1.Relationships Between Exercise Components and Social Anxiety Levels Among Chinese College Students
Qi CHENG ; Wenbing YU ; Mingxiao JU ; Duo YANG ; Jiannan FU ; Shilong SONG
Psychiatry Investigation 2025;22(2):196-203
		                        		
		                        			 Objective:
		                        			This study aimed to explore the relationships between various exercise components (frequency, intensity, duration) and social anxiety. 
		                        		
		                        			Methods:
		                        			A sample of 844 college students in China participated in this study. The Physical Activity Rating Scale-3 assessed participants’ daily physical activity. Social anxiety levels were measured using the Liebowitz Social Anxiety Scale. A questionnaire was developed to collect demographic information and examine the relationships between exercise components and social anxiety levels. 
		                        		
		                        			Results:
		                        			One-way analysis of variance revealed significant differences in social anxiety levels across varying physical activity intensities. Specifically, students engaging in high levels of physical activity exhibited the lowest social anxiety. Post hoc analyses identified that exercise frequency F3 (p<0.01), exercise duration D5 (p<0.01), and exercise intensity I3 (p<0.01) were significantly associated with the lowest social anxiety levels. Among these components, regression analysis indicated that exercise duration (p<0.01) had the most substantial impact on social anxiety levels, followed by exercise frequency (p<0.05). In contrast, exercise intensity (p>0.05) did not significantly affect social anxiety levels. 
		                        		
		                        			Conclusion
		                        			The most influential factors associated with decreased social anxiety were: 1) moderate to high exercise intensity, 2) exercise duration of at least one hour, and 3) exercise frequency of at least 1–2 times per week. Among these factors, exercise duration and frequency demonstrated significantly stronger associations with reduced social anxiety. Therefore, it is advisable to prioritize exercise duration and frequency in physical activity programs for college students to reduce social anxiety and achieve more substantial outcomes. 
		                        		
		                        		
		                        		
		                        	
2.Trend analysis of pulmonary tuberculosis incidence among the elderly in Shanghai, 2014‒2023
Yu HUANG ; Lixin RAO ; Biao XU ; Qi ZHAO ; Xin SHEN
Shanghai Journal of Preventive Medicine 2025;37(3):227-233
		                        		
		                        			
		                        			ObjectiveTo describe the epidemiological characteristics and trend of pulmonary tuberculosis among the elderly in Shanghai from 2014 to 2023, to estimate the incidence between 2024‒2025, so as to provide references for optimizing the prevention and control strategies of pulmonary tuberculosis for elderly in Shanghai. MethodsData of pulmonary tuberculosis patients aged ≥60 years in Shanghai registered in the Tuberculosis Registration and Management System of Chinese Center for Disease Control and Prevention from 2014 to 2023 was derived to describe the demographic characteristics of the elderly patients with pulmonary tuberculosis, and to calculate the reported incidence rate and annual percentage change (APC) of pulmonary tuberculosis. The autoregressive integrated moving average (ARIMA) model was constructed using monthly reported incidence data from January 2014 to June 2023, and data from July to December in 2023 were used to validate the model and predict the reported incidence rate of pulmonary tuberculosis among elderly in 2024 and 2025. ResultsA total of 19 208 elderly pulmonary tuberculosis patients were registered and reported in Shanghai from 2014 to 2023, with an average annual reported incidence rate of 35.04/100 000. The reported incidence rate of pulmonary tuberculosis in elderly showed an overall decreasing trend, APC=-3.34% (t=-3.360,P=0.010). While, the proportion of elderly pulmonary tuberculosis patients showed a yearly increasing trend among the total registered and reported cases, APC=5.65% (t=10.820, P<0.001). The difference in the average annual reported incidence rate of pulmonary tuberculosis in elderly was statistically significant in different regions (χ2=31.762, P=0.007), with the central urban areas(33.23/100 000) being lower than that in suburban areas (36.46/100 000), and the annual decreasing rate was faster in central urban area, APC=-4.88% (t=-4.838, P<0.001) and -2.76% (t=-2.811, P=0.023), respectively. The incidence rate was significantly higher in males than that in females (χ2=514.395, P<0.001). Additionally, the difference in reported incidence rate was statistically significant among different age groups(χ2=119.751,P<0.001), among which patients aged ≥80 years had the highest average annual incidence rate (59.69/100 000), and those aged ≤60 years had the lowest average annual incidence rate (28.57/100 000). Compared with the non-residential permanent elderly population (47.68/100 000), the average annual incidence rate of pulmonary tuberculosis among the elderly with household registration in Shanghai was lower (33.82/100 000) (χ2=24.295, P<0.001). The ARIMA (0,0,1) (0,1,1) 12 model was used to predict the incidence rate of pulmonary tuberculosis among the elderly in Shanghai in 2024 and 2025, and which was predicted to be 37.41/100 000 and 35.92/100 000, respectively. ConclusionThe reported incidence rate of pulmonary tuberculosis among the elderly in Shanghai showed an overall yearly downward trend from 2014 to 2023, but its proportion in the total number of reported pulmonary tuberculosis cases increased year by year. Prevention and control efforts should still not be slackened and emphasis should be placed on male, suburban and non-residential permanent elderly populations. 
		                        		
