1.Impact of Folic Acid on the Resistance of Non-small Cell Lung Cancer Cells to Osimertinib by Regulating Methylation of DUSP1.
Chinese Journal of Lung Cancer 2024;26(12):881-888
BACKGROUND:
Drug resistance is the main cause of high mortality of lung cancer. This study was conducted to investigate the effect of folic acid (FA) on the resistance of non-small cell lung cancer (NSCLC) cells to Osimertinib (OSM) by regulating the methylation of dual specificity phosphatase 1 (DUSP1).
METHODS:
The OSM resistant NSCLC cell line PC9R was establishd by gradually escalation of OSM concentration in PC9 cells. PC9R cells were randomly grouped into Control group, OSM group (5 μmol/L OSM), FA group (600 nmol/L FA), methylation inhibitor decitabine (DAC) group (10 μmol/L DAC), FA+OSM group (600 nmol/L FA+5 μmol/L OSM), and FA+OSM+DAC group (600 nmol/L FA+5 μmol/L OSM+10 μmol/L DAC). CCK-8 method was applied to detect cell proliferation ability. Scratch test was applied to test the ability of cell migration. Transwell assay was applied to detect cell invasion ability. Flow cytometry was applied to measure and analyze the apoptosis rate of cells in each group. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) method was applied to detect the expression level of DUSP1 mRNA in cells. Methylation specific PCR (MSP) was applied to detect the methylation status of the DUSP1 promoter region in each group. Western blot was applied to analyze the expression levels of DUSP1 protein and key proteins in the DUSP1 downstream mitogen-activated protein kinase (MAPK) signaling pathway in each group.
RESULTS:
Compared with the Control group, the cell OD450 values (48 h, 72 h), scratch healing rate, number of cell invasions, and expression of DUSP1 in the OSM group were obviously decreased (P<0.05); the apoptosis rate, the methylation level of DUSP1, the expression of p38 MAPK protein, and the phosphorylation level of extracellular regulated protein kinases (ERK) were obviously increased (P<0.05); the cell OD450 values (48, 72 h), scratch healing rate, number of cell invasions, and expression of DUSP1 in the DAC group were obviously increased (P<0.05); the apoptosis rate, the expression of p38 MAPK protein, the phosphorylation level of ERK, and the methylation level of DUSP1 were obviously reduced (P<0.05). Compared with the OSM group, the cell OD450 values (48, 72 h), scratch healing rate, number of cell invasions, and expression of DUSP1 in the FA+OSM group were obviously decreased (P<0.05); the apoptosis rate, the methylation level of DUSP1, the expression of p38 MAPK protein, and the phosphorylation level of ERK were obviously increased (P<0.05). Compared with the FA+OSM group, the cell OD450 values (48, 72 h), scratch healing rate, number of cell invasions, and expression of DUSP1 in the FA+OSM+DAC group were obviously increased; the apoptosis rate, the methylation level of DUSP1, the expression of p38 MAPK protein, and the phosphorylation level of ERK were obviously reduced (P<0.05).
CONCLUSIONS
FA may inhibit DUSP1 expression by enhancing DUSP1 methylation, regulate downstream MAPK signal pathway, then promote apoptosis, inhibit cell invasion and metastasis, and ultimately reduce OSM resistance in NSCLC cells.
Humans
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
Lung Neoplasms/genetics*
;
Dual Specificity Phosphatase 1/pharmacology*
;
Cell Proliferation
;
p38 Mitogen-Activated Protein Kinases/pharmacology*
;
Methylation
;
Apoptosis
;
Cell Line, Tumor
2.Expression, purification, and characterization of the histidine kinase CarS from Fusobacterium nucleatum.
