1.Clinical Efficacy of Modified Huangqi Chifengtang in Treatment of IgA Nephropathy Patients and Exploration of Dose-effect Relationship of Astragali Radix
Xiujie SHI ; Meiying CHANG ; Yue SHI ; Ziyan ZHANG ; Yifan ZHANG ; Qi ZHANG ; Hangyu DUAN ; Jing LIU ; Mingming ZHAO ; Yuan SI ; Yu ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):9-16
ObjectiveTo explore the dose-effect relationship and safety of high, medium, and low doses of raw Astragali Radix in the modified Huangqi Chifengtang (MHCD) for treating proteinuria in immunoglobulin A (IgA) nephropathy, and to provide scientific evidence for the clinical use of high-dose Astragali Radix in the treatment of proteinuria in IgA nephropathy. MethodsA total of 120 patients with IgA nephropathy, diagnosed with Qi deficiency and blood stasis combined with wind pathogen and heat toxicity, were randomly divided into a control group and three treatment groups. The control group received telmisartan combined with a Chinese medicine placebo, while the treatment groups were given telmisartan combined with MHCD containing different doses of raw Astragali Radix (60, 30, 15 g). Each group contained 30 patients, and the treatment period was 12 weeks. Changes in 24-hour urinary protein (24 hUTP), traditional Chinese medicine (TCM) syndrome scores, effective rate, and renal function were observed before and after treatment. Safety was assessed by monitoring liver function and blood routine. ResultsAfter 12 weeks of treatment, 24 hUTP significantly decreased in the high, medium, and low-dose groups, as well as the control group (P<0.05, P<0.01). The TCM syndrome scores in the high, medium, and low-dose groups also significantly decreased (P<0.01). Comparisons between groups showed that the 24 hUTP in the high-dose group was significantly lower than in the medium, low-dose, and control groups (P<0.05, P<0.01), and the 24 hUTP in the medium-dose group was significantly lower than in the control group (P<0.05). The TCM syndrome scores in the high and medium-dose groups were significantly lower than in the low-dose and control groups (P<0.05, P<0.01). The total effective rates for proteinuria in the high, medium, low-dose, and control groups were 92.59% (25/27), 85.19% (23/27), 60.71% (17/28), and 57.14% (16/28), respectively. The effective rates in the high and medium-dose groups were significantly higher than in the low-dose and control groups (χ2=13.185, P<0.05, P<0.01). The effective rates for TCM syndrome scores in the high, medium, low-dose, and control groups were 88.89% (24/27), 81.48% (22/27), 71.43% (20/28), and 46.43% (13/28), respectively. The efficacy of TCM syndrome scores in the high and medium-dose groups was significantly higher than in the control group (χ2=14.053, P<0.01). Compared with pre-treatment values, there was no statistically significant difference in eGFR and serum creatinine in the high and medium-dose groups. However, eGFR significantly decreased in the low-dose and control groups after treatment (P<0.05), and serum creatinine levels increased significantly in the control group (P<0.05). No statistically significant differences were observed in urea nitrogen, uric acid, albumin, total cholesterol, triglycerides, liver function, and blood routine before and after treatment in any group. ConclusionThere is a dose-effect relationship in the treatment of IgA nephropathy with high, medium, and low doses of raw Astragali Radix in MHCD. The high-dose group exhibited the best therapeutic effect and good safety profile.
