1.Guidelines of ethics review for clinical application of medical technology
Jiyin ZHOU ; Mingjie ZI ; Qi LU ; Hui JIANG
Chinese Medical Ethics 2025;38(1):15-22
Access to the clinical application of medical technology is one of the core institutional contents of medical quality management, involving medical quality assurance, the achievement of patient safety goals, and medical service satisfaction. Medical technology is only permitted for clinical use after its safety and effectiveness have been verified through clinical research, as well as evaluated and reviewed by the medical technology clinical application management committee and ethics committee of this medical and health institution. Based on the relevant laws, regulations, and ethical principles, combined with the experience of ethical review in the clinical application of medical technology from some medical and health institutions, a thematic discussion was held to formulate ethical review guidelines for the clinical application of medical technology for references. These guidelines elaborated on the management system for access to the clinical application of medical technology in medical and health institutions, the system of ethics committees and the requirements of review norms, technical plans and their review points, key points for the implementation of informed consent, technical teams and conditions, and other aspects.
2.Report of 4 cases of IgG4-related urinary diseases and literature review
Fanchao WEI ; Zhaoxiang WANG ; Mengwei XU ; Ruochen QI ; Guohui WANG ; Xiaoyan ZHANG ; Tong XU ; Jingliang ZHANG ; Shuaijun MA ; Weijun QIN ; Lijun YANG ; Shichao HAN
Journal of Modern Urology 2025;30(1):59-63
[Objective] To explore the clinical features of IgG4-related urinary diseases so as to provide reference for the diagnosis and treatment of such diseases. [Methods] The clinical data of 4 cases of IgG4-related urinary system diseases diagnosed and treated in Xijing Hospital of Air Force Medical University during Aug.2019 and Dec.2023 were retrospectively collected.Here, we report on the diagnosis and treatment of these patients, analysing their symptoms, serology, imaging and pathology as well as their treatment and outcomes. [Results] The patients included 2 male and 2 female.The lesions were involved with the retroperitoneum and urinary system.Three patients had symptoms of lumbar pain.The imaging manifestations were complex, including retroperitoneal mass involving urinary system organs in 2 cases, tabdense shadow of the right kidney in 1 case, and simple cystic mass of kidney in 1 case.Serum IgG4 value was not detected before surgery.All patients underwent radical surgical treatment.Postoperative pathology showed fibrous tissue hyperplasia with a large number of plasma cells, lymphocytes, a few neutrophil infiltrates, and lymphoid follicles and obliterated vasculitis in some specimens.The number of IgG4+ plasma cells was more than 10 in all tissues under high power microscope.After surgery, 3 patients had symptoms improved, and serum IgG4 value was within the normal range; 1 patient (patem 3) had elevated IgG4 value during follow-up, received subsequent hormone therapy, and the serum IgG 4 level remained stable. [Conclusion] The symptoms of IgG4-related diseases involving the urinary system are non-specific, and the imaging findings are various, easily confused with other diseases.Early detection of serum IgG4 and biopsy pathology can help clinicians make correct diagnosis in the early stage.
3.Investigation and analysis of the current situation of occupational stress of radiation workers in China
Qi ZHANG ; Jianfei LU ; Peng TONG ; Haoran SUN ; Shanshan KOU ; Xiaolan ZHOU ; ·Yusufu AIKEBAIER ; Weiguo ZHU ; Changsong HOU
Chinese Journal of Radiological Health 2025;34(1):46-54
Objective To investigate and analyze the occupational stress levels and influencing factors among radiation workers in China, and provide a reference for alleviating occupational stress and promoting mental health. Methods Using the general situation questionnaire, Effort-Reward Imbalance questionnaire, and radiation protection knowledge questionnaire, a convenience sampling method was adopted to investigate the occupational stress of 243 radiation workers in Liaoning, Fujian, Guangdong, and Xinjiang provinces. The independent samples t-test, one-way analysis of variance, chi-square test, and binary logistic regression were used to analyze the influencing factors. Results The average score of Effort-Reward Imbalance was 0.97 ± 0.22, and 100 (41.15%) radiation workers had occupational stress. There were significant differences in the detection rate of occupational stress among radiation workers of different ages, working years in radiation positions, monthly incomes, daily sleep durations, and daily working hours (P < 0.05). Logistic regression analysis identified daily working hours as a factor contributing to occupational stress. Conclusion The occupational stress among radiation workers in China is relatively severe. It is recommended to pay attention to the associated risks and implement targeted intervention measures to reduce the impact of occupational stress.