Zhuting LI ; Xian SHI ; Ruochen FAN ; Lulu WANG ; Tingting BU ; Wei ZHENG ; Xuqiang ZHANG ; Chunshan QUAN
Chinese Journal of Biotechnology 2023;39(4):1596-1608
Fusobacterium nucleatum is an opportunistic pathogenic bacterium that can be enriched in colorectal cancer tissues, affecting multiple stages of colorectal cancer development. The two-component system plays an important role in the regulation and expression of genes related to pathogenic resistance and pathogenicity. In this paper, we focused on the CarRS two-component system of F. nucleatum, and the histidine kinase protein CarS was recombinantly expressed and characterized. Several online software such as SMART, CCTOP and AlphaFold2 were used to predict the secondary and tertiary structure of the CarS protein. The results showed that CarS is a membrane protein with two transmembrane helices and contains 9 α-helices and 12 β-folds. CarS protein is composed of two domains, one is the N-terminal transmembrane domain (amino acids 1-170), the other is the C-terminal intracellular domain. The latter is composed of a signal receiving domain (histidine kinases, adenylyl cyclases, methyl-accepting proteins, prokaryotic signaling proteins, HAMP), a phosphate receptor domain (histidine kinase domain, HisKA), and a histidine kinase catalytic domain (histidine kinase-like ATPase catalytic domain, HATPase_c). Since the full-length CarS protein could not be expressed in host cells, a fusion expression vector pET-28a(+)-MBP-TEV-CarScyto was constructed based on the characteristics of secondary and tertiary structures, and overexpressed in Escherichia coli BL21-Codonplus(DE3)RIL. CarScyto-MBP protein was purified by affinity chromatography, ion-exchange chromatography, and gel filtration chromatography with a final concentration of 20 mg/ml. CarScyto-MBP protein showed both protein kinase and phosphotransferase activities, and the MBP tag had no effect on the function of CarScyto protein. The above results provide a basis for in-depth analysis of the biological function of the CarRS two-component system in F. nucleatum.
Humans
;
Histidine Kinase/metabolism*
;
Fusobacterium nucleatum/metabolism*
;
Automobiles
;
Protein Kinases/genetics*
;
Escherichia coli/metabolism*
;
Colorectal Neoplasms
3.Decursin affects proliferation, apoptosis, and migration of colorectal cancer cells through PI3K/Akt signaling pathway.
Yi YANG ; Yan-E HU ; Mao-Yuan ZHAO ; Yi-Fang JIANG ; Xi FU ; Feng-Ming YOU
China Journal of Chinese Materia Medica 2023;48(9):2334-2342
We investigated the effects of decursin on the proliferation, apoptosis, and migration of colorectal cancer HT29 and HCT116 cells through the phosphatidylinositol 3-kinase(PI3K)/serine-threonine kinase(Akt) pathway. Decursin(10, 30, 60, and 90 μmol·L~(-1)) was used to treat HT29 and HCT116 cells. The survival, colony formation ability, proliferation, apoptosis, wound hea-ling area, and migration of the HT29 and HCT116 cells exposed to decursin were examined by cell counting kit-8(CCK8), cloning formation experiments, Ki67 immunofluorescence staining, flow cytometry, wound healing assay, and Transwell assay, respectively. Western blot was employed to determine the expression levels of epithelial cadherin(E-cadherin), neural cadherin(N-cadherin), vimentin, B-cell lymphoma/leukemia-2(Bcl-2), Bcl-2-associated X protein(Bax), tumor suppressor protein p53, PI3K, and Akt. Compared with the control group, decursin significantly inhibited the proliferation and colony number and promoted the apoptosis of HT29 and HCT116 cells, and it significantly down-regulated the expression of Bcl-2 and up-regulated the expression of Bax. Decursin inhibited the wound healing and migration of the cells, significantly down-regulated the expression of N-cadherin and vimentin, and up-regulated the expression of E-cadherin. In addition, it significantly down-regulated the expression of PI3K and Akt and up-regulated that of p53. In summary, decursin may regulate epithelial-mesenchymal transition(EMT) via the PI3K/Akt signaling pathway, thereby affecting the proliferation, apoptosis, and migration of colorectal cancer cells.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
bcl-2-Associated X Protein
;
Vimentin/metabolism*
;
Cell Proliferation
;
Signal Transduction
;
Apoptosis
;
Cell Line, Tumor
;
Colorectal Neoplasms/genetics*
;
Cadherins/genetics*
;
Cell Movement
4.Difference of lipid-lowering efficacy of "Xinjianqu" before and after fermentation and its mechanism based on LKB1-AMPK pathway and 16S rDNA sequencing technology.