2.Heterogeneity of Adipose Tissue From a Single-cell Transcriptomics Perspective
Yong-Lang WANG ; Si-Si CHEN ; Qi-Long LI ; Yu GONG ; Xin-Yue DUAN ; Ye-Hui DUAN ; Qiu-Ping GUO ; Feng-Na LI
Progress in Biochemistry and Biophysics 2025;52(4):820-835
Adipose tissue is a critical energy reservoir in animals and humans, with multifaceted roles in endocrine regulation, immune response, and providing mechanical protection. Based on anatomical location and functional characteristics, adipose tissue can be categorized into distinct types, including white adipose tissue (WAT), brown adipose tissue (BAT), beige adipose tissue, and pink adipose tissue. Traditionally, adipose tissue research has centered on its morphological and functional properties as a whole. However, with the advent of single-cell transcriptomics, a new level of complexity in adipose tissue has been unveiled, showing that even under identical conditions, cells of the same type may exhibit significant variation in morphology, structure, function, and gene expression——phenomena collectively referred to as cellular heterogeneity. Single-cell transcriptomics, including techniques like single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), enables in-depth analysis of the diversity and heterogeneity of adipocytes at the single-cell level. This high-resolution approach has not only deepened our understanding of adipocyte functionality but also facilitated the discovery of previously unidentified cell types and gene expression patterns that may play key roles in adipose tissue function. This review delves into the latest advances in the application of single-cell transcriptomics in elucidating the heterogeneity and diversity within adipose tissue, highlighting how these findings have redefined the understanding of cell subpopulations within different adipose depots. Moreover, the review explores how single-cell transcriptomic technologies have enabled the study of cellular communication pathways and differentiation trajectories among adipose cell subgroups. By mapping these interactions and differentiation processes, researchers gain insights into how distinct cellular subpopulations coordinate within adipose tissues, which is crucial for maintaining tissue homeostasis and function. Understanding these mechanisms is essential, as dysregulation in adipose cell interactions and differentiation underlies a range of metabolic disorders, including obesity and diabetes mellitus type 2. Furthermore, single-cell transcriptomics holds promising implications for identifying therapeutic targets; by pinpointing specific cell types and gene pathways involved in adipose tissue dysfunction, these technologies pave the way for developing targeted interventions aimed at modulating specific adipose subpopulations. In summary, this review provides a comprehensive analysis of the role of single-cell transcriptomic technologies in uncovering the heterogeneity and functional diversity of adipose tissues.
3.Temporal-spatial Generation of Astrocytes in the Developing Diencephalon.
Wentong HONG ; Pifang GONG ; Xinjie PAN ; Zhonggan REN ; Yitong LIU ; Guibo QI ; Jun-Liszt LI ; Wenzhi SUN ; Woo-Ping GE ; Chun-Li ZHANG ; Shumin DUAN ; Song QIN
Neuroscience Bulletin 2024;40(1):1-16
Astrocytes are the largest glial population in the mammalian brain. However, we have a minimal understanding of astrocyte development, especially fate specification in different regions of the brain. Through lineage tracing of the progenitors of the third ventricle (3V) wall via in-utero electroporation in the embryonic mouse brain, we show the fate specification and migration pattern of astrocytes derived from radial glia along the 3V wall. Unexpectedly, radial glia located in different regions along the 3V wall of the diencephalon produce distinct cell types: radial glia in the upper region produce astrocytes and those in the lower region produce neurons in the diencephalon. With genetic fate mapping analysis, we reveal that the first population of astrocytes appears along the zona incerta in the diencephalon. Astrogenesis occurs at an early time point in the dorsal region relative to that in the ventral region of the developing diencephalon. With transcriptomic analysis of the region-specific 3V wall and lateral ventricle (LV) wall, we identified cohorts of differentially-expressed genes in the dorsal 3V wall compared to the ventral 3V wall and LV wall that may regulate astrogenesis in the dorsal diencephalon. Together, these results demonstrate that the generation of astrocytes shows a spatiotemporal pattern in the developing mouse diencephalon.
Mice
;
Animals
;
Astrocytes
;
Neuroglia/physiology*
;
Diencephalon
;
Brain
;
Neurons
;
Mammals
4.Effectss of persistent obesity on lung function in school age children
Chinese Journal of School Health 2024;45(4):549-553
Objective:
To analyze the impact of persistent obesity on their lung function, so as to offer insights for implementing intervention measures to increase lung function in obese school age children.