4.Five new triterpenoid saponins from the kernels of Momordica cochinchinensis
Ru DING ; Jia-qi WANG ; Yi-yang LUO ; Yong-long HAN ; Xiao-bo LI ; Meng-yue WANG
Acta Pharmaceutica Sinica 2025;60(2):442-448
Five saponins were isolated from the kernels of
5.Analysis of clinical infection characteristics of multidrug-resistant organisms in hospitalized patients in a tertiary sentinel hospital in Shanghai from 2021 to 2023
Qi MAO ; Tenglong ZHAO ; Xihong LYU ; Zhiyuan GU ; Bin CHEN ; Lidi ZHAO ; Xifeng LI ; Xing ZHANG ; Liang TIAN ; Renyi ZHU
Shanghai Journal of Preventive Medicine 2025;37(2):156-159
ObjectiveTo understand the infection characteristics of multidrug-resistant organisms (MDROs) in hospitalized patients in a tertiary sentinel hospital in Shanghai, so as to provide an evidence for the development of targeted prevention and control measures. MethodsData of MDROs strains and corresponding medical records of some hospitalized patients in a hospital in Shanghai from 2021 to 2023 were collected, together with an analysis of the basic information, clinical treatment, underlying diseases and sources of sample collection. ResultsA total of 134 strains of MDROs isolated from hospitalized patients in this hospital were collected from 2021 to 2023 , including 63 strains of methicillin-resistant Staphylococcus aureus (MRSA), 57 strains of carbapenem-resistant Acinetobacter baumannii (CRAB), and 14 strains of carbapenem-resistant Klebsiella pneumoniae (CRKP). Of the 134 strains, 30 strains were found in 2021, 47 strains in 2022 and 57 strains in 2023. The male-to-female ratio of patients was 2.05∶1, with the highest percentage (70.90%) in the age group of 60‒<90 years. The primary diagnosis was mainly respiratory disease, with lung and respiratory tract as the cheif infection sites. There was no statistically significant difference in the distribution of strains between different genders and infection sites (P>0.05). However, the differences in the distribution of strains between different ages and primary diagnosis were statistically significant (P<0.05). Patients who were admitted to the intensive care unit (ICU), had urinary tract intubation, were not artery or vein intubated, were not on a ventilator, were not using immunosuppresants or hormones, and were not applying radiotherapy or chemotherapy were in the majority. There was no statistically significant difference in the distribution of strains for whether received radiotherapy or chemotherapy or not (P>0.05), while the differences in the distribution of strains with ICU admission history, urinary tract intubation, artery or vein intubation, ventilator use, and immunosuppresants or hormones use or not were statistically significant (all P<0.05). The type of specimen was mainly sputum, the hospitalized ward was mainly comprehensive ICU, the sampling time was mainly in the first quarter throughout the year, the number of underlying diseases was mainly between 1 to 2 kinds, the application of antibiotics ≥4 kinds, and those who didn’t receive any surgery recently accounted for the most. There were statistically significant differences in the distribution of strains between different specimen types, wards occupied and history of ICU stay (P<0.05), but no statistically significant difference in the distribution of strains between different sampling times, number of underlying diseases and types of antibiotics applied (P>0.05). ConclusionThe situation of prevention and control on MDROs in this hospital is still serious. Focus should be placed on high-risk factors’ and infection monitoring and preventive measures should be strengthened to reduce the incidence rate of MDROs infection.