		                        		
		                        		
		                        	
3.The Mechanisms of Neurotransmitters and Their Receptors in Exercise Central Fatigue
Lu-Lu GUAN ; Bo-Te QI ; Du-Shuo FENG ; Jing-Wang TAN ; Meng CAO ; Yu ZOU
Progress in Biochemistry and Biophysics 2025;52(6):1321-1336
		                        		
		                        			
		                        			Exercise fatigue is a complex physiological and psychological phenomenon that includes peripheral fatigue in the muscles and central fatigue in the brain. Peripheral fatigue refers to the loss of force caused at the distal end of the neuromuscular junction, whereas central fatigue involves decreased motor output from the primary motor cortex, which is associated with modulations at anatomical sites proximal to nerves that innervate skeletal muscle. The central regulatory failure reflects a progressive decline in the central nervous system’s capacity to recruit motor units during sustained physical activity. Emerging evidence highlights the critical involvement of central neurochemical regulation in fatigue development, particularly through neurotransmitter-mediated modulation. Alterations in neurotransmitter release and receptor activity could influence excitatory and inhibitory signal pathways, thus modulating the perception of fatigue and exercise performance. Increased serotonin (5-HT) could increase perception of effort and lethargy, reduce motor drive to continue exercising, and contribute to exercise fatigue. Decreased dopamine (DA) and noradrenaline (NE) neurotransmission can negatively impact arousal, mood, motivation, and reward mechanisms and impair exercise performance. Furthermore, the serotonergic and dopaminergic systems interact with each other; a low 5-HT/DA ratio enhances motor motivation and improves performance, and a high 5-HT/DA ratio heightens fatigue perception and leads to decreased performance. The expression and activity of neurotransmitter receptors would be changed during prolonged exercise to fatigue, affecting the transmission of nerve signals. Prolonged high-intensity exercise causes excess 5-HT to overflow from the synaptic cleft to the axonal initial segment and activates the 5-HT1A receptor, thereby inhibiting the action potential of motor neurons and affecting the recruitment of motor units. During exercise to fatigue, the DA secretion is decreased, which blocks the binding of DA to D1 receptor in the caudate putamen and inhibits the activation of the direct pathway of the basal ganglia to suppress movement, meanwhile the binding of DA to D2 receptor is restrained in the caudate putamen, which activates the indirect pathway of the basal ganglia to influence motivation. Furthermore, other neurotransmitters and their receptors, such as adenosine (ADO), glutamic acid (Glu), and γ‑aminobutyric acid (GABA) also play important roles in regulating neurotransmitter balance and fatigue. The occurrence of central fatigue is not the result of the action of a single neurotransmitter system, but a comprehensive manifestation of the interaction between multiple neurotransmitters. This review explores the important role of neurotransmitters and their receptors in central motor fatigue, reveals the dynamic changes of different neurotransmitters such as 5-HT, DA, NE, and ADO during exercise, and summarizes the mechanisms by which these neurotransmitters and their receptors regulate fatigue perception and exercise performance through complex interactions. Besides, this study presents pharmacological evidence that drugs such as agonists, antagonists, and reuptake inhibitors could affect exercise performance by regulating the metabolic changes of neurotransmitters. Recently, emerging interventions such as dietary bioactive components intake and transcranial electrical stimulation may provide new ideas and strategies for the prevention and alleviation of exercise fatigue by regulating neurotransmitter levels and receptor activity. Overall, this work offers new theoretical insights into the understanding of exercise central fatigue, and future research should further investigate the relationship between neurotransmitters and their receptors and exercise fatigue. 
		                        		
