1.Clinical Characteristics and Survival Analysis of Carbapenem-Resistant Pseudomonas Aeruginosa Colonized or Infected Patients with Hematological Disorders.
Ying-Ying SHEN ; Yue-Chao ZHAO ; Bo WANG ; Di-Jiong WU ; Qiu-Shuang LI ; Yi-Ping SHEN ; Jian-Ping SHEN ; Jun-Min CAO ; Sheng-Yun LIN ; Bao-Dong YE
Journal of Experimental Hematology 2023;31(4):1192-1198
OBJECTIVE:
To observe the clinical characteristics and impact on mortality of carbapenem-resistant Pseudomonas aeruginosa (CRPA) colonized or infected patients with hematological disorders in order to provide evidence for the prevention and treatment of CRPA.
METHODS:
The patients who were colonized or infected with CRPA in the Department of Hematology of The First Affiliated Hospital of Zhejiang Chinese Medical University from January 2020 to March 2021 were selected as the research subjects, the clinical data such as hospitalization time, primary disease treatment regimen, granulocyte count, previous infection and antibiotic regimen of these patients were analyzed, meanwhile, antibiotic regimen and efficacy during CRPA infection, 30-day and long-term survival were also analyzed.
RESULTS:
A total of 59 patients were included in this study, and divided into CRPA infection group (43 cases) and CRPA colonization group (16 cases). Univariate logistic regression analysis showed that ECOG score (P =0.003), agranulocytosis (P <0.001), and exposure to upper than 3rd generations of cephalosporins and tigecycline within 30 days (P =0.035, P =0.017) were the high-risk factors for CRPA infection. Multivariate logistic regression analysis showed that ECOG score of 3/4 ( OR=10.815, 95%CI: 1.260-92.820, P =0.030) and agranulocytosis ( OR=13.82, 95%CI: 2.243-85.176, P =0.005) were independent risk factors for CRPA infection. There was a statistically significant difference in cumulative survival rate between CRPA colonization group and CRPA infection group ( χ2=14.134, P < 0.001). Kaplan-Meier survival analysis showed that the influencing factors of 30-day survival in patients with CRPA infection were agranulocytosis (P =0.022), soft tissue infection (P =0.03), and time of hospitalization before CRPA infection (P =0.041). Cox regression analysis showed that agranulocytosis was an independent risk factor affecting 30-day survival of patients with CRPA infection (HR=3.229, 95%CI :1.093-3.548, P =0.034).
CONCLUSIONS
Patients with hematological disorders have high mortality and poor prognosis after CRPA infection. Bloodstream infection and soft tissue infection are the main causes of death. Patients with high suspicion of CRPA infection and high-risk should be treated as soon as possible.
Humans
;
Carbapenems/therapeutic use*
;
Pseudomonas aeruginosa
;
Soft Tissue Infections/drug therapy*
;
Anti-Bacterial Agents/therapeutic use*
;
Hematologic Diseases
;
Survival Analysis
2.Pseudomonas aeruginosa-induced mitochondrial dysfunction inhibits proinflammatory cytokine secretion and enhances cytotoxicity in mouse macrophages in a reactive oxygen species (ROS)-dependent way.