6.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
7.Research on BP Neural Network Method for Identifying Cell Suspension Concentration Based on GHz Electrochemical Impedance Spectroscopy
An ZHANG ; A-Long TAO ; Qi-Hang RAN ; Xia-Yi LIU ; Zhi-Long WANG ; Bo SUN ; Jia-Feng YAO ; Tong ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1302-1312
ObjectiveThe rapid advancement of bioanalytical technologies has heightened the demand for high-throughput, label-free, and real-time cellular analysis. Electrochemical impedance spectroscopy (EIS) operating in the GHz frequency range (GHz-EIS) has emerged as a promising tool for characterizing cell suspensions due to its ability to rapidly and non-invasively capture the dielectric properties of cells and their microenvironment. Although GHz-EIS enables rapid and label-free detection of cell suspensions, significant challenges remain in interpreting GHz impedance data for complex samples, limiting the broader application of this technique in cellular research. To address these challenges, this study presents a novel method that integrates GHz-EIS with deep learning algorithms, aiming to improve the precision of cell suspension concentration identification and quantification. This method provides a more efficient and accurate solution for the analysis of GHz impedance data. MethodsThe proposed method comprises two key components: dielectric property dataset construction and backpropagation (BP) neural network modeling. Yeast cell suspensions at varying concentrations were prepared and separately introduced into a coaxial sensor for impedance measurement. The dielectric properties of these suspensions were extracted using a GHz-EIS dielectric property extraction method applied to the measured impedance data. A dielectric properties dataset incorporating concentration labels was subsequently established and divided into training and testing subsets. A BP neural network model employing specific activation functions (ReLU and Leaky ReLU) was then designed. The model was trained and tested using the constructed dataset, and optimal model parameters were obtained through this process. This BP neural network enables automated extraction and analytical processing of dielectric properties, facilitating precise recognition of cell suspension concentrations through data-driven training. ResultsThrough comparative analysis with conventional centrifugal methods, the recognized concentration values of cell suspensions showed high consistency, with relative errors consistently below 5%. Notably, high-concentration samples exhibited even smaller deviations, further validating the precision and reliability of the proposed methodology. To benchmark the recognition performance against different algorithms, two typical approaches—support vector machines (SVM) and K-nearest neighbor (KNN)—were selected for comparison. The proposed method demonstrated superior performance in quantifying cell concentrations. Specifically, the BP neural network achieved a mean absolute percentage error (MAPE) of 2.06% and an R² value of 0.997 across the entire concentration range, demonstrating both high predictive accuracy and excellent model fit. ConclusionThis study demonstrates that the proposed method enables accurate and rapid determination of unknown sample concentrations. By combining GHz-EIS with BP neural network algorithms, efficient identification of cell concentrations is achieved, laying the foundation for the development of a convenient online cell analysis platform and showing significant application prospects. Compared to typical recognition approaches, the proposed method exhibits superior capabilities in recognizing cell suspension concentrations. Furthermore, this methodology not only accelerates research in cell biology and precision medicine but also paves the way for future EIS biosensors capable of intelligent, adaptive analysis in dynamic biological research.
8.Pharmacokinetic Differences of Seven Components in Different Phases of Banxia Xiexintang in Rats
Chao HE ; Siyi LIU ; Mingyun WANG ; Qi WANG ; Jingwen ZHOU ; Tong ZHANG ; Yiqiong PU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):215-222
ObjectiveTo evaluate the effects of phases on the pharmacokinetic behavior of seven components from Banxia Xiexintang(BXT) in normal rats by investigating and comparing their pharmacokinetic profiles in different phase samples. MethodsThe phase separation of BXT was carried out by centrifugation-dialysis method, and three phase samples were obtained, including the precipitated phase(PP), colloidal phase(CP) and true solution phase(TP). A total of 24 male SD rats were randomly divided into BXT, PP, CP and TP groups(n=6). The BXT group was gavaged at a dose of 24.1 g·kg-1(calculated by the dosage of raw materials). After proper treatments, PP, CP and TP groups were administrated at the same dose as that of BXT group, respectively. Blood was collected from each group at set time points after gavage of BXT and the phase samples. The contents of 7 components(baicalin, wogonoside, wogonin, berberine, palmatine, ammonium glycyrrhizinate and isoliquiritin) in rat plasma were determined by ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry(UPLC-QqQ-MS/MS), and the pharmacokinetic parameters of each component were analyzed by DAS 2.0. ResultsThe peak concentration of baicalin was the highest among the blood-entered components in each group, followed by wogonoside. The results of the concentration-time curves and pharmacokinetic parameters of the 7 components showed that the area under the concentration-time curve(AUC) of isoliquiritin in the BXT group was the highest, followed by that in the CP group. AUC values of baicalin, wogonoside, wogonin and ammonium glycyrrhizinate in the BXT group were similar to those of the CP group, and AUC of palmatine in the BXT group was similar to that of the PP group. The elimination half-life(t1/2) values of baicalin and wogonoside in the BXT group was the longest, the t1/2 values of ammonium glycyrrhizinate and berberine were similar to those of the CP group, and the t1/2 of palmatine was similar to that of the PP group. The t1/2 of wogonin was the longest in the PP group, and the t1/2 of isoliquiritin was the longest in the TP group was the longest, which was similar to that in the PP group. Except for isoliquiritin, the other 6 components showed double peaks in the concentration-time curve of the PP group, indicating that the above components might be reabsorbed through the enterohepatic circulation in vivo, which resulted in the maintenance of high plasma concentrations for a long time, and consequently exhibited sustained-release properties. ConclusionThe pharmacokinetic characteristics of the components in different phases were different, and the CP phase may be the effective phase from the perspective of the pharmacological action of BXT. Compared with the BXT group, the in vivo action times of some components in the CP and PP groups were prolonged. The study explores the phase differences of traditional Chinese medicine(TCM) compound decoction in the aspect of pharmacokinetics, and verifies that the phase states from TCM compound decoction will affect the pharmacokinetic behaviors of the active components, which may consequently lead to the difference in in vivo effects.