		                        		
		                        		
		                        	
4.Isolation and Identification of Staphylococcus xylosus in Nude Mice with Squamous Skin Scurfs
Zhihao KONG ; Xiaofeng WEI ; Lingzhi YU ; Liping FENG ; Qi ZHU ; Guojun SHI ; Chen WANG
Laboratory Animal and Comparative Medicine 2025;45(3):368-375
		                        		
		                        			
		                        			Objective To isolate pathogenic bacteria from the skin of a nude mouse exhibiting squamous skin scurfs, and perform bacterial identification, traceability analysis, and pathogenicity studies to provide a new approach for the diagnosis of pathogens in nude mice with squamous skin scurfs. MethodsSkin swab samples were collected from a nude mouse exhibiting squamous skin scurfs for nucleic acid testing, bacterial isolation and culture, biochemical identification, 16S rDNA gene amplification and sequencing, and whole genome sequencing to construct a phylogenetic tree. Fifteen BALB/c nude mice were randomized into a saline-treated control group, a high-concentration group treated with 1.8×10⁸ CFU/mL of the isolated bacterial suspension, and a low-concentration group treated with 1.8×10⁷ CFU/mL of the isolated bacterial suspension. Pathogenicity was assessed by animal infection experiments and observation of histopathological changes in skin tissue using HE staining. Results The nucleic acid test for Corynebacterium bovis was negative, excluding infection by this organism. The pathogen isolated on mannitol salt agar and blood agar, combined with Gram staining, suggested a Gram-positive Staphylococcus species. The isolated strain was identified by 16S rDNA sequencing and a fully automated microbial identification system as Staphylococcus xylosus. Phylogenetic tree analysis based on whole genome sequencing showed that the strain was most closely related to an isolate from leafy vegetables in South Korea (GenBank GCA_00207825.1). In the high-concentration group, squamous skin scurfs appeared on the head, neck, and back of nude mice on the 17th day post-infection, while in the low concentration group, similar symptoms appeared on the 20th day post-infection and gradually spread to other areas. The scaling symptoms were transient, lasting for 7 days in the high-concentration group and 3 days in the low-concentration group, after which the skin returned to normal. The infection rate was 33.33% in both the high- and low-concentration groups. No significant pathological changes were observed in the skin tissues of infected mice compared to the control group, indicating marked individual differences in the pathogenicity of the strain in nude mice. Conclusion A strain of Staphylococcus xylosus was isolated from the skin of a nude mouse exhibiting squamous skin scurfs. The strain is an opportunistic pathogen that causes transient squamous skin scurfs without significant histopathological changes, and there are individual differences in the sensitivity of nude mice to this strain. These findings can provide valuable data for pathogen identification in immunodeficient or gene knockout mice. 
		                        		
		                        		
		                        		
		                        	
5.Isolation and Identification of Staphylococcus xylosus in Nude Mice with Squamous Skin Scurfs
Zhihao KONG ; Xiaofeng WEI ; Lingzhi YU ; Liping FENG ; Qi ZHU ; Guojun SHI ; Chen WANG
Laboratory Animal and Comparative Medicine 2025;45(3):368-375
		                        		
		                        			
		                        			Objective To isolate pathogenic bacteria from the skin of a nude mouse exhibiting squamous skin scurfs, and perform bacterial identification, traceability analysis, and pathogenicity studies to provide a new approach for the diagnosis of pathogens in nude mice with squamous skin scurfs. MethodsSkin swab samples were collected from a nude mouse exhibiting squamous skin scurfs for nucleic acid testing, bacterial isolation and culture, biochemical identification, 16S rDNA gene amplification and sequencing, and whole genome sequencing to construct a phylogenetic tree. Fifteen BALB/c nude mice were randomized into a saline-treated control group, a high-concentration group treated with 1.8×10⁸ CFU/mL of the isolated bacterial suspension, and a low-concentration group treated with 1.8×10⁷ CFU/mL of the isolated bacterial suspension. Pathogenicity was assessed by animal infection experiments and observation of histopathological changes in skin tissue using HE staining. Results The nucleic acid test for Corynebacterium bovis was negative, excluding infection by this organism. The pathogen isolated on mannitol salt agar and blood agar, combined with Gram staining, suggested a Gram-positive Staphylococcus species. The isolated strain was identified by 16S rDNA sequencing and a fully automated microbial identification system as Staphylococcus xylosus. Phylogenetic tree analysis based on whole genome sequencing showed that the strain was most closely related to an isolate from leafy vegetables in South Korea (GenBank GCA_00207825.1). In the high-concentration group, squamous skin scurfs appeared on the head, neck, and back of nude mice on the 17th day post-infection, while in the low concentration group, similar symptoms appeared on the 20th day post-infection and gradually spread to other areas. The scaling symptoms were transient, lasting for 7 days in the high-concentration group and 3 days in the low-concentration group, after which the skin returned to normal. The infection rate was 33.33% in both the high- and low-concentration groups. No significant pathological changes were observed in the skin tissues of infected mice compared to the control group, indicating marked individual differences in the pathogenicity of the strain in nude mice. Conclusion A strain of Staphylococcus xylosus was isolated from the skin of a nude mouse exhibiting squamous skin scurfs. The strain is an opportunistic pathogen that causes transient squamous skin scurfs without significant histopathological changes, and there are individual differences in the sensitivity of nude mice to this strain. These findings can provide valuable data for pathogen identification in immunodeficient or gene knockout mice. 
		                        		
		                        		
		                        		
		                        	
6.PES1 Repression Triggers Ribosomal Biogenesis Impairment and Cellular Senescence Through p53 Pathway Activation
Chang-Jian ZHANG ; Yu-Fang LI ; Feng-Yun WU ; Rui JIN ; Chang NIU ; Qi-Nong YE ; Long CHENG
Progress in Biochemistry and Biophysics 2025;52(7):1853-1865
		                        		
		                        			
		                        			ObjectiveThe nucleolar protein PES1 (Pescadillo homolog 1) plays critical roles in ribosome biogenesis and cell cycle regulation, yet its involvement in cellular senescence remains poorly understood. This study aimed to comprehensively investigate the functional consequences of PES1 suppression in cellular senescence and elucidate the molecular mechanisms underlying its regulatory role. MethodsInitially, we assessed PES1 expression patterns in two distinct senescence models: replicative senescent mouse embryonic fibroblasts (MEFs) and doxorubicin-induced senescent human hepatocellular carcinoma HepG2 cells. Subsequently, PES1 expression was specifically downregulated using siRNA-mediated knockdown in these cell lines as well as additional relevant cell types. Cellular proliferation and senescence were assessed by EdU incorporation and SA-β-gal staining assays, respectively. The expression of senescence-associated proteins (p53, p21, and Rb) and SASP factors (IL-6, IL-1β, and IL-8) were analyzed by Western blot or qPCR. Furthermore, Northern blot and immunofluorescence were employed to evaluate pre-rRNA processing and nucleolar morphology. ResultsPES1 expression was significantly downregulated in senescent MEFs and HepG2 cells. PES1 knockdown resulted in decreased EdU-positive cells and increased SA‑β‑gal-positive cells, indicating proliferation inhibition and senescence induction. Mechanistically, PES1 suppression activated the p53-p21 pathway without affecting Rb expression, while upregulating IL-6, IL-1β, and IL-8 production. Notably, PES1 depletion impaired pre-rRNA maturation and induced nucleolar stress, as evidenced by aberrant nucleolar morphology. ConclusionOur findings demonstrate that PES1 deficiency triggers nucleolar stress and promotes p53-dependent (but Rb-independent) cellular senescence, highlighting its crucial role in maintaining nucleolar homeostasis and regulating senescence-associated pathways. 
		                        		
		                        		
		                        		
		                        	
7.Effect of Scutellariae Radix Combined with EGFR-TKIs on Non-small Cell Lung Cancer
Yaya YU ; Chenjing LEI ; Zhenzhen XIAO ; Qi MO ; Changju MA ; Lina DING ; Yadong CHEN ; Yanjuan ZHU ; Haibo ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):106-115
		                        		