Haitao YANG ; Yan WANG ; Hui FAN ; Feixue LIU ; Huimiao FENG ; Xueqing LI ; Mingyi CHU ; Enzhuang PAN ; Daoyang TENG ; Huizhen CHEN ; Jingquan DONG
Journal of Zhejiang University. Science. B 2023;24(11):1027-1036
随着铜绿假单胞菌(铜绿)的耐药性逐年增强,铜绿感染已经成为公共医疗卫生的重点关注问题。线粒体自噬及其介导的线粒体功能障碍在多种细菌感染中已被报道,但线粒体功能障碍在宿主调控铜绿感染中的作用尚不明确。因此,本研究建立铜绿刺激小鼠巨噬细胞感染模型和小鼠急性铜绿感染模型,探讨铜绿是否通过诱导线粒体自噬改变线粒体功能,进而影响宿主免疫炎症反应和细胞毒性,并通过监测生存率和肺组织病理学变化进一步确定线粒体自噬在小鼠铜绿体内感染模型中的作用。结果表明,铜绿引起小鼠腹腔巨噬细胞线粒体功能障碍,并通过线粒体自噬途径清除铜绿刺激引起的活性氧(ROS)累积,从而抑制铜绿引起的促炎性细胞因子分泌并增强细胞毒性。体内实验进一步确认线粒体自噬在铜绿体内感染中的作用。
Mice
;
Animals
;
Reactive Oxygen Species/metabolism*
;
Pseudomonas aeruginosa
;
Macrophages/metabolism*
;
Mitochondria
;
Cytokines/metabolism*
3.Distribution and Drug Sensitivity Analysis of Pathogenic Bacteria Isolated from Patients in Hematology Department.
Li QIAN ; Wen-Ying XIA ; Fang NI ; Xiao-Hui ZHANG
Journal of Experimental Hematology 2023;31(2):568-574
OBJECTIVE:
To investigate the distribution and drug sensitivity of pathogenic bacteria isolated from patients in hematology department, in order to provide evidence for rational use of antibiotics in clinic.
METHODS:
The distribution of pathogenic bacteria and drug sensitivity data of patients in the hematology department of The First Affiliated Hospital of Nanjing Medical University from 2015 to 2020 were retrospectively analyzed, and the pathogens isolated from different specimen types were compared.
RESULTS:
A total of 2 029 strains of pathogenic bacteria were isolated from 1 501 patients in the hematology department from 2015 to 2020, and 62.2% of which were Gram-negative bacilli, mainly Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Acinetobacter baumannii. Gram-positive coccus accounted for 18.8%, mainly Coagulase-negative staphylococcus (CoNS) and Staphylococcus aureus. Fungi (17.4%) were mainly candida. The 2 029 strains were mainly isolated from respiratory tract (35.1%), blood (31.8%) and urine (19.2%) specimens. Gram-negative bacilli were the main pathogenic bacteria in different specimen types (>60%). K. pneumoniae, S. maltophilia and A. baumannii were the most common pathogens in respiratory specimens, E. coli, CoNS, K. pneumoniae and P. aeruginosa were common in blood samples, and E. coli and Enterococcus were most common in urine samples. Enterobacteriaceae had the highest susceptibility to amikacin and carbapenems (>90.0%), followed by piperacillin/tazobactam. P. aeruginosa strains had high sensitivity to antibiotics except aztreonam (<50.0%). The susceptibility of A. baumannii to multiple antibiotics was less than 70.0%. The antimicrobial resistance rates of E. coli and K. pneumoniae in respiratory tract specimens were higher than those in blood specimens and urine specimens.
CONCLUSION
Gram-negative bacilli are the main pathogenic bacteria isolated from patients in hematology department. The distribution of pathogens is different in different types of specimens, and the sensitivity of each strain to antibiotics is different. The rational use of antibiotics should be based on different parts of infection to prevent the occurrence of drug resistance.
Humans
;
Escherichia coli
;
Retrospective Studies
;
Bacteria
;
Anti-Bacterial Agents/therapeutic use*
;
Gram-Negative Bacteria
;
Drug Resistance
;
Pseudomonas aeruginosa
;
Hematology
4.Evaluation of anti-quorum sensing potential of Averrhoa bilimbi (Kamias) against Pseudomonas aeruginosa ATCC 27853.
Mark Gabriel M. Delos Santos ; Joanna J. Orejola
Philippine Journal of Health Research and Development 2023;27(1):45-53
BACKGROUND AND OBJECTIVE:
Many opportunistic and nosocomial pathogens like Pseudomonas aeruginosa are
very reliant on a bacterium-to-bacterium communication system called quorum sensing (QS). Without the
aforementioned process, gene expressions associated with virulence factors will not be produced. In this study,
the sub-inhibitory concentrations (sub-MICs) of methanolic leaf extract and obtained fractions from Averrhoa
bilimbi (kamias) were screened for ability to inhibit quorum sensing-controlled phenotypes of P. aeruginosa
ATCC 27853.
METHODOLOGY:
A. bilimbi crude extract was fractionated through liquid-liquid extraction, producing four (4)
fractions: hexane fraction, dichloromethane (DCM) fraction, ethyl acetate (EtOAc) fraction, and water (H2O)
fraction. Among the sub-MICs obtained from resazurin-based fluorimetric microtiter assay, only 50 μg/mL was
utilized in evaluating the anti-QS properties of crude extract and fr
RESULTS:
In the swarming motility assay, hexane fraction (9.39 mm ± 0.67) and DCM fraction (10.82 mm ± 0.95)
displayed restriction in the treated P. aeruginosa ATCC 27853 swarms against the control (16.20 mm ± 2.55). In
the anti-pyocyanin production assay, hexane fraction exhibited an inhibition of 42.66 % ± 12.94. TLC analysis
and phytochemical screening revealed that hexane fraction contains steroids, terpenes, triterpenes, and
glycolipids; and DCM fraction contains cardiac glycosides, triterpenoids, terpenes, triterpenes, steroids,
alkaloids, and glycolipids.
CONCLUSION
Hexane and DCM fractions obtained from A. bilimbi significantly inhibited swarming of P.
aeruginosa ATCC 27853 while none of the extracts were able to significantly inhibit pyocyanin formation of P.
aeruginosa ATCC 27853.
Pseudomonas aeruginosa
;
Averrhoa bilimbi
;
quorum sensing
;
pyocyanin
5.A case of green nail syndrome secondary to P. aeruginosa and C. parapsilosis treated with topical nadifloxacin and oral fluconazole in a 31-year-old Filipino female
Angeli Elaine A. Pangilinan, MD ; Nicole R. Rivera, MD ; Leilani R. Senador, MD, FPDS
Journal of the Philippine Dermatological Society 2023;32(1):27-30
Introduction:
Pseudomonas aeruginosa is an opportunistic, gram-negative bacillus that can contaminate skin or open wounds to
cause skin infections that are historically difficult to manage. The pathogenesis of green nail syndrome (GNS) begins with hyperhydration (occlusion, sweating, maceration) or destruction (microtrauma, dermatitis) of the epidermis thus disrupting the physical barrier,
leading to the colonization and proliferation of P. aeruginosa. This case explores the off-label use of nadifloxacin, a fluoroquinolone approved for acne and bacterial skin infections in some countries, to treat a case of GNS.
Case Report:
This is a case of a 31-year-old Filipino female who presented with a four-month history of green discoloration of the lateral
portion of the right thumbnail with a medical history of antiphospholipid antibody syndrome and rheumatoid arthritis. Clinical examination showed a dystrophic thumbnail with greenish discoloration, erythema and swelling around the base of the cuticle, and distal
onycholysis. Laboratory findings revealed co-infection of P. aeruginosa and Candida parapsilosis. The patient was effectively treated with
topical nadifloxacin and oral fluconazole.
Conclusion
This case highlights the possibility of fungal and polymicrobial infections in GNS and suggests a novel, easy-to-use, and
cost-effective alternative treatment to GNS secondary to P. aeruginosa in the form of topical nadifloxacin.
Candida parapsilosis
;
Pseudomonas aeruginosa
;
Onychomycosis
6.Constructions and advances of animal models of Pseudomonas aeruginosa infection.
Yan Ying REN ; Ying LIU ; Bing FEI ; Meng Yu GUO ; Xin Wei LIU ; Dong Mei LIU ; Yong Wei LI
Chinese Journal of Preventive Medicine 2023;57(6):929-934
Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogenic bacterium with complex pathogenesis and drug resistance mechanisms. It has high morbidity and mortality and can cause acute and chronic infections in immunocompromised individuals, with lung infections, wound infections, and bloodstream infections being the most common. The animal infection model of P. aeruginosa is of great value for in-depth research on the pathogenicity, drug resistance, and therapeutic measures of P. aeruginosa by simulating the pathways of human bacterial infections. This article firstly summarizes the selection, anesthesia, and disposal of experimental animals in the construction of animal models of P. aeruginosa infection, and then reviews the methods of construction, model evaluation, and applications of animal models of P. aeruginosa pulmonary infection, wound infection, and bloodstream infection, in order to provide a reference for scientific research related to P. aeruginosa infectious diseases.
Humans
;
Animals
;
Pseudomonas Infections/microbiology*
;
Models, Animal
;
Virulence
;
Pseudomonas aeruginosa
;
Disease Models, Animal
7.Functional synergism of pyoverdine and the S-type pyocins of Pseudomonas aeruginosa.
Chinese Journal of Biotechnology 2023;39(4):1562-1577
Pyocin S2 and S4 in Pseudomonas aeruginosa use the same uptake channels as the pyoverdine does in bacteria, indicating a possible connection between them. In this study, we characterized the single bacterial gene expression distribution of three S-type pyocins (Pys2, PA3866, and PyoS5) and examined the impact of pyocin S2 on bacterial uptake of pyoverdine. The findings demonstrated that the expression of the S-type pyocin genes was highly differentiated in bacterial population under DNAdamage stress. Moreover, exogenous addition of pyocin S2 reduces the bacterial uptake of pyoverdine so that the presence of pyocin S2 prevents the uptake of environmental pyoverdine by non-pyoverdine synthesizing 'cheaters', thereby reducing their resistance to oxidative stress. Furthermore, we discovered that overexpression of the SOS response regulator PrtN in bacteria significantly decreased the expression of genes involved in the synthesis of pyoverdine, significantly decreasing the overall synthesis and exocytosis of pyoverdine. These findings imply a connection between the function of the iron absorption system and the SOS stress response mechanism in bacteria.
Pyocins/metabolism*
;
Pseudomonas aeruginosa/metabolism*
8.Development and application of a rapid gene manipulating toolbox for Pseudomonas aeruginosa.
Feixuan LI ; Lei NI ; Fan JIN
Chinese Journal of Biotechnology 2023;39(4):1789-1803
Manipulation of genes, including knock-out or knock-in, replacement of gene elements (such as promoters), fusion with a fluorescent protein gene, and construction of in situ gene reporter, is required in most of the biotechnological laboratories. The widely used gene manipulating methods based on two-step allelic exchange are cumbersome in terms of constructing plasmids, transforming and screening. In addition, the efficiency of using this method for long fragment knockout is low. To simplify the process of gene manipulation, we constructed a minimized integrative vector pln2. When a gene needs to be inactivated, an internal fragment of the target gene (non-frameshift) is cloned into the pln2 plasmid. Once the single-crossover recombination between genome and the constructed plasmid occurs, the endogenous gene is segmented by the plasmid backbone and thus inactivated. We developed a toolbox based on pln2 that can be used for different genomic operation mentioned above. With the help of this toolbox, we successfully knocked out large fragments of 20-270 kb.
Genetic Vectors/genetics*
;
Pseudomonas aeruginosa/genetics*
;
Plasmids/genetics*
;
Promoter Regions, Genetic
;
Genome
9.Characterization and application of several lysis cassettes.
Chinese Journal of Biotechnology 2023;39(3):1142-1162
Lysis is a common functional module in synthetic biology and is widely used in genetic circuit design. Lysis could be achieved by inducing expression of lysis cassettes originated from phages. However, detailed characterization of lysis cassettes hasn't been reported yet. Here, we first adopted arabinose- and rhamnose-inducible systems to develop inducible expression of five lysis cassettes (S105, A52G, C51S S76C, LKD, LUZ) in Escherichia coli Top10. By measuring OD600, we characterized the lysis behavior of strains harboring different lysis cassettes. These strains were harvested at different growth stages, induced with different concentrations of chemical inducers, or contained plasmids with different copy numbers. We found that although all five lysis cassettes could induce bacterial lysis in Top10, lysis behaviors differed a lot at various conditions. We further found that due to the difference in background expression levels between strain Top10 and Pseudomonas aeruginosa PAO1, it was hard to construct inducible lysis systems in strain PAO1. The lysis cassette controlled by rhamnose-inducible system was finally inserted into the chromosome of strain PAO1 to construct lysis strains after careful screen. The results indicated that LUZ and LKD were more effective in strain PAO1 than S105, A52G and C51S S76C. At last, we constructed an engineered bacteria Q16 using an optogenetic module BphS and the lysis cassette LUZ. The engineered strain was capable of adhering to target surface and achieving light-induced lysis by tuning the strength of ribosome binding sites (RBSs), showing great potential in surface modification.
Rhamnose/pharmacology*
;
Plasmids/genetics*
;
Pseudomonas aeruginosa
;
Escherichia coli/metabolism*
10.Molecular epidemiology and antibiotic resistance of Pseudomonas aeruginosa isolated from blood in a hospital in Shandong Province from 2014 to 2021.
Jia Zheng WANG ; Xiu Tao DONG ; Xiao Ning ZHANG ; Piao DENG ; Fang CHENG ; Wan Shan MA
Chinese Journal of Preventive Medicine 2023;57(10):1558-1564
Objective: To identify the antibiotic resistance, virulence genes, and sequence types of Pseudomonas aeruginosa (P. aeruginosa) strains isolated from blood. Methods: From November 2014 to December 2021, a total of 94 nonrepetitive P. aeruginosa isolates were obtained from blood samples of patients at the First Affiliated Hospital of Shandong First Medical University in Shandong Province, China. The bacteria were identified using matrix-assisted laser desorption ionization time of flight mass spectrometry. Antibiotic resistance of the P. aeruginosa isolates was detected using Vitek 2 Compact system. Polymerase chain reaction (PCR) was conducted for the 18 virulence genes, and multi locus sequence typing (MLST) was performed to identify the sequence types of the P. aeruginosa strains. The resistance rates and distributions of virulence genes between carbapenem resistant pseudomonas aeruginosa (CRPA) and carbapenem susceptible pseudomonas aeruginosa (CSPA) isolates were compared using the Chi-square test. Results: Among 94 P. aeruginosa isolates, 19 (20.2%) isolates were found to be multidrug resistant (MDR) bacteria, of which 17 were CRPA isolates and 2 were CSPA isolates. All strains contained more than 10 virulence genes. Except for exoU gene, the detection rate of other genes was above 83%. MLST analysis revealed a total of 66 different STs, including 59 existing STs and 7 novel STs. Among them, ST244 (n=11, 11.7%) and ST270 (n=7, 7.4%) were the dominant STs. Although these two types of isolates harbored the same virulence genes, the resistance rates to carbapenem were different. 54.5% (6/11) ST244 isolates were CRPA but all 7 ST270 isolates were CSPA. Conclusion: Although the resistance rates of P. aeruginosa strains isolated from blood were at a low level, some MDR and CRPA isolates were detected. As the high virulence gene detection rates and genetic diversity were found for P. aeruginosa strains isolated from blood, close attention should be paid to avoid transmission and outbreaks.
Humans
;
Pseudomonas aeruginosa/genetics*
;
Multilocus Sequence Typing
;
Molecular Epidemiology
;
Pseudomonas Infections/microbiology*
;
Microbial Sensitivity Tests
;
Hospitals
;
Carbapenems/pharmacology*
;
Drug Resistance, Multiple, Bacterial/genetics*
;
Anti-Bacterial Agents/pharmacology*
;
beta-Lactamases


Result Analysis
Print
Save
E-mail