9.Pharmacokinetic Differences of Seven Components in Different Phases of Banxia Xiexintang in Rats
Chao HE ; Siyi LIU ; Mingyun WANG ; Qi WANG ; Jingwen ZHOU ; Tong ZHANG ; Yiqiong PU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):215-222
ObjectiveTo evaluate the effects of phases on the pharmacokinetic behavior of seven components from Banxia Xiexintang(BXT) in normal rats by investigating and comparing their pharmacokinetic profiles in different phase samples. MethodsThe phase separation of BXT was carried out by centrifugation-dialysis method, and three phase samples were obtained, including the precipitated phase(PP), colloidal phase(CP) and true solution phase(TP). A total of 24 male SD rats were randomly divided into BXT, PP, CP and TP groups(n=6). The BXT group was gavaged at a dose of 24.1 g·kg-1(calculated by the dosage of raw materials). After proper treatments, PP, CP and TP groups were administrated at the same dose as that of BXT group, respectively. Blood was collected from each group at set time points after gavage of BXT and the phase samples. The contents of 7 components(baicalin, wogonoside, wogonin, berberine, palmatine, ammonium glycyrrhizinate and isoliquiritin) in rat plasma were determined by ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry(UPLC-QqQ-MS/MS), and the pharmacokinetic parameters of each component were analyzed by DAS 2.0. ResultsThe peak concentration of baicalin was the highest among the blood-entered components in each group, followed by wogonoside. The results of the concentration-time curves and pharmacokinetic parameters of the 7 components showed that the area under the concentration-time curve(AUC) of isoliquiritin in the BXT group was the highest, followed by that in the CP group. AUC values of baicalin, wogonoside, wogonin and ammonium glycyrrhizinate in the BXT group were similar to those of the CP group, and AUC of palmatine in the BXT group was similar to that of the PP group. The elimination half-life(t1/2) values of baicalin and wogonoside in the BXT group was the longest, the t1/2 values of ammonium glycyrrhizinate and berberine were similar to those of the CP group, and the t1/2 of palmatine was similar to that of the PP group. The t1/2 of wogonin was the longest in the PP group, and the t1/2 of isoliquiritin was the longest in the TP group was the longest, which was similar to that in the PP group. Except for isoliquiritin, the other 6 components showed double peaks in the concentration-time curve of the PP group, indicating that the above components might be reabsorbed through the enterohepatic circulation in vivo, which resulted in the maintenance of high plasma concentrations for a long time, and consequently exhibited sustained-release properties. ConclusionThe pharmacokinetic characteristics of the components in different phases were different, and the CP phase may be the effective phase from the perspective of the pharmacological action of BXT. Compared with the BXT group, the in vivo action times of some components in the CP and PP groups were prolonged. The study explores the phase differences of traditional Chinese medicine(TCM) compound decoction in the aspect of pharmacokinetics, and verifies that the phase states from TCM compound decoction will affect the pharmacokinetic behaviors of the active components, which may consequently lead to the difference in in vivo effects.

Result Analysis
Print
Save
E-mail