Methods:
A total of 335 children from the Sheyang Mini Birth Cohort established in 2009 in Yancheng City, Jiangsu Province, who participated in the follow up at the ages of 7 years (2016) and 10 years (2019), were selected as the study participants. Physical measurements including height, weight, and lung function were recorded. According to the World Health Organization standard, that is, gender and age specific to correct the body mass index to calculate the body mass index Z score, was used to evaluate the obesity status of children at the age of 7 and 10. Children were divided into four groups, including sustained non obesity group, restored obesity group, newly classified obesity group, and persistent obesity group. Meanwhile, the lung function prediction equations recommended by the Global Lung Function Initiative were used to standardize the lung function indexes of children. Pulmonary function differences among these groups were examined, and the relationship between childhood obesity and pulmonary function was longitudinally analyzed using generalized estimating equations.
Results:
The prevalence of obesity were 9.0% and 16.1% at the age of 7 and 10 years, respectively. The proportion of both newly classified and persistent obesity group were 8.1%, respectively. The forced expiratory volume in one second (FEV 1) and forced vital capacity (FVC) were (1 269.90±202.70) and (1 415.70±230.00) mL, respectively, at the age of 7 years. FEV 1 and FVC at the age of 10 years were (1 440.80±403.20) and (1 555.60±517.60) mL, respectively. Cross sectional analysis at age 7 showed that forced expiratory flow at 75% vital capacity (FEF 75 ) ( β=-0.52, 95%CI =-0.96--0.07) and maximal mid expiratary flow (MMEF) ( β=-0.45, 95%CI =-0.89--0.00) were significantly lower in obese children compared to their non obese peers ( P < 0.05). Longitudinal analysis indicated that obese children had lower levels of lung pulmonary function, with a statistically significant difference in FEV 1 ( β=-0.44, 95%CI=-0.85--0.02, P <0.05). There was no significant difference among the various obesity groups ( P >0.05), while gender stratified results revealed significant reductions in FEV 1/FVC in newly classified obese girls at age 10 years ( β=-1.76, 95%CI =-3.13--0.38) and in MMEF in persistently obese girls at age 10 years ( β=-1.44, 95%CI = -2.79- -0.09) ( P <0.05).
Conclusion
Obesity may contribute to reduced lung function levels in school aged children, with newly classified and persistent obesity having more pronounced effects on lung function in girls.
5.Current status of vascular preparation modalities for endoluminal treatment of lower limb arteriosclerosis obliterans
Yichen DONG ; Hongyong DUAN ; Qi ZHANG ; Yifan CAO ; Likang BAI ; Jie MA
International Journal of Surgery 2024;51(3):190-196
With the increasing use of lower-extremity arterial angioplasty and the clinical use of a variety of vascular preparation devices. Vascular surgeons have more vascular preparation equipment such as cutting balloon, double wire balloon, chocolate balloon, shock wave balloon, AngioJet, Roterax and Acostream. These options can improve clinical outcomes, improve patient experience, and reduce stent placement and associated complications. This article will review the available vascular preparation devices for volume reduction, endovascular lithotripsy, and other special balloons to help clinicians choose the appropriate vascular preparation for their condition to improve perioperative safety and long-term patency.
6.Research advances on the age-related macular degeneration
Dandan WEI ; Yuhan SONG ; Qi WANG ; Shulan SU ; Yue ZHU ; Jin'ao DUAN
Basic & Clinical Medicine 2024;44(4):553-557
Age-related macular degeneration(AMD)is a serious threat to the visual health of the elderly,and the dysfunction of retinal pigment epithelial cells(RPE)is a significant etiology risk.Aging process leads to RPE repli-cation senescence,and some environment factors like light exposure and cigarette exposure may lead to RPE stress premature aging,and the decreased lysosomal digestion ability of senescent RPE cells may lead to the accumulation of lipofuscin,triggering the occurrence of early AMD.A series of homeostatic imbalances in aging retina,such as cell senescence-renewal imbalance,oxidative stress-antioxidant imbalance,chronic inflammatory-anti-inflammatory imbalance,intestinal barrier and intestinal microbiota imbalance and pro-angiogenesis-antiangiogenic imbalance all contribute to the development of AMD.
7.Research progress of exosomes in invasion and metastasis of colorectal cancer
Ting ZHANG ; Shushan YAN ; Qi YU ; Quanhong DUAN
Journal of Clinical Surgery 2024;32(2):214-215
The therapeutic effect is not ideal for patients with colorectal cancer that has already metastasized.In recent years,it has been found that extracellular vesicles play an important role in various aspects of cancer cells,and their impact on the invasion and metastasis process of colorectal cancer has gradually been revealed.This review reviews and analyzes the role of extracellular vesicles in the invasion and metastasis of colorectal cancer,and briefly introduces the role of some extracellular vesicles in the treatment of colorectal cancer.
8.N6-methyladenosine related regulatory factors in osteoarthritis:bioinformatics analysis and experimental validation
Changshen YUAN ; Shuning LIAO ; Zhe LI ; Yanbing GUAN ; Siping WU ; Qi HU ; Qijie MEI ; Kan DUAN
Chinese Journal of Tissue Engineering Research 2024;28(11):1724-1729
BACKGROUND:Increasing evidence suggests that N6-methyladenosine(m6A)regulators are closely associated with osteoarthritis and are considered to be a new direction in the prevention and treatment of osteoarthritis,but their specific mechanism of action is unknown. OBJECTIVE:To conduct a bioinformatics analysis of the osteoarthritis gene microarray dataset in order to explore the role of m6A in osteoarthritis and analyze the pathogenesis of osteoarthritis. METHODS:The m6A regulators associated with osteoarthritis and their expression were first extracted from the GSE1919 dataset in the GEO database using R software,and then the results were analyzed by gene difference analysis and GO and KEGG enrichment analyses.Subsequently,the results of protein-protein interaction network topology analysis and machine learning results were intersected to obtain the m6A Hub regulators,which were validated by in vitro cellular experiments. RESULTS AND CONCLUSION:A total of 16 osteoarthritis-related m6A regulators were extracted and 11 m6A differential regulators,including ZC3H13,YTHDC1,YTHDF3 and HNRNPC,were obtained by differential analysis.GO enrichment analysis showed that osteoarthritis-related m6A differential regulators played a role in the biological processes such as mRNA transport,RNA catabolism,and regulation of insulin-like growth factor receptor signaling pathway.(3)KEGG enrichment analysis showed that the differential regulators were mainly involved in the p53,interleukin-17 and AMPK signaling pathways.The combined protein-protein interaction network topology analysis and machine learning results obtained the m6A Hub regulator-YTHDC1.(5)The results of in vitro cellular experiments showed that there was a significant difference in the expression of m6A key regulator between the control and experimental groups(P<0.05).To conclude,YTHDC1 is closely related to the development of osteoarthritis,which is expected to be a molecular target of m6A for the treatment of osteoarthritis.
9.Identification of ferroptosis signature genes in osteoarthritis based on WGCNA and machine learning and experimental validation
Wenfei XU ; Chunyu MING ; Kan DUAN ; Changshen YUAN ; Jinrong GUO ; Qi HU ; Chao ZENG ; Qijie MEI
Chinese Journal of Tissue Engineering Research 2024;28(30):4909-4914
BACKGROUND:Ferroptosis is strongly associated with the occurrence and progression of osteoarthritis,but the specific characteristic genes and regulatory mechanisms are not known. OBJECTIVE:To identify osteoarthritis ferroptosis signature genes and immune infiltration analysis using the WGCNA and various machine learning methods. METHODS:The osteoarthritis dataset was downloaded from the GEO database and ferroptosis-related genes were obtained from the FerrDb website.R language was used to batch correct the osteoarthritis dataset,extract osteoarthritis ferroptosis genes and perform differential analysis,analyze differentially expressed genes for GO function and KEGG signaling pathway.WGCNA analysis and machine learning(random forest,LASSO regression,and SVM-RFE analysis)were also used to screen osteoarthritis ferroptosis signature genes.The in vitro cell experiments were performed to divide chondrocytes into normal and osteoarthritis model groups.The dataset and qPCR were used to verify expression and correlate immune infiltration analysis. RESULTS AND CONCLUSION:(1)12 548 osteoarthritis genes were obtained by batch correction and PCA analysis,while 484 ferroptosis genes were obtained,resulting in 24 differentially expressed genes of osteoarthritis ferroptosis.(2)GO analysis mainly involved biological processes such as response to oxidative stress and response to organophosphorus,cellular components such as apical and apical plasma membranes,and molecular functions such as heme binding and tetrapyrrole binding.(3)KEGG analysis exhibited that differentially expressed genes of osteoarthritis ferroptosis were related to signaling pathways such as the interleukin 17 signaling pathway and tumor necrosis factor signaling pathway.(4)After using WGCNA analysis and machine learning screening,we obtained the characteristic gene KLF2.After validation by gene microarray,we found that the gene expression of KLF2 was higher in the test group than in the control group in the meniscus(P=0.000 14).(5)In vitro chondrocyte assay showed that type Ⅱ collagen and KLF2 expression was lower in the osteoarthritis group than in the control group in chondrocytes(P<0.05),while in osteoarthritis ferroptosis,mast cells activated was closely correlated with dendritic cells(r=0.99);KLF2 was closely correlated with natural killer cells(r=-1,P=0.017)and T cells follicular helper(r=-1,P=0.017).(6)The findings indicate that using WGCNA analysis and machine learning methods confirmed that KLF2 can be a characteristic gene for osteoarthritis ferroptosis and may improve osteoarthritis ferroptosis by interfering with KLF2.
10.Correlation of FSHR gene polymorphism,BMI and sex hormone six with the risk of polycystic ovary syndrome
Zhi-Fang ZAN ; Zeng-Rong TU ; Qi-Rong WANG ; Yu DUAN ; Jian-Bing LIU ; Li LI
Medical Journal of Chinese People's Liberation Army 2024;49(1):50-56
Objective To investigate the association between body mass index(BMI),sex hormone and single nucleotide polymorphisms(SNPs)of follicle-stimulating hormone receptor(FSHR)gene rs2268361 and rs2349415 and its correlation with the risk of polycystic ovary syndrome(PCOS).Methods Peripheral blood was collected from 213 PCOS patients and 207 healthy controls,attending the Department of Reproductive Medicine at the First Hospital of Shanxi Medical University,and 32 follicular fluids were randomly collected from each of the PCOS and control groups from March to August 2021.Calculation of BMI of the PCOS and control groups;The levels of follicle-stimulating hormone(FSH),luteinizing hormone(LH),estradiol(E2),testosterone(T),progesterone(P)and prolactin(PRL)in peripheral blood of the two groups were detected by immunochemiluminescence method.Polymerase chain reaction(PCR)and high-resolution melting curve(HRM)were used to analyze the polymorphisms of rs2268361 and rs2349415 in FSHR of the two groups.Quantitative real-time PCR was used to detect the expression of FSHR gene mRNA in peripheral blood and ovarian granulosa cells.Results There was a strong positive correlation between LH and LH/FSH(r=0.88,P<0.05);The levels of BMI,E2,LH,LH/FSH and T in PCOS group were significantly higher than those in control group(P<0.05);FSH level was significantly lower than that of control group(P<0.001).HRM analysis showed the frequencies of CC,CT and TT genotypes at rs2349415 were 55.9%,34.3%and 9.8%in PCOS group and 68.6%,23.2%and 8.2%in control group,respectively.The frequencies of C and T alleles were 73.0%and 27.0%in PCOS group and 80.2%and 19.8%in control group,respectively.There were significant differences in genotype frequencies and allele frequencies between the two groups(P<0.05);The expression level of FSHR mRNA was higher in ovarian granulosa cells in PCOS group than in control group(P=0.004),the expression level of FSHR mRNA in rs2349415 TT genotype was higher than that in CC(P=0.002)and CT(P=0.035)genotype.Conclusion High levels of BMI, LH, E2 and T allele of rs2349415 increased the risk of PCOS.


Result Analysis
Print
Save
E-mail