		                        			
		                        			ObjectiveTo investigate the effects of Scutellariae Radix combined with epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) on cell proliferation, apoptosis, cancer stem cell (CSC) marker expression, and metabolism in non-small cell lung cancer (NSCLC) cells. MethodsThe anti-tumor effects of Scutellariae Radix and EGFR-TKIs (gefitinib or osimertinib) in NSCLC cells were evaluated using the cell counting kit-8 (CCK-8) and Annexin V-FITC/propidium iodide (PI) double staining apoptosis assay. The activity of Scutellariae Radix and EGFR-TKIs in three-dimensional (3D) cultures of NSCLC cells was assessed using the CellTiter-Glo® 3D cell viability assay. The mRNA and protein expression levels of CSC markers, sex determining region y box protein 2 (SOX2) and aldehyde dehydrogenase 1 family member A1 (ALDH1A1), were detected by quantitative real-time polymerase chain reaction (Real-time PCR) and Western blot, respectively. Changes in intracellular reactive oxygen species (ROS) levels were detected by ROS staining, and the redox ratio was detected by femtosecond laser labeling free imaging (FLI). ResultsUnder both two-dimensional (2D) and 3D culture conditions, compared with the blank group and EGFR-TKI group, the combination group showed significantly reduced cell viability and increased apoptosis rate (P<0.05). Compared with the EGFR-TKI group, the mRNA and protein levels of CSC markers were significantly downregulated in the combination group (P<0.05). Additionally, the redox ratio was significantly elevated (P<0.05), and ROS levels were also increased in the combination group compared with the EGFR-TKI group. ConclusionIn NSCLC cells, Scutellariae Radix enhances the redox ratio and increases ROS levels, thereby inhibiting the expression of CSC markers and strengthening the anti-tumor effects of EGFR-TKIs. This provides a novel molecular mechanism by which Scutellariae Radix may enhance the sensitivity of targeted therapies. 
		                        		
		                        		
		                        		
		                        	
8.Preparation and characterization of RGD modified “core-shell”nanoparticles loaded with doxorubicin and study on their anti-tumor effects
Qingling LI ; Jinguang LIU ; Qi ZU ; Qinglong YU ; Shizhen SUN
China Pharmacy 2025;36(16):2017-2023
		                        		
		                        			
		                        			OBJECTIVE To prepare Arg-Gly-Asp(RGD)-modified doxorubicin (DOX)-loaded “core-shell” nanoparticles (RGD@DOX-LPNs), characterize the nanoparticles, and investigate their antitumor effects. METHODS RGD@DOX-LPNs were prepared using the nanoprecipitation method. Their morphology was examined by visual inspection and electron microscopy. Particle size, polydispersity index (PDI), and Zeta potential were determined, and differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were employed. Encapsulation efficiency (EE), drug loading (DL), and stability were evaluated. The in vitro release kinetics, mucus diffusion, and tumor cell uptake [tracked using coumarin 6 (COU)] were investigated. The in vivo tissue distribution and gastrointestinal retention [labeled with 11-chloro-1, 1′-dipropyl-3, 3, 3′, 3′-tetramethyl-10, 12- trimethyleneindotricarbocyanine iodide (IR780)] were investigated. Using 4T1 tumor-bearing mice as the experimental subjects, the effects of the prepared formulation on tumor volume, tumor weight, and cell apoptosis rate were evaluated. RESULTS RGD@DOX-LPNs presented as orange transparent liquid with uniform and near-spherical particles. The particle size was (159.67± 8.02) nm, PDI was 0.15±0.06, and Zeta potential was (-19.70±0.79) mV. After modification with RGD, the thermal absorption peak and crystalline diffraction peak of DOX disappeared. EE and DL of RGD@DOX-LPNs were (72.65±4.37)% and (4.62± 0.38)% , respectively. No obvious changes in appearance, particle size, or EE were observed after storage at 4 ℃ and 25 ℃ for 7 days. The cumulative drug release at 4 h was approximately 73%, which was lower than that of free DOX(almost completely released within 1 h). The amount of COU in the first segmental mucus layer of COU-LPNs was significantly lower than that in the corresponding segment of RGD@COU- LPNs, whereas it was significantly higher in the 2nd to 5th segmental mucus layers compared to RGD@COU-LPNs (P<0.01). Cellular uptake of RGD@COU-LPNs was significantly higher than that of COU-LPNs(P<0.05). The isolated tissue fluorescence intensity of RGD@IR780-LPNs was stronger than that of IR780-LPNs, indicating better small intestinal retention. Compared with free DOX and unmodified nanoparticles (DOX-LPNs), RGD@DOX-LPNs exhibited a higher tumor inhibition rate of 65.74%, significantly reduced tumor volume and weight, and increased apoptosis rate(P<0.01). CONCLUSIONS RGD@DOX-LPNs are successfully prepared with sustained release properties, which can improve gastrointestinal mucus retention, enhance cellular uptake of DOX, and have potent antitumor activity against breast cancer.
		                        		
