compare the clinical outcomes and biomechanical characteristics of 1-, 2-, and 3-level pedicle subtraction osteotomy (PSO), and establish selection criteria based on preoperative radiographic parameters.
Methods:
Patients undergone PSO to treat ankylosing spondylitis from February 2009 to May 2019 in Sun Yat-sen Memorial Hospital of Sun Yat-sen University were enrolled. According to the quantity of osteotomy performed, the participants were divided into group A (1-level PSO, n = 24), group B (2-level PSO, n = 19), and group C (3-level PSO, n = 11). Clinical outcomes were assessed before surgery and at the final follow-up. Comparisons of the radiographic parameters and quality-of-life indicators were performed among and within these groups, and the selection criteria were established by regression. Finite element analysis was conducted to compare the biomechanical characteristics of the spine treated with different quantity of osteotomies under different working conditions.
Results:
Three-level PSO improved the sagittal parameters more significantly, but resulted in longer operative time and greater blood loss (p < 0.05). Greater stress was found in the proximal screws and proximal junction area of the vertebra in the model simulating 1-level PSO. Larger stress of screws and vertebra was observed at the distal end in the model simulating 3-level PSO.
Conclusion
Multilevel PSO works better for larger deformity correction than single-level PSO by allowing greater sagittal parameter correction and obtaining a better distribution of stress in the hardware construct, although with longer operation time and greater blood loss. Three-level osteotomy is recommended for the patients with preoperative of global kyphosis > 85.95°, T1 pelvic angle > 62.3°, sagittal vertical alignment > 299.55 mm, and pelvic tilt+ chin-brow vertical angle > 109.6°.
10.Multilevel Pedicle Subtraction Osteotomy for Correction of Thoracolumbar Kyphosis in Ankylosing Spondylitis: Clinical Effect and Biomechanical Evaluation
Xin LV ; Yelidana NUERTAI ; Qiwei WANG ; Di ZHANG ; Xumin HU ; Jiabao LIU ; Ziliang ZENG ; Renyuan HUANG ; Zhihao HUANG ; Qiancheng ZHAO ; Wenpeng LI ; Zhilei ZHANG ; Liangbin GAO
Neurospine 2024;21(1):231-243
Objective:
To compare the clinical outcomes and biomechanical characteristics of 1-, 2-, and 3-level pedicle subtraction osteotomy (PSO), and establish selection criteria based on preoperative radiographic parameters.
Methods:
Patients undergone PSO to treat ankylosing spondylitis from February 2009 to May 2019 in Sun Yat-sen Memorial Hospital of Sun Yat-sen University were enrolled. According to the quantity of osteotomy performed, the participants were divided into group A (1-level PSO, n = 24), group B (2-level PSO, n = 19), and group C (3-level PSO, n = 11). Clinical outcomes were assessed before surgery and at the final follow-up. Comparisons of the radiographic parameters and quality-of-life indicators were performed among and within these groups, and the selection criteria were established by regression. Finite element analysis was conducted to compare the biomechanical characteristics of the spine treated with different quantity of osteotomies under different working conditions.
Results:
Three-level PSO improved the sagittal parameters more significantly, but resulted in longer operative time and greater blood loss (p < 0.05). Greater stress was found in the proximal screws and proximal junction area of the vertebra in the model simulating 1-level PSO. Larger stress of screws and vertebra was observed at the distal end in the model simulating 3-level PSO.
Conclusion
Multilevel PSO works better for larger deformity correction than single-level PSO by allowing greater sagittal parameter correction and obtaining a better distribution of stress in the hardware construct, although with longer operation time and greater blood loss. Three-level osteotomy is recommended for the patients with preoperative of global kyphosis > 85.95°, T1 pelvic angle > 62.3°, sagittal vertical alignment > 299.55 mm, and pelvic tilt+ chin-brow vertical angle > 109.6°.

Result Analysis
Print
Save
E-mail