De-Hua LI ; Rui-Sheng WANG ; Zhen-Ling ZHANG ; Jian-Guang ZHU ; Meng-Mei SUN ; Jia QIAO
China Journal of Chinese Materia Medica 2023;48(8):2146-2159
On the basis of establishing the prescription of Xinjianqu and clarifying the increase of the lipid-lowering active ingredients of Xinjianqu by fermentation, this paper further compared the differences in the lipid-lowering effects of Xinjianqu before and after fermentation, and studied the mechanism of Xinjianqu in the treatment of hyperlipidemia. Seventy SD rats were randomly divided into seven groups, including normal group, model group, positive drug simvastatin group(0.02 g·kg~(-1)), and low-dose and high-dose Xinjianqu groups before and after fermentation(1.6 g·kg~(-1) and 8 g·kg~(-1)), with ten rats in each group. Rats in each group were given high-fat diet continuously for six weeks to establish the model of hyperlipidemia(HLP). After successful modeling, the rats were given high-fat diet and gavaged by the corresponding drugs for six weeks, once a day, to compare the effects of Xinjianqu on the body mass, liver coefficient, and small intestine propulsion rate of rats with HLP before and after fermentation. The effects of Xinjianqu before and after fermentation on total cholesterol(TC), triacylglyceride(TG), high-density lipoprotein cholesterol(HDL-C), low-density lipoprotein cholesterol(LDL-C), alanine aminotransferase(ALT), aspartate aminotransferase(AST), blood urea nitrogen(BUN), creatinine(Cr), motilin(MTL), gastrin(GAS), and the Na~+-K~+-ATPase levels were determined by enzyme-linked immunosorbent assay(ELISA). The effects of Xinjianqu on liver morphology of rats with HLP were investigated by hematoxylin-eosin(HE) staining and oil red O fat staining. The effects of Xinjianqu on the protein expression of adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK), phosphorylated AMPK(p-AMPK), liver kinase B1(LKB1), and 3-hydroxy-3-methylglutarate monoacyl coenzyme A reductase(HMGCR) in liver tissues were investigated by immunohistochemistry. The effects of Xinjianqu on the regulation of intestinal flora structure of rats with HLP were studied based on 16S rDNA high-throughput sequencing technology. The results showed that compared with those in the normal group, rats in the model group had significantly higher body mass and liver coefficient(P<0.01), significantly lower small intestine propulsion rate(P<0.01), significantly higher serum levels of TC, TG, LDL-C, ALT, AST, BUN, Cr, and AQP2(P<0.01), and significantly lower serum levels of HDL-C, MTL, GAS, Na~+-K~+-ATP levels(P<0.01). The protein expression of AMPK, p-AMPK, and LKB1 in the livers of rats in the model group was significantly decreased(P<0.01), and that of HMGCR was significantly increased(P<0.01). In addition, the observed_otus, Shannon, and Chao1 indices were significantly decreased(P<0.05 or P<0.01) in rat fecal flora in the model group. Besides, in the model group, the relative abundance of Firmicutes was reduced, while that of Verrucomicrobia and Proteobacteria was increased, and the relative abundance of beneficial genera such as Ligilactobacillus and Lachnospiraceae_NK4A136_group was reduced. Compared with the model group, all Xinjianqu groups regulated the body mass, liver coefficient, and small intestine index of rats with HLP(P<0.05 or P<0.01), reduced the serum levels of TC, TG, LDL-C, ALT, AST, BUN, Cr, and AQP2, increased the serum levels of HDL-C, MTL, GAS, and Na~+-K~+-ATP, improved the liver morphology, and increased the protein expression gray value of AMPK, p-AMPK, and LKB1 in the liver of rats with HLP and decreased that of LKB1. Xinjianqu groups could regulate the intestinal flora structure of rats with HLP, increased observed_otus, Shannon, Chao1 indices, and increased the relative abundance of Firmicutes, Ligilactobacillus(genus), Lachnospiraceae_NK4A136_group(genus). Besides, the high-dose Xinjianqu-fermented group had significant effects on body mass, liver coefficient, small intestine propulsion rate, and serum index levels of rats with HLP(P<0.01), and the effects were better than those of Xinjianqu groups before fermentation. The above results show that Xinjianqu can improve the blood lipid level, liver and kidney function, and gastrointestinal motility of rats with HLP, and the improvement effect of Xinjianqu on hyperlipidemia is significantly enhanced by fermentation. The mechanism may be related to AMPK, p-AMPK, LKB1, and HMGCR protein in the LKB1-AMPK pathway and the regulation of intestinal flora structure.
Rats
;
Animals
;
AMP-Activated Protein Kinases/metabolism*
;
Rats, Sprague-Dawley
;
Cholesterol, LDL
;
Fermentation
;
Aquaporin 2/metabolism*
;
Lipid Metabolism
;
Liver
;
Lipids
;
Hyperlipidemias/genetics*
;
Adenosine Triphosphate/pharmacology*
;
Diet, High-Fat/adverse effects*
5.Alcohol extract of root and root bark of Toddalia asiatica alleviates CIA in rats through anti-inflammatory and proapoptotic effects.
Zong-Xing ZHANG ; Lu JIANG ; Dao-Zhong LIU ; Bo-Nan TAO ; Zi-Ming HOU ; Meng-Jie TIAN ; Jia FENG ; Lin YUAN
China Journal of Chinese Materia Medica 2023;48(8):2203-2211
This study aims to investigate the therapeutic effect of alcohol extract of root and root bark of Toddalia asiatica(TAAE) on collagen-induced arthritis(CIA) in rats through phosphatidylinoinosidine-3 kinase/protein kinase B(PI3K/Akt) signaling pathway. To be specific, CIA was induced in rats, and then the rats were treated(oral, daily) with TAAE and Tripterygium Glycoside Tablets(TGT), respectively. The swelling degree of the hind leg joints was scored weekly. After 35 days of administration, the histopathological changes were observed based on hematoxylin and eosin(HE) staining. Enzyme-linked immunosorbent assay(ELISA) was employed to detect the levels of cytokines [tumor necrosis factor-α(TNF-α), interleukin(IL)-6)]. Terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL) staining was performed to detect the apoptosis of synoviocytes in rats. Western blot was used to detect the expression levels of apoptosis-related proteins B-cell lymphoma 2(Bcl-2)-associated X(Bax), Bcl-2, and caspase-3 and pathway-related proteins phosphoinositide 3-kinase(PI3K), phosphorylated(p)-PI3K, protein kinase B(Akt), and p-Akt. RT-qPCR was conducted to examine the mRNA levels of Bax, Bcl-2, caspase-3, TNF-α, IL-6, and IL-1β and pathway-related proteins PI3K, p-PI3K, Akt, and p-Akt. TAAE can alleviate the joint swelling in CIA rats, reduce serum levels of inflammatory cytokines, improve synovial histopathological changes, promote apoptosis of synoviocytes, and inhibit synovial inflammation. In addition, RT-qPCR and Western blot results showed that TAAE up-regulated the level of Bax, down-regulated the level of Bcl-2, and activated caspase-3 to promote apoptosis in synoviocytes. TAAE effectively down-regulated the protein levels of p-PI3K and p-Akt. In this study, TAAE shows therapeutic effect on CIA in rats and reduces the inflammation. The mechanism is that it suppresses PI3K/Akt signaling pathway and promotes synoviocyte apoptosis. Overall, this study provides a new clue for the research on the anti-inflammatory mechanism of TAAE and lays a theoretical basis for the better clinical application of TAAE in the treatment of inflammatory and autoimmune diseases.
Rats
;
Animals
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Caspase 3/genetics*
;
Tumor Necrosis Factor-alpha/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
Plant Bark
;
Anti-Inflammatory Agents/therapeutic use*
;
Arthritis, Experimental/chemically induced*
;
Inflammation/drug therapy*
;
Cytokines/metabolism*
;
Proto-Oncogene Proteins c-bcl-2
;
Apoptosis
6.Lianmei Qiwu Decoction relieves diabetic cardiac autonomic neuropathy by regulating AMPK/TrkA/TRPM7 signaling pathway.
Xue-Mei SUN ; Hai-Gang JI ; Xin GAO ; Xin-Dong WANG
China Journal of Chinese Materia Medica 2023;48(7):1739-1750
This study investigated the effect of Lianmei Qiwu Decoction(LMQWD) on the improvement of cardiac autonomic nerve remodeling in the diabetic rat model induced by the high-fat diet and explored the underlying mechanism of LMQWD through the AMP-activated protein kinase(AMPK)/tropomyosin receptor kinase A(TrkA)/transient receptor potential melastatin 7(TRPM7) signaling pathway. The diabetic rats were randomly divided into a model group, an LMQWD group, an AMPK agonist group, an unloaded TRPM7 adenovirus group(TRPM7-N), an overexpressed TRPM7 adenovirus group(TRPM7), an LMQWD + unloaded TRPM7 adenovirus group(LMQWD+TRPM7-N), an LMQWD + overexpressed TRPM7 adenovirus group(LMQWD+TRPM7), and a TRPM7 channel inhibitor group(TRPM7 inhibitor). After four weeks of treatment, programmed electrical stimulation(PES) was employed to detect the arrhythmia susceptibility of rats. The myocardial cell structure and myocardial tissue fibrosis of myocardial and ganglion samples in diabetic rats were observed by hematoxylin-eosin(HE) staining and Masson staining. The immunohistochemistry, immunofluorescence, real-time quantitative polymerase chain reaction(RT-PCR), and Western blot were adopted to detect the distribution and expression of TRPM7, tyrosine hydroxylase(TH), choline acetyltransferase(ChAT), growth associated protein-43(GAP-43), nerve growth factor(NGF), p-AMPK/AMPK, and other genes and related neural markers. The results showed that LMQWD could significantly reduce the arrhythmia susceptibility and the degree of fibrosis in myocardial tissues, decrease the levels of TH, ChAT, and GAP-43 in the myocardium and ganglion, increase NGF, inhibit the expression of TRPM7, and up-regulate p-AMPK/AMPK and p-TrkA/TrkA levels. This study indicated that LMQWD could attenuate cardiac autonomic nerve remodeling in the diabetic state, and its mechanism was associated with the activation of AMPK, further phosphorylation of TrkA, and inhibition of TRPM7 expression.
Rats
;
Animals
;
AMP-Activated Protein Kinases/metabolism*
;
Nerve Growth Factor/metabolism*
;
Diabetes Mellitus, Experimental/drug therapy*
;
TRPM Cation Channels/metabolism*
;
GAP-43 Protein/metabolism*
;
Signal Transduction
;
Diabetic Neuropathies/genetics*
;
Fibrosis
7.Punicalagin inhibits hepatic lipid deposition in obese mice via AMPK/ACC pathway.
Re-Na JIENSI ; Zhan-Ying CHANG ; Ruo-Hui NIU ; Xiao-Li GAO
China Journal of Chinese Materia Medica 2023;48(7):1751-1759
Hepatic lipid deposition is one of the basic manifestations of obesity, and nowadays pharmacological treatment is the most important tool. Punicalagin(PU), a polyphenol derived from pomegranate peel, is a potential anti-obesity substance. In this study, 60 C57BL/6J mice were randomly divided into a normal group and a model group. After establishing a model of simple obesity with a high-fat diet for 12 weeks, the successfully established rat models of obesity were then regrouped into a model group, an orlistat group, a PU low-dose group, a PU medium-dose group, and a PU high-dose group. The normal group was kept on routine diet and other groups continued to feed the high-fat diet. The body weight and food intake were measured and recorded weekly. After 8 weeks, the levels of the four lipids in the serum of each group of mice were determined by an automatic biochemical instrument. Oral glucose tole-rance and intraperitoneal insulin sensitivity were tested. Hemoxylin-eosin(HE) staining was applied to observe the hepatic and adipose tissues. The mRNA expression levels of peroxisome proliferators-activated receptor γ(PPARγ) and C/EBPα were determined by real-time quantitative polymerase chain reaction(Q-PCR), and the mRNA and protein expression levels of adenosine 5'-monophosphate-activated protein kinase(AMPK), anterior cingulate cortex(ACC), and carnitine palmitoyltransferase 1A(CPT1A) were determined by Western blot. Finally, the body mass, Lee's index, serum total glyceride(TG), serum total cholesterol(TC), and low-density lipoprotein cholesterol(LDL-C) levels were significantly higher and high-density lipoprotein cholesterol(HDL-C) levels were significantly lower in the model group as compared with the normal group. The fat deposition in the liver was significantly increased. The mRNA expression levels of hepatic PPARγ and C/EBPα and the protein expression level of ACC were increased, while the mRNA and protein expression levels of CPT-1α(CPT1A) and AMPK were decreased. After PU treatment, the above indexes of obese mice were reversed. In conclusion, PU can decrease the body weight of obese mice and control their food intake. It also plays a role in the regulation of lipid metabolism and glycometabolism metabolism, which can significantly improve hepatic fat deposition. Mechanistically, PU may regulate liver lipid deposition in obese mice by down-regulating lipid synthesis and up-regulating lipolysis through activation of the AMPK/ACC pathway.
Rats
;
Mice
;
Animals
;
Mice, Obese
;
AMP-Activated Protein Kinases/metabolism*
;
PPAR gamma/metabolism*
;
Mice, Inbred C57BL
;
Liver/metabolism*
;
Obesity/genetics*
;
Body Weight
;
Lipid Metabolism
;
Diet, High-Fat/adverse effects*
;
Lipids
;
Cholesterol
8.Effect and mechanism of Dahuang Zhechong Pills in improving liver aging in rats by regulating ROS-mediated PI3K/Akt/FoxO4 signaling pathway.
Yan FU ; Wei WU ; Yi-Gang WAN ; Hai-Ming YANG ; Yue TU ; Si-Yi LIU ; Qi-Jun FANG ; Ying-Lu LIU ; Mei-Zi WANG ; Huang HUANG
China Journal of Chinese Materia Medica 2023;48(11):3014-3021
Recent studies have shown that the occurrence and development of common liver diseases, including non-alcoholic fatty liver disease, cirrhosis, and liver cancer, are related to liver aging(LA). Therefore, to explore the effect and mechanism of Dahuang Zhechong Pills(DHZCP), a traditional classic prescription in improving LA with multiple targets, the present study randomly divided 24 rats into a normal group, a model group, a DHZCP group, and a vitamin E(VE) group, with six rats in each group. The LA model was induced by continuous intraperitoneal injection of D-galactose(D-gal) in rats. For the LA model rats, the general situation was evaluated by aging phenotype and body weight(BW). LA was assessed by the pathological characteristics of hepatocyte senescence, hepatic function indexes, the staining characteristics of phosphorylated histone family 2A variant(γ-H2AX), and the expression levels of cell cycle arrest proteins(P21, P53, P16) and senescence-associated secretory phenotype(SASP) in the liver. The activation of the reactive oxygen species(ROS)-mediated phosphatidylinositol-3 kinase(PI3K)/protein kinase B(Akt)/forkhead box protein O4(FoxO4) signaling pathway was estimated by hepatic ROS expression feature and the protein expression levels of the key signaling molecules in the PI3K/Akt/FoxO4 signaling pathway. The results showed that after the treatment with DHZCP or VE for 12 weeks, for the DHZCP and VE groups, the characterized aging phenotype, BW, pathological characteristics of hepatocyte senescence, hepatic function indexes, relative expression of ROS in the liver, protein expression levels of key signaling molecules including p-PI3K, p-Akt, and FoxO4 in the liver, staining characteristics of γ-H2AX, and the protein expression levels of P16, P21, P53, interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α) in the liver were improved, and the effects of DHZCP and VE were similar. Based on the D-gal-induced LA model in rats, this study demonstrates that DHZCP can ameliorate LA with multiple targets in vivo, and its effects and mechanism are related to regulating the activation of the ROS-mediated PI3K/Akt/FoxO4 signaling pathway in the liver. These findings are expected to provide new pharmacological evidence for the treatment of DHZCP in aging-related liver diseases.
Animals
;
Rats
;
Proto-Oncogene Proteins c-akt/genetics*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Reactive Oxygen Species
;
Tumor Suppressor Protein p53/genetics*
;
Signal Transduction
;
Liver
;
Aging
;
Cell Cycle Proteins
;
Interleukin-6
9.Role of podocyte injury signaling pathway in steroid-resistant nephrotic syndrome and research progress in traditional Chinese medicine intervention.
Wen-Xia YU ; Wen YAN ; En-Lai DAI ; Wen-Xuan TIAN ; Wen-Jing DANG
China Journal of Chinese Materia Medica 2023;48(12):3246-3254
As one of the main diseases leading to end-stage renal disease, steroid-resistant nephrotic syndrome(SRNS) can cause serious complications such as infection. Without effective control, this disease can further lead to the malignant development of the renal function, bringing serious social and economic burdens. As previously reported, the formation of SRNS is mostly related to the podocyte injury in the body, i.e., the injury of glomerular visceral epithelial cells. Phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt) signaling pathway, nuclear transcription factor-κB(NF-κB) signaling pathway, mammalian target of rapamycin(mTOR)/adenosine monophosphate(AMP)-activated protein kinase(AMPK), transforming growth factor(TGF)-β1/Smads, and other signaling pathways are classical signaling pathways related to podocyte injury. By regulating the expression of signaling pathways, podocyte injury can be intervened to improve the adhesion between podocyte foot processes and glomerular basement membrane and promote the function of podocytes, thereby alleviating the clinical symptoms of SRNS. Through the literature review, traditional Chinese medicine(TCM) has unique advantages and an important role in intervening in podocyte injury. In the intervention in podocyte injury, TCM, by virtue of multi-target and multi-pathway role, can regulate and intervene in podocyte injury in many ways, alleviate the clinical symptoms of SRNS, and interfere with the progress of SRNS, reflecting the unique advantages of TCM. On the other hand, TCM can directly or indirectly inhibit podocyte injury by regulating the above signaling pathways, which can not only promote the effect of hormones and immunosuppressants and shorten the course of treatment, but also reduce the toxic and side effects caused by various hormones and immunosuppressants to exert the advantages of small side effects and low price of TCM. This article reviewed TCM in the treatment of SRNS by interfering with podocyte injury-related signaling pathways and is expected to provide a reference for the in-depth study of TCM in the treatment of SRNS, as well as a theoretical basis and a new direction for the clinical application of TCM to shorten the course of treatment of SRNS and delay the progression to end-stage renal disease.
Humans
;
Podocytes
;
Nephrotic Syndrome/genetics*
;
Medicine, Chinese Traditional
;
Phosphatidylinositol 3-Kinases/genetics*
;
Signal Transduction
;
NF-kappa B
;
AMP-Activated Protein Kinases
;
Hormones
10.Hypoglycemic effect of electroacupuncture at "Tianshu" (ST 25) combined with metformin on rats with type 2 diabetes mellitus based on AMPK.
Xue-Ting SHEN ; Shuang-Shuang ZHANG ; Xiao-Yan CHEN ; Zhi YU ; Bin XU
Chinese Acupuncture & Moxibustion 2023;43(1):53-59
OBJECTIVE:
To observe the hypoglycemic effect of electroacupuncture (EA) at "Tianshu" (ST 25) combined with metformin on rats with type 2 diabetes mellitus (T2DM) as well as its effect on expression of adenosine monophosphate activated protein kinase (AMPK) in liver and pancreas.
METHODS:
Thirty-six male SD rats were randomly divided into a blank group (6 rats) and a model establishing group (30 rats). The rats in the model establishing group were fed with high-fat diet and treated with intraperitoneal injection of low-dose streptozotocin (STZ) to establish T2DM model. The rats with successful model establishment were randomly divided into a model group, a control group, a metformin group, an EA group and a combination group, 6 rats in each group. The rats in the EA group were treated with EA at "Tianshu" (ST 25), dense-disperse wave, 2 Hz/15 Hz in frequency and 2 mA in current intensity, 20 min each time. The rats in the metformin group were treated with intragastric administration of metformin (190 mg/kg) dissolved in 0.9% sodium chloride solution (2 mL/kg). The rats in the combination group were treated with EA at "Tianshu" (ST 25) and intragastric administration of metformin. The rats in the control group were treated with intragastric administration of 0.9% sodium chloride solution with the same dose. All the treatments were given once a day for 5 weeks. After the intervention, the body mass and random blood glucose were detected; the serum insulin level was detected by ELISA; the expression of AMPK and phosphorylated adenosine monophosphate activated protein kinase (p-AMPK) in liver and pancreas was detected by Western blot method; the expression of protein gene product 9.5 (PGP9.5) was detected by immunofluorescence.
RESULTS:
①Compared with the blank group, the body mass in the model group was decreased (P<0.05); compared with the model group, the body mass in the EA group and the combination group was decreased (P<0.05); the body mass in the EA group and the combination group was lower than the metformin group (P<0.05). Compared with the blank group, the random blood glucose in the model group was increased (P<0.01); compared with the model group, the random blood glucose in the metformin group, the EA group and the combination group was decreased (P<0.01). The random blood glucose in the combination group was lower than the metformin group and the EA group (P<0.05). ②Compared with the blank group, the insulin level in the model group was decreased (P<0.05); compared with the model group, the insulin level in the metformin group, the EA group and the combination group was all increased (P<0.05). The insulin level in the combination group was higher than the metformin group and the EA group (P<0.05). ③Compared with the blank group, the protein expression of AMPK and p-AMPK in liver tissue was decreased (P<0.05), and the protein expression of AMPK and p-AMPK in pancreatic tissue was increased (P<0.05) in the model group. Compared with the model group, the protein expression of AMPK and p-AMPK in liver tissue in the metformin group, the EA group and the combination group was increased (P<0.05, P<0.01); the protein expression of AMPK in pancreatic tissue in the metformin group was increased (P<0.05); the protein expression of AMPK in pancreatic tissue in the EA group and the combination group was decreased (P<0.05); the protein expression of p-AMPK in pancreatic tissue in the metformin group, the EA group and the combination group was decreased (P<0.05). The protein expression of AMPK and p-AMPK in liver tissue in the combination group was higher than that in the metformin group and the EA group (P<0.05); the protein expression of AMPK in pancreatic tissue in the EA group and the combination group was less than that in the metformin group (P<0.05), and the expression of p-AMPK protein in pancreatic tissue in the combination group was less than that in the metformin group and the EA group (P<0.05). ④Compared with the blank group, the expression of PGP9.5 in pancreatic tissue in the model group was increased (P<0.01); compared with the model group, the expression of PGP9.5 in pancreatic tissue in the metformin group, the EA group and the combination group was decreased (P<0.05, P<0.01). The expression of PGP9.5 in pancreatic tissue in the EA group was lower than the metformin group and the combination group (P<0.05).
CONCLUSION
Electroacupuncture at "Tianshu" (ST 25) could promote the effect of metformin on activating AMPK in liver tissue of T2DM rats, improve the negative effect of metformin on AMPK in pancreatic tissue, and enhance the hypoglycemic effect of metformin. The mechanism may be related to the inhibition of pancreatic intrinsic nervous system.
Animals
;
Male
;
Rats
;
Acupuncture Points
;
AMP-Activated Protein Kinases/genetics*
;
Blood Glucose
;
Diabetes Mellitus, Type 2/drug therapy*
;
Electroacupuncture
;
Hypoglycemic Agents
;
Insulins
;
Metformin
;
Rats, Sprague-Dawley

Result Analysis
Print
Save
E-mail