		                        		
		                        		
		                        	
9.Data mining of current research status of clinical trial drug management in China by bibliometrics
Chang XU ; Xinna ZHOU ; Lu QI ; Yu WANG ; Xinghe WANG
Journal of Pharmaceutical Practice and Service 2025;43(8):404-409
		                        		
		                        			
		                        			Objective To clarify the current development status and research hotspots in the field of experimental drug management in China through data mining by bibliometric. Methods Key words such as “experiment”, “drug”, and “management” were used to search the Chinese literature in China National Knowledge Infrastructure (CNKI). The title, author name, author affiliation, Chinese abstract, Chinese keywords, publication period, journal name, and other content of the literature were extracted from the literature. Cluster analysis was performed by CNKI literature visualization analysis system, CiteSpace and other software, and a network knowledge map was drawn. Results The literature in the field of experimental drug management in China was first published in 1994, and a total of 140 articles were published until 2022. Among them, 20 articles were supported by relevant funds, and the keyword co-occurrence frequency was highest among “subjects”. The most frequently published medium was the Chinese Pharmacological Yearbook. Conclusion At present, the quantity and quality of literature in the field of experimental drug management in China were relatively small, and the cooperation and communication among authors were not close. The funding from various fund projects in this field was also lacking. These factors led to a lower overall development level and slower development speed in this field.
		                        		
		                        		
		                        		
		                        	
10.Analysis of The Characteristics of Brain Functional Activity in Gross Motor Tasks in Children With Autism Based on Functional Near-infrared Spectroscopy Technology
Wen-Hao ZONG ; Qi LIANG ; Shi-Yu YANG ; Feng-Jiao WANG ; Meng-Zhao WEI ; Hong LEI ; Gui-Jun DONG ; Ke-Feng LI
Progress in Biochemistry and Biophysics 2025;52(8):2146-2162
		                        		
		                        			
		                        			ObjectiveBased on functional near-infrared spectroscopy (fNIRS), we investigated the brain activity characteristics of gross motor tasks in children with autism spectrum disorder (ASD) and motor dysfunctions (MDs) to provide a theoretical basis for further understanding the mechanism of MDs in children with ASD and designing targeted intervention programs from a central perspective. MethodsAccording to the inclusion and exclusion criteria, 48 children with ASD accompanied by MDs were recruited into the ASD group and 40 children with typically developing (TD) into the TD group. The fNIRS device was used to collect the information of blood oxygen changes in the cortical motor-related brain regions during single-handed bag throwing and tiptoe walking, and the differences in brain activation and functional connectivity between the two groups of children were analyzed from the perspective of brain activation and functional connectivity. ResultsCompared to the TD group, in the object manipulative motor task (one-handed bag throwing), the ASD group showed significantly reduced activation in both left sensorimotor cortex (SMC) and right secondary visual cortex (V2) (P<0.05), whereas the right pre-motor and supplementary motor cortex (PMC&SMA) had significantly higher activation (P<0.01) and showed bilateral brain region activity; in terms of brain functional integration, there was a significant decrease in the strength of brain functional connectivity (P<0.05) and was mainly associated with dorsolateral prefrontal cortex (DLPFC) and V2. In the body stability motor task (tiptoe walking), the ASD group had significantly higher activation in motor-related brain regions such as the DLPFC, SMC, and PMC&SMA (P<0.05) and showed bilateral brain region activity; in terms of brain functional integration, the ASD group had lower strength of brain functional connectivity (P<0.05) and was mainly associated with PMC&SMA and V2. ConclusionChildren with ASD exhibit abnormal brain functional activity characteristics specific to different gross motor tasks in object manipulative and body stability, reflecting insufficient or excessive compensatory activation of local brain regions and impaired cross-regions integration, which may be a potential reason for the poorer gross motor performance of children with ASD, and meanwhile provides data support for further unraveling the mechanisms underlying the occurrence of MDs in the context of ASD and designing targeted intervention programs from a central perspective. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail