1.PES1 Repression Triggers Ribosomal Biogenesis Impairment and Cellular Senescence Through p53 Pathway Activation
Chang-Jian ZHANG ; Yu-Fang LI ; Feng-Yun WU ; Rui JIN ; Chang NIU ; Qi-Nong YE ; Long CHENG
Progress in Biochemistry and Biophysics 2025;52(7):1853-1865
		                        		
		                        			
		                        			ObjectiveThe nucleolar protein PES1 (Pescadillo homolog 1) plays critical roles in ribosome biogenesis and cell cycle regulation, yet its involvement in cellular senescence remains poorly understood. This study aimed to comprehensively investigate the functional consequences of PES1 suppression in cellular senescence and elucidate the molecular mechanisms underlying its regulatory role. MethodsInitially, we assessed PES1 expression patterns in two distinct senescence models: replicative senescent mouse embryonic fibroblasts (MEFs) and doxorubicin-induced senescent human hepatocellular carcinoma HepG2 cells. Subsequently, PES1 expression was specifically downregulated using siRNA-mediated knockdown in these cell lines as well as additional relevant cell types. Cellular proliferation and senescence were assessed by EdU incorporation and SA-β-gal staining assays, respectively. The expression of senescence-associated proteins (p53, p21, and Rb) and SASP factors (IL-6, IL-1β, and IL-8) were analyzed by Western blot or qPCR. Furthermore, Northern blot and immunofluorescence were employed to evaluate pre-rRNA processing and nucleolar morphology. ResultsPES1 expression was significantly downregulated in senescent MEFs and HepG2 cells. PES1 knockdown resulted in decreased EdU-positive cells and increased SA‑β‑gal-positive cells, indicating proliferation inhibition and senescence induction. Mechanistically, PES1 suppression activated the p53-p21 pathway without affecting Rb expression, while upregulating IL-6, IL-1β, and IL-8 production. Notably, PES1 depletion impaired pre-rRNA maturation and induced nucleolar stress, as evidenced by aberrant nucleolar morphology. ConclusionOur findings demonstrate that PES1 deficiency triggers nucleolar stress and promotes p53-dependent (but Rb-independent) cellular senescence, highlighting its crucial role in maintaining nucleolar homeostasis and regulating senescence-associated pathways. 
		                        		
		                        		
		                        		
		                        	
2.Data mining of current research status of clinical trial drug management in China by bibliometrics
Chang XU ; Xinna ZHOU ; Lu QI ; Yu WANG ; Xinghe WANG
Journal of Pharmaceutical Practice and Service 2025;43(8):404-409
		                        		
		                        			
		                        			Objective To clarify the current development status and research hotspots in the field of experimental drug management in China through data mining by bibliometric. Methods Key words such as “experiment”, “drug”, and “management” were used to search the Chinese literature in China National Knowledge Infrastructure (CNKI). The title, author name, author affiliation, Chinese abstract, Chinese keywords, publication period, journal name, and other content of the literature were extracted from the literature. Cluster analysis was performed by CNKI literature visualization analysis system, CiteSpace and other software, and a network knowledge map was drawn. Results The literature in the field of experimental drug management in China was first published in 1994, and a total of 140 articles were published until 2022. Among them, 20 articles were supported by relevant funds, and the keyword co-occurrence frequency was highest among “subjects”. The most frequently published medium was the Chinese Pharmacological Yearbook. Conclusion At present, the quantity and quality of literature in the field of experimental drug management in China were relatively small, and the cooperation and communication among authors were not close. The funding from various fund projects in this field was also lacking. These factors led to a lower overall development level and slower development speed in this field.
		                        		
		                        		
		                        		
		                        	
3.Evaluation progress of the application of staplers in thoracoscopic lung surgery
Shenghui LI ; Yijiu REN ; Hang SU ; Minglei YANG ; Guofang ZHAO ; Yongxiang SONG ; Xuefei HU ; Deping ZHAO ; Qi XUE ; Chang CHEN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(05):709-713
		                        		
		                        			
		                        			Compared to traditional suturing, lung stapling using automatic staplers offers advantages such as smaller trauma, faster wound healing, ease of operation, and lower complication rates, making it widely used in clinical practice. However, there are significant differences in bronchial tissue thickness at different anatomical locations, and the market is flooded with various types of staplers. Currently, there is a lack of recommended stapling schemes for bronchial staplers at different anatomical locations. This article reviews the development and application of automatic staplers and summarizes some types of staplers that are currently used in clinical practice, with the aim of promoting the formation of individualized stapler selection protocols for minimally invasive thoracic surgery based on the Chinese population.
		                        		
		                        		
		                        		
		                        	
4.Clinical Efficacy of Modified Huangqi Chifengtang in Treatment of IgA Nephropathy Patients and Exploration of Dose-effect Relationship of Astragali Radix
Xiujie SHI ; Meiying CHANG ; Yue SHI ; Ziyan ZHANG ; Yifan ZHANG ; Qi ZHANG ; Hangyu DUAN ; Jing LIU ; Mingming ZHAO ; Yuan SI ; Yu ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):9-16
		                        		
		                        			
		                        			ObjectiveTo explore the dose-effect relationship and safety of high, medium, and low doses of raw Astragali Radix in the modified Huangqi Chifengtang (MHCD) for treating proteinuria in immunoglobulin A (IgA) nephropathy, and to provide scientific evidence for the clinical use of high-dose Astragali Radix in the treatment of proteinuria in IgA nephropathy. MethodsA total of 120 patients with IgA nephropathy, diagnosed with Qi deficiency and blood stasis combined with wind pathogen and heat toxicity, were randomly divided into a control group and three treatment groups. The control group received telmisartan combined with a Chinese medicine placebo, while the treatment groups were given telmisartan combined with MHCD containing different doses of raw Astragali Radix (60, 30, 15 g). Each group contained 30 patients, and the treatment period was 12 weeks. Changes in 24-hour urinary protein (24 hUTP), traditional Chinese medicine (TCM) syndrome scores, effective rate, and renal function were observed before and after treatment. Safety was assessed by monitoring liver function and blood routine. ResultsAfter 12 weeks of treatment, 24 hUTP significantly decreased in the high, medium, and low-dose groups, as well as the control group (P<0.05, P<0.01). The TCM syndrome scores in the high, medium, and low-dose groups also significantly decreased (P<0.01). Comparisons between groups showed that the 24 hUTP in the high-dose group was significantly lower than in the medium, low-dose, and control groups (P<0.05, P<0.01), and the 24 hUTP in the medium-dose group was significantly lower than in the control group (P<0.05). The TCM syndrome scores in the high and medium-dose groups were significantly lower than in the low-dose and control groups (P<0.05, P<0.01). The total effective rates for proteinuria in the high, medium, low-dose, and control groups were 92.59% (25/27), 85.19% (23/27), 60.71% (17/28), and 57.14% (16/28), respectively. The effective rates in the high and medium-dose groups were significantly higher than in the low-dose and control groups (χ2=13.185, P<0.05, P<0.01). The effective rates for TCM syndrome scores in the high, medium, low-dose, and control groups were 88.89% (24/27), 81.48% (22/27), 71.43% (20/28), and 46.43% (13/28), respectively. The efficacy of TCM syndrome scores in the high and medium-dose groups was significantly higher than in the control group (χ2=14.053, P<0.01). Compared with pre-treatment values, there was no statistically significant difference in eGFR and serum creatinine in the high and medium-dose groups. However, eGFR significantly decreased in the low-dose and control groups after treatment (P<0.05), and serum creatinine levels increased significantly in the control group (P<0.05). No statistically significant differences were observed in urea nitrogen, uric acid, albumin, total cholesterol, triglycerides, liver function, and blood routine before and after treatment in any group. ConclusionThere is a dose-effect relationship in the treatment of IgA nephropathy with high, medium, and low doses of raw Astragali Radix in MHCD. The high-dose group exhibited the best therapeutic effect and good safety profile. 
		                        		
		                        		
		                        		
		                        	
5.The Role of NEAT1 in Bone and Cartilage Metabolism and Bone Diseases
Rui-Ming WEN ; Rui-Qi HUANG ; Yi-Xing CHANG ; Ke XU ; Xue-Jie YI
Progress in Biochemistry and Biophysics 2025;52(4):930-945
		                        		
		                        			
		                        			In the process of maintaining the steady state of bone tissue, the transcription network and signal pathway of the body play a vital role. These complex regulatory mechanisms need precise coordination to ensure the balance between bone formation and bone absorption. Once this balance is broken, it may lead to pathological changes of bone and cartilage, and then lead to various bone diseases. Therefore, it is of great significance to understand these regulatory mechanisms for the prevention and treatment of bone diseases. In recent years, with the deepening of research, more and more lncRNA has been found to be closely related to bone health. Among them, nuclear paraspeckle assembly transcript 1 (NEAT1), as an extremely abundant RNA molecule in mammalian nuclei, has attracted extensive attention. NEAT1 is mainly transcribed from a specific site in human chromosome 11 by RNA polymerase II (RNaseP), which can form two different subtypes NEAT1_1 and NEAT1_2. These two subtypes are different in intracellular distribution and function, but they participate in many biological processes together. Studies have shown that NEAT1 plays a specific role in the process of cell growth and stress response. For example, it can regulate the development of osteoblasts (OB), osteoclasts (OC) and chondrocytes by balancing the differentiation of bone marrow mesenchymal stem cells (BMSCs), thus maintaining the steady state of bone metabolism. This discovery reveals the important role of NEAT1 in bone development and remodeling. In addition, NEAT1 is closely related to a variety of bone diseases. In patients with bone diseases such as osteoporosis (OP), osteoarthritis (OA) and osteosarcoma (OS), the expression level of NEAT1 is different. These differential expressions may be closely related to the pathogenesis and progression of bone diseases. By regulating the level of NEAT1, it can affect a variety of signal transduction pathways, and then affect the development of bone diseases. For example, some studies show that by regulating the expression level of NEAT1, the activity of osteoclasts can be inhibited, and the proliferation and differentiation of osteoblasts can be promoted, thus improving the symptoms of osteoporosis. It is worth noting that NEAT1 can also be used as a key sensor for the prevention and treatment of bone diseases. When exercising or receiving some natural products, the expression level of NEAT1 will change, thus reflecting the response of bones to external stimuli. This feature makes NEAT1 an important target for studying the prevention and treatment strategies of bone diseases. However, although the role of NEAT1 in bone biology and bone diseases has been initially recognized, its specific mechanism and regulatory relationship are still controversial. For example, the expression level, mode of action and interaction with other molecules of NEAT1 in different bone diseases still need further in-depth study. This paper reviews the role of NEAT1 in maintaining bone and cartilage metabolism, and discusses its expression and function in various bone diseases. By combing the existing research results and controversial points, this paper aims to provide new perspectives and ideas for the prevention and treatment of bone diseases, and provide useful reference and enlightenment for future research. 
		                        		
		                        		
		                        		
		                        	
6.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
		                        		
		                        			
		                        			Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery. 
		                        		
		                        		
		                        		
		                        	
7. Curcumin plays an anti-osteoporosis role by inhibiting NF-κB signaling pathway to reduce oxidative stress damage to osteogenesis
Tian-Tian XU ; Hao-Ehun TIAN ; Xin-Min YANG ; Qi-Hua QI ; Dong-Hua LUO ; Chang-Gen WANG
Chinese Pharmacological Bulletin 2024;40(1):46-54
		                        		
		                        			
		                        			 Aim To investigate the mechanism of curcumin inhibition of oxidative stress on osteogenic differentiation and its dose-dependent anti-osteoporosis effect. Methods Cellular oxidative stress models were used, different concentrations of curcumin were added to determinethebone formation markers, and the potential signaling pathways involvedwere detected. Meanwhile, the mouse model of osteoporosis ( ovariecto- mized, 0VX) was used to confirm its effect against osteoporosis. Results In vitro experiments found that low concentrations of curcumin (1-10 μmol · L 
		                        		
		                        		
		                        		
		                        	
8.Reconstruction and analysis of K-Clip surgery process based on finite element method
Hao SHI ; Wenbin OUYANG ; Shiguo LI ; Qi LI ; Fengwen ZHANG ; Yao LIU ; Wenxin LU ; Chang LIU ; Shaojie ZHANG ; Xiangbin PAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2024;31(01):44-50
		                        		
		                        			
		                        			Objective     To investigate the effects of different types of tricuspid regurgitation, implantation positions, and device models on the treatment outcomes of K-Clip for tricuspid regurgitation using numerical simulations. Methods     Three-dimensional reconstruction of the heart model was performed based on CT images. Two different regurgitation orifices were obtained by modifying the standard parameterized tricuspid valve leaflets and chordae tendineae. The effects of different K-Clip models at different implantation positions (posterior leaflet midpoint, anterior-posterior commissure, anterior leaflet midpoint, posterior septal commissure) were simulated using commercial explicit dynamics software Ls-Dyna. Conclusion     For the two types of regurgitation in this study, clipping at the posterior leaflet midpoint resulted in a better reduction of the regurgitation orifice (up to 75% reduction in area). Higher clamping forces were required for implantation at the anterior leaflet midpoint and posterior septal commissure, which was unfavorable for the smooth closure of the clipping components. There was no statistical difference in the treatment outcomes between the 18T and 16T K-Clip components, and the 16T component required less clamping force. Therefore, the use of the 16T K-Clip component is recommended.
		                        		
		                        		
		                        		
		                        	
9.Discovery of A New Prognostic Molecular Marker NKX2-3 for Acute Myeloid Leukemia
Wandi WANG ; Tao CHANG ; Siyuan JIANG ; Qi HOU ; Zhenyi JIN ; Xiuli WU
Journal of Sun Yat-sen University(Medical Sciences) 2024;45(1):63-68
		                        		
		                        			
		                        			ObjectiveTo analyze the expression of molecular marker affecting the prognosis of acute myeloid leukemia (AML) patients from bioinformatics database, thus providing an experimental basis for further exploration of a novel molecular marker for the prognosis of AML. MethodsThe prognostic data of 179 AML patients from The Cancer Genome Atlas (TCGA) database were examined for differential gene analysis and survival analysis. The bone marrow samples of 74 healthy individuals (HI) and 542 de novo AML patients in the dataset GSE13159 downloaded from the Gene Expression Omnibus (GEO) database were analyzed to detect the difference in the expression levels of differential target genes. Peripheral blood and bone marrow samples were collected from 18 de novo AML patients and 20 age- and gender-matched healthy controls, and real-time fluorescent quantitative PCR was used to validate the expression levels of the differential genes in the AML patients. ResultsBioinformatics data analysis showed that the optimal cut-off value of Homo sapiens NK2 homeobox 3 (NKX2-3) calculated by R language was 0.051. Survival analysis revealed a statistically poorer overall survival in de novo AML patients with high NKX2-3 expression than in those with low NKX2-3 expression (P = 0.0036). NKX2-3 was highly expressed in patients with de novo AML than in HI and the difference was statistically significant (P < 0.001). Real-time fluorescence quantitative PCR verified the expression levels of the NKX2-3 gene in AML patients and confirmed that compared with those in HI, in the de novo AML patients, NKX2-3-1 and NKX2-3-2 were highly expressed and were significantly correlated (P = 0.000, P = 0.000). ConclusionNKX2-3 is highly expressed in de novo AML patients, and the AML patients with high NKX2-3 expression have poor overal survival. NKX2-3 may be closely related to the clinical outcome and prognosis of AML. 
		                        		
		                        		
		                        		
		                        	
10.Associations of cardiac biomarkers with stroke severity and short-term outcome in patients with acute ischemic stroke
Chang HE ; Jie ZHAO ; Meng ZHANG ; Qing XU ; Yuru TANG ; Mengmeng QI ; Xiaoyan ZHU
International Journal of Cerebrovascular Diseases 2024;32(1):1-8
		                        		
		                        			
		                        			Objective:To investigate associations between cardiac biomarkers with stroke severity and short-term outcome in patients with acute ischemic stroke (AIS).Methods:Patients with AIS admitted to the Affiliated Hospital of Qingdao University from June 2018 to February 2024 whose etiological classification was large artery atherosclerosis (LAA), small vessel occlusion (SVO) or cardioembolism (CE) were included retrospectively. According to the National Institutes of Health Stroke Scale score at admission, patients were divided into mild stroke group (≤8) and moderate to severe stroke group (>8). According to the modified Rankin Scale score at discharge, patients were divided into good outcome group (≤2) and poor outcome group (>2). Multivariate logistic regression analysis was used to determine the independent correlation between cardiac biomarkers and short-term outcome. The predictive value of cardiac biomarkers for poor outcome in patients with AIS and different stroke etiology subtypes were evaluated using receiver operating characteristic (ROC) curves. Results:A total of 2 151 patients with AIS were enrolled, including 1 256 males (58.4%), aged 67.40±11.34 years. 1 079 patents were LAA type (50.2%), 679 were SVO type (31.6%), and 393 were CE type (18.3%); 1 223 were mild stroke (56.86%) and 928 (43.14%) were moderate to severe stroke; 1 357 patients (63.09%) had good short-term outcome, and 794 (36.91%) had poor short-term outcome. Multivariate logistic regression analysis showed that N-terminal pro-B type natriuretic peptide (NT-proBNP), NT-proBNP/creatine kinase (CK) isoenzyme MB (CK-MB) ratio, and CK-MB/CK ratio were independent risk factors for poor short-term outcome. ROC curve analysis shows that the CK-MB/CK ratio had a higher predictive value for short-term poor outcome in patients with AIS (the area under the curve, 0.859, 95% confidence interval 0.839-0.879). Various cardiac biomarkers had a higher predictive value for short-term outcome of CE type and LAA type, but the predictive value for short-term outcome of SVO type was lower. Conclusions:Cardiac biomarkers are associated with the severity and poor outcome of AIS. NT-proBNP/CK-MB and CK-MB/CK ratios have higher predictive value for short-term poor outcome of AIS, especially in patients with CE type.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail