1.Dahuang Zhechong Pills delay heart aging by reducing cardiomyocyte apoptosis via PI3K/AKT/HIF-1α signaling pathway.
Wen-Jie LIU ; Yue TU ; Wei-Ming HE ; Si-Yi LIU ; Liu-Yun-Xin PAN ; Kai-Zhi WEN ; Cheng-Juan LI ; Chao HAN
China Journal of Chinese Materia Medica 2025;50(5):1276-1285
This study aimed to investigate the effect of Dahuang Zhechong Pills(DHZCP) in delaying heart aging(HA) and explore the potential mechanism. Network pharmacology and molecular docking were employed to explore the targets and potential mechanisms of DHZCP in delaying HA. Furthermore, in vitro experiments were conducted with the DHZCP-containing serum to verify key targets and pathways in D-galactose(D-gal)-induced aging of cardiomyocytes. Active components of DHZCP were searched against the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCSMP), and relevant targets were predicted. HA-related targets were screened from the GeneCards, Online Mendelian Inheritance in Man(OMIM), and DisGeNET. The common targets shared by the active components of DHZCP and HA were used to construct a protein-protein interaction network in STRING 12.0, and core targets were screened based on degree in Cytoscape 3.9.1. Metaspace was used for Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses of the core targets to predict the mechanisms. Molecular docking was performed in AutoDock Vina. The results indicated that a total of 774 targets of the active components of DHZCP and 4 520 targets related to HA were screened out, including 510 common targets. Core targets included B-cell lymphoma 2(BCL-2), serine/threonine kinase 1(AKT1), and hypoxia-inducible factor 1 subunit A(HIF1A). The GO and KEGG enrichment analyses suggested that DHZCP mainly exerted its effects via the phosphatidylinositol 3-kinase(PI3K)/AKT signaling pathway, HIF-1α signaling pathway, longevity signaling pathway, and apoptosis signaling pathway. Among the pathways predicted by GO and KEGG enrichment analyses, the PI3K/AKT/HIF-1α signaling pathway was selected for verification. The cell-counting kit 8(CCK-8) assay showed that D-gal significantly inhibited the proliferation of H9c2 cells, while DHZCP-containing serum increased the viability of H9c2 cells. SA-β-gal staining revealed a significant increase in the number of blue-green positive cells in the D-gal group, which was reduced by DHZCP-containing serum. TUNEL staining showed that DHZCP-containing serum decreased the number of apoptotic cells. After treatment with DHZCP-containing serum, the protein levels of Klotho, BCL-2, p-PI3K/PI3K, p-AKT1/AKT1, and HIF-1α were up-regulated, while those of P21, P16, BCL-2 associated X protein(Bax), and cleaved caspase-3 were down-regulated. The results indicated that DHZCP delayed HA via multiple components, targets, and pathways. Specifically, DHZCP may delay HA by reducing apoptosis via activating the PI3K/AKT/HIF-1α signaling pathway.
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Signal Transduction/drug effects*
;
Apoptosis/drug effects*
;
Myocytes, Cardiac/cytology*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Animals
;
Rats
;
Humans
;
Molecular Docking Simulation
;
Aging/metabolism*
;
Protein Interaction Maps/drug effects*
;
Heart/drug effects*
;
Network Pharmacology
2.Effect and mechanism of salt-processed Phellodendri Chinensis Cortex in improving insulin resistance based on network pharmacology and experimental verification.
Jin-Jie LEI ; Yang-Miao XIA ; Shang-Ling ZHAO ; Rui TAN ; Ling-Ying YU ; Zhi-Min CHEN
China Journal of Chinese Materia Medica 2025;50(9):2373-2381
This study explores the therapeutic differences and mechanisms of salt-processed Phellodendri Chinensis Cortex in improving insulin resistance(IR) based on network pharmacology, molecular docking, and cellular experiments. The components and intersection targets of Phellodendri Chinensis Cortex in improving IR were collected from databases, and a "drug-component-target-disease" network and protein-protein interaction(PPI) network were constructed to screen core components and targets. A total of 29 active components and 240 intersection targets were identified, of which 13 were core targets. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses were used to identify key signaling pathways, and molecular docking was performed to validate the binding activity between core components and targets. An IR model in HepG2 cells was induced using insulin combined with high glucose, and the effects of Phellodendri Chinensis Cortex before and after salt-processing on cell glucose consumption were evaluated. The expression of proteins related to the mitogen-activated protein kinase(MAPK) and phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT) signaling pathways was detected by Western blot. The cellular experimental results showed that, compared with the model group, glucose consumption in the drug-treated groups was significantly increased(P<0.01), the phosphorylation level of extracellular regulated protein kinase(ERK) was decreased(P<0.05), the phosphorylation levels of PI3K and AKT were increased, and the expression of glucose transporter 4(GLUT4) was also upregulated(P<0.05). Furthermore, the effect of salt-processed Phellodendri Chinensis Cortex was better than that of raw Phellodendri Chinensis Cortex. The study demonstrates that Phellodendri Chinensis Cortex, both before and after salt-processing, improves IR by regulating the expression of related proteins in the MAPK and PI3K-AKT signaling pathways, with enhanced effects after salt-processing.
Humans
;
Network Pharmacology
;
Phellodendron/chemistry*
;
Insulin Resistance
;
Drugs, Chinese Herbal/chemistry*
;
Hep G2 Cells
;
Signal Transduction/drug effects*
;
Molecular Docking Simulation
;
Protein Interaction Maps/drug effects*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Glucose/metabolism*
3.Study on mechanism of naringin in alleviating cerebral ischemia/reperfusion injury based on DRP1/LRRK2/MCU axis.
Kai-Mei TAN ; Hong-Yu ZENG ; Feng QIU ; Yun XIANG ; Zi-Yang ZHOU ; Da-Hua WU ; Chang LEI ; Hong-Qing ZHAO ; Yu-Hong WANG ; Xiu-Li ZHANG
China Journal of Chinese Materia Medica 2025;50(9):2484-2494
This study aims to investigate the molecular mechanism by which naringin alleviates cerebral ischemia/reperfusion(CI/R) injury through DRP1/LRRK2/MCU signaling axis. A total of 60 SD rats were randomly divided into the sham group, the model group, the sodium Danshensu group, and low-, medium-, and high-dose(50, 100, and 200 mg·kg~(-1)) naringin groups, with 10 rats in each group. Except for the sham group, a transient middle cerebral artery occlusion/reperfusion(tMCAO/R) model was established in SD rats using the suture method. Longa 5-point scale was used to assess neurological deficits. 2,3,5-Triphenyl tetrazolium chloride(TTC) staining was used to detect the volume percentage of cerebral infarction in rats. Hematoxylin-eosin(HE) staining and Nissl staining were employed to assess neuronal structural alterations and the number of Nissl bodies in cortex, respectively. Western blot was used to determine the protein expression levels of B-cell lymphoma-2 gene(Bcl-2), Bcl-2-associated X protein(Bax), cleaved cysteine-aspartate protease-3(cleaved caspase-3), mitochondrial calcium uniporter(MCU), microtubule-associated protein 1 light chain 3(LC3), and P62. Mitochondrial structure and autophagy in cortical neurons were observed by transmission electron microscopy. Immunofluorescence assay was used to quantify the fluorescence intensities of MCU and mitochondrial calcium ion, as well as the co-localization of dynamin-related protein 1(DRP1) with leucine-rich repeat kinase 2(LRRK2) and translocase of outer mitochondrial membrane 20(TOMM20) with LC3 in cortical mitochondria. The results showed that compared with the model group, naringin significantly decreased the volume percentage of cerebral infarction and neurological deficit score in tMCAO/R rats, alleviated the structural damage and Nissl body loss of cortical neurons in tMCAO/R rats, inhibited autophagosomes in cortical neurons, and increased the average diameter of cortical mitochondria. The Western blot results showed that compared to the sham group, the model group exhibited increased levels of cleaved caspase-3, Bax, MCU, and the LC3Ⅱ/LC3Ⅰ ratio in the cortex and reduced protein levels of Bcl-2 and P62. However, naringin down-regulated the protein expression of cleaved caspase-3, Bax, MCU and the ratio of LC3Ⅱ/LC3Ⅰ ratio and up-regulated the expression of Bcl-2 and P62 proteins in cortical area. In addition, immunofluorescence analysis showed that compared with the model group, naringin and positive drug treatments significantly decreased the fluorescence intensities of MCU and mitochondrial calcium ion. Meanwhile, the co-localization of DRP1 with LRRK2 and TOMM20 with LC3 in cortical mitochondria was also decreased significantly after the intervention. These findings suggest that naringin can alleviate cortical neuronal damage in tMCAO/R rats by inhibiting DRP1/LRRK2/MCU-mediated mitochondrial fragmentation and the resultant excessive mitophagy.
Animals
;
Rats, Sprague-Dawley
;
Reperfusion Injury/genetics*
;
Flavanones/administration & dosage*
;
Rats
;
Dynamins/genetics*
;
Male
;
Brain Ischemia/genetics*
;
Protein Serine-Threonine Kinases/genetics*
;
Signal Transduction/drug effects*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
4.Mechanism of Xiangsha Liujunzi Decoction in improving autophagy in interstitial cells of Cajal of rats with functional dyspepsia by regulation of IRE1/ASK1/JNK pathway.
Ming-Kai LYU ; Yong-Qiang DUAN ; Jin JIN ; Wen-Chao SHAO ; Qi WU ; Yong TIAN ; Min BAI ; Ying-Xia CHENG
China Journal of Chinese Materia Medica 2025;50(8):2237-2244
This study explored the mechanism of Xiangsha Liujunzi Decoction(XSLJZD) in the treatment of functional dyspepsia(FD) based on inositol-requiring enzyme 1(IRE1)/apoptosis signal-regulating kinase 1(ASK1)/c-Jun N-terminal kinase(JNK) pathway-mediated autophagy in interstitial cells of Cajal(ICC). Forty-eight SPF-grade male SD suckling rats were randomly divided into a blank group and a modeling group, and the integrated modeling method(iodoacetamide gavage + disturbance of hunger and satiety + swimming exhaustion) was used to replicate the FD rat model. After the model replications were successfully completed, the rats were divided into a model group, high-dose, medium-dose, and low-dose groups of XSLJZD(12, 6, and 3 g·kg~(-1)·d~(-1)), and a positive drug group(mosapride of 1.35 mg·kg~(-1)·d~(-1)), and the intervention lasted for 14 days. The gastric emptying rate and intestinal propulsion rate of rats in each group were measured. The histopathological changes in the gastric sinus tissue of rats in each group were observed by hematoxylin-eosin(HE) staining. The ultrastructure of ICC was observed by transmission electron microscopy. The immunofluorescence double staining technique was used to detect the protein expression of phospho-IRE1(p-IRE1), TNF receptor associated factors 2(TRAF2), phospho-ASK1(p-ASK1), phospho-JNK(p-JNK), p62, and Beclin1 in ICC of gastric sinus tissue of rats in each group. Western blot was used to detect the related protein expression of gastric sinus tissue of rats in each group. Compared with those in the blank group, the rats in the model group showed decreased body weight, gastric emptying rate, and intestinal propulsion rate, and transmission electron microscopy revealed damage to the endoplasmic reticulum structure and increased autophagosomes in ICC. Immunofluorescence staining revealed that the ICC of gastric sinus tissue showed a significant elevation of p-IRE1, TRAF2, p-ASK1, p-JNK, and Beclin1 proteins and a significant reduction of p62 protein. Western blot revealed that the expression levels of relevant proteins in gastric sinus tissue were consistent with those of proteins in ICC. Compared with the model group, the body weight of rats in the high-dose and medium-dose groups of XSLJZD was increased, and the gastric emptying rate and intestinal propulsion rate were increased. Transmission electron microscopy observed amelioration of structural damage to the endoplasmic reticulum of ICC and reduction of autophagosomes, and the p-IRE1, TRAF2, p-ASK1, p-JNK, and Beclin1 proteins in the ICC of gastric sinus tissue were significantly decreased. The p62 protein was significantly increased. Western blot revealed that the expression levels of relevant proteins in gastric sinus tissue were consistent with those of proteins in ICC. XSLJZD can effectively treat FD, and its specific mechanism may be related to the inhibition of the expression of molecules related to the endoplasmic reticulum stress IRE1/ASK1/JNK pathway in ICC and the improvement of autophagy to promote gastric motility in ICC.
Animals
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Autophagy/drug effects*
;
Rats
;
Rats, Sprague-Dawley
;
Interstitial Cells of Cajal/metabolism*
;
Dyspepsia/physiopathology*
;
Protein Serine-Threonine Kinases/genetics*
;
MAP Kinase Kinase Kinase 5/genetics*
;
MAP Kinase Signaling System/drug effects*
;
Humans
;
Endoribonucleases/genetics*
;
Multienzyme Complexes
5.Mechanism of Jiming Powder in improving mitophagy for treatment of myocardial infarction based on PINK1-Parkin pathway.
Xin-Yi FAN ; Xiao-Qi WEI ; Wang-Jing CHAI ; Kuo GAO ; Fang-He LI ; Xue YU ; Shu-Zhen GUO
China Journal of Chinese Materia Medica 2025;50(12):3346-3355
In the present study, a mouse model of coronary artery ligation was employed to evaluate the effects of Jiming Powder on mitophagy in the mouse model of myocardial infarction and elucidate its underlying mechanisms. A mouse model of myocardial infarction post heart failure was constructed by ligating the left anterior descending branch of the coronary artery. The therapeutic efficacy of Jiming Powder was assessed from multiple perspectives, including ultrasonographic imaging, hematoxylin-eosin(HE) staining, Masson staining, and serum cardiac enzyme profiling. Dihydroethidium(DHE) staining was employed to evaluate the oxidative stress levels in the hearts of mice from each group. Mitophagy levels were assessed by scanning electron microscopy and immunofluorescence co-localization. Western blot was employed to determine the levels of key proteins involved in mitophagy, including Bcl-2-interacting protein beclin 1(BECN1), sequestosome 1(SQSTM1), microtubule-associated protein 1 light chain 3 beta(LC3B), PTEN-induced putative kinase 1(PINK1), phospho-Parkinson disease protein(p-Parkin), and Parkinson disease protein(Parkin). The results demonstrated that compared with the model group, high and low doses of Jiming Powder significantly reduced the left ventricular internal diameter in systole(LVIDs) and left ventricular internal diameter in diastole(LVIDd) and markedly improved the left ventricular ejection fraction(LVEF) and left ventricular fractional shortening(LVFS), effectively improving the cardiac function in post-myocardial infarction mice. Jiming Powder effectively reduced the levels of myocardial injury markers such as creatine kinase(CK), creatine kinase isoenzyme(CK-MB), and lactate dehydrogenase(LDH), thereby protecting ischemic myocardium. HE staining revealed that Jiming Powder attenuated inflammatory cell infiltration after myocardial infarction. Masson staining indicated that Jiming Powder effectively inhibited ventricular remodeling. Western blot results showed that Jiming Powder activated the PINK1-Parkin pathway, up-regulated the protein level of BECN1, down-regulated the protein level of SQSTM1, and increased the LC3Ⅱ/LC3Ⅰ ratio to promote mitophagy. In conclusion, Jiming Powder exerts therapeutic effects on myocardial infarction by inhibiting ventricular remodeling. The findings pave the way for subsequent pharmacological studies on the active components of Jiming Powder.
Animals
;
Myocardial Infarction/physiopathology*
;
Mitophagy/drug effects*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Protein Kinases/genetics*
;
Male
;
Ubiquitin-Protein Ligases/genetics*
;
Humans
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
6.Effect and mechanism of Buyang Huanwu Decoction in improving neurological function in ischemic stroke rats based on IRE1α/ASK1/JNK pathway.
Xin-Rong ZHANG ; Tian-Lang WANG ; Jia-Hao ZHANG ; Lu JIN ; Jian-Bo WANG ; Ya-Nan XUE ; Yi QU
China Journal of Chinese Materia Medica 2025;50(14):3857-3867
This study aimed to investigate the effect and mechanism of Buyang Huanwu Decoction in regulating endoplasmic reticulum stress via the inositol-requiring enzyme 1α(IRE1α)/apoptosis signal-regulating kinase 1(ASK1)/c-Jun N-terminal kinase(JNK) pathway to improve neurological function in rats with cerebral ischemia/reperfusion injury(CIRI). SPF-grade male sprague-dawley(SD) rats were randomly divided into Sham group, model group, Buyang Huanwu Decoction group, and edaravone group. Except for the Sham group, the other groups were subjected to the modified suture method to establish a middle cerebral artery occlusion/reperfusion(MCAO/R) model. After treatment, neurological function was assessed using the Zea Longa scoring system. Gait analysis was used to detect the motor function. Detection of relative infarct area in brain tissue using 2,3,5-triphenyltetrazolium chloride(TTC) staining. Nissl staining was used to observe the structure of neuronal cells. Western blot and real-time fluorescence quantitative PCR(RT-qPCR) were used to detect IRE1α, ASK1, JNK, B cell lymphoma-2(Bcl-2), Bcl-2 related X protein(Bax), and Caspase-3 in the brain tissue. Immunohistochemistry was used to detect the positive expression of IRE1α, ASK1, and JNK. Immunofluorescence was used to detect the fluorescence expression levels of Bax, Bcl-2, and Caspase-3. The results showed that compared with the Sham group, the model group exhibited increased neurological scores(P<0.01), increased ratio of ground contact area and strength in both forelimbs(P<0.01), enlarged relative infarct area of brain tissue(P<0.05), and a reduced number of Nissl staining-positive cells(P<0.01). The protein and mRNA expression levels of IRE1α, ASK1, JNK, Bax, and Caspase-3 in brain tissue were significantly elevated, while those of Bcl-2 were decreased(P<0.05). Compared with the model group, both the Buyang Huanwu Decoction group and edaravone group showed reduced neurological scores(P<0.05), decreased ratio of ground contact area and strength in both forelimbs(P<0.05), smaller relative infarct area(P<0.05), alleviated neuronal damage, and increased number of Nissl staining-positive cells(P<0.05). The expression levels of IRE1α, ASK1, JNK, Bax, and Caspase-3 protein and mRNA in brain tissue were significantly reduced, while those of Bcl-2 were significantly increased(P<0.05). The results indicated that Buyang Huanwu Decoction can effectively improve brain injury in CIRI rats, and its mechanism of action may be related to regulating the endoplasmic reticulum stress IRE1α/ASK1/JNK signaling pathway.
Animals
;
Male
;
Rats, Sprague-Dawley
;
Protein Serine-Threonine Kinases/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
MAP Kinase Kinase Kinase 5/genetics*
;
Ischemic Stroke/physiopathology*
;
Humans
;
MAP Kinase Signaling System/drug effects*
;
Apoptosis/drug effects*
;
Endoribonucleases/genetics*
;
JNK Mitogen-Activated Protein Kinases/genetics*
;
Endoplasmic Reticulum Stress/drug effects*
;
Multienzyme Complexes
7.Caffeoylquinic acids from Erigeron breviscapus ameliorates cognitive impairment and mitochondrial dysfunction in AD by activating PINK1/Parkin-mediated mitophagy.
Yuan-Zhu PU ; Hai-Feng CHEN ; Xin-Yi WANG ; Can SU
China Journal of Chinese Materia Medica 2025;50(14):3969-3979
This study aimed to investigate the effects of caffeoylquinic acids from Erigeron breviscapus(EBCQA) on cognitive impairment and mitochondrial dysfunction in Alzheimer's disease(AD), and to explore its underlying mechanisms. The impacts of EBCQA on paralysis, β-amyloid(Aβ) oligomerization, and mRNA expression of mitophagy-related genes [PTEN-induced putative kinase 1(PINK1) homolog-encoding gene pink-1, Parkin homolog-encoding gene pdr-1, Bcl-2 interacting coiled-coil protein 1(Beclin 1) homolog-encoding gene bec-1, microtubule-associated protein 1 light chain 3(LC3) homolog-encoding gene lgg-1, autophagic adapter protein 62(p62) homolog-encoding gene sqst-1] were examined in the AD Caenorhabditis elegans CL4176 model, along with mitochondrial functions including adenosine triphosphate(ATP) content, enzyme activities of mitochondrial respiratory chain complexes Ⅰ,Ⅲ, and Ⅳ, and mitochondrial membrane potential. Additionally, the effects of EBCQA on the green fluorescent protein(GFP)/red fluorescent protein from Discosoma sp.(DsRed) ratio, the expression of phosphatidylethanolamine-modified and GFP-labeled LGG-1(PE-GFP::LGG-1)/GFP-labeled LGG-1(GFP::LGG-1), and GFP-labeled SQST-1(GFP::SQST-1) proteins were investigated in transgenic C. elegans strains. The effect of EBCQA on paralysis was further evaluated after RNA interference(RNAi)-mediated suppression of the pink-1 and pdr-1 genes in CL4176 strain. An AD rat model was established through intraperitoneal injection of D-galactose and intragastric administration of aluminum trichloride. The effects of β-nicotinamide mononucleotide(NMN) and EBCQA on learning and memory ability, neuronal morphology, mitophagy occurrence, mitophagy-related protein expression(PINK1, Parkin, Beclin 1, LC3-Ⅱ/LC3-Ⅰ, p62), and mitochondrial functions(ATP content; enzyme activities of mitochondrial respiratory chain complexes Ⅰ, Ⅲ, and Ⅳ; mitochondrial membrane potential) were investigated in this AD rat model. The results showed that EBCQA delayed paralysis onset in the CL4176 strain, reduced Aβ oligomer formation, and upregulated the mRNA expression levels of lgg-1, bec-1, pink-1, and pdr-1, while downregulating sqst-1 mRNA expression. EBCQA also enhanced ATP content, mitochondrial membrane potential, and the activities of mitochondrial respiratory chain complexes Ⅰ, Ⅲ, and Ⅳ. Furthermore, EBCQA improved the PE-GFP::LGG-1/GFP::LGG-1 ratio, reduced GFP::SQST-1 expression, and decreased the GFP/DsRed ratio. Notably, the ability of EBCQA to delay paralysis was significantly reduced following RNAi-mediated suppression of pink-1 and pdr-1 in CL4176 strain. In AD rats, the administration of NMN or EBCQA significantly improved learning and memory, restored neuronal morphology in the hippocampus, increased autophagosome numbers, and upregulated the expression of PINK1, Parkin, Beclin 1, and the LC3-Ⅱ/LC3-Ⅰ ratio, while reducing p62 expression. Additionally, the treatment with NMN or EBCQA both elevated ATP content, mitochondrial respiratory chain complex Ⅰ, Ⅲ, and Ⅳ activities, and mitochondrial membrane potential in the hippocampus. The above findings indicate that EBCQA improves cognitive impairment and mitochondrial dysfunction in AD, possibly through activation of PINK1/Parkin-mediated mitophagy.
Animals
;
Alzheimer Disease/psychology*
;
Mitophagy/drug effects*
;
Mitochondria/genetics*
;
Caenorhabditis elegans/metabolism*
;
Ubiquitin-Protein Ligases/genetics*
;
Cognitive Dysfunction/physiopathology*
;
Rats
;
Protein Kinases/genetics*
;
Humans
;
Male
;
Disease Models, Animal
;
Caenorhabditis elegans Proteins/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
8.Mechanism of Jianpi Bushen Yiqi Decoction in promoting AChR clustering and improving neuromuscular junction function in EAMG mice based on Agrin/LRP4/MuSK signaling pathway.
Jia-Hui WANG ; Ru-Ge LIU ; Han-Bin LIU ; Jia-Hao WEI ; Jie ZHANG ; Xue-Ying LIU ; Feng GAO ; Jun-Hong YANG
China Journal of Chinese Materia Medica 2025;50(15):4325-4332
This study investigated the mechanism by which Jianpi Bushen Yiqi Decoction promotes acetylcholine receptor(AChR) clustering in myasthenia gravis through the Agrin/low-density lipoprotein receptor-related protein 4(LRP4)/muscle-specific receptor tyrosine kinases(MuSK) signaling pathway. A total of 114 female C57BL/6J mice were divided into the normal group, modeling group, and solvent control group. The normal group and the solvent control group were immunized with phosphate-buffered saline(PBS), while the modeling group was established as an experimental autoimmune myasthenia gravis(EAMG) model using the murine-derived AChR-α subunit R97-116 peptide fragment. After successful modeling, the mice were randomly assigned to the model group, the low-, medium-, and high-dose Jianpi Bushen Yiqi Decoction groups, and the prednisone group. After four weeks of continuous treatment, muscle strength was assessed using Lennon scores and grip strength tests. Immunofluorescence staining was conducted on differentiated C2C12 myotubes incubated with a drug-containing serum to observe the number of AChR clusters. The integrity of AChR on myofilaments in mouse gastrocnemius muscles was further assessed by immunofluorescence staining. Hematoxylin-Eosin(HE)staining was applied to examine pathological changes in the gastrocnemius muscles of EAMG mice treated with Jianpi Bushen Yiqi Decoction. Western blot was utilized to detect the expression of key proteins in the Agrin/LRP4/MuSK signaling pathway in both C2C12 myotubes and mouse gastrocnemius muscles. The results demonstrated that compared to the model group, the prednisone group exhibited a significant decrease in the body weights of mice, whereas no significant differences in the body weights of mice were observed among the low-, medium-, and high-dose Jianpi Bushen Yiqi Decoction groups. All treatment groups showed significantly improved grip strength and Lennon scores. Additionally, the formula promoted AChR clustering on myotubes and enhanced AChR integrity in gastrocnemius myofilaments and reduced inflammatory infiltration between muscle tissue and fibrous hyperplasia. Furthermore, Jianpi Bushen Yiqi Decoction upregulated the protein expression of AChRα1, Agrin, and p-MuSK in C2C12 myotubes and increased the protein expression of AChRα1, Agrin, MuSK, p-MuSK, LRP4, and docking protein 7(Dok-7)in gastrocnemius tissue. In conclusion, Jianpi Bushen Yiqi Decoction may promote AChR clustering by targeting key proteins in the Agrin/LRP4/MuSK signaling pathway, thereby improving neuromuscular junction function and enhancing muscle strength.
Animals
;
Agrin/genetics*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Signal Transduction/drug effects*
;
Receptors, Cholinergic/genetics*
;
Female
;
Mice, Inbred C57BL
;
Receptor Protein-Tyrosine Kinases/genetics*
;
Neuromuscular Junction/metabolism*
;
Myasthenia Gravis, Autoimmune, Experimental/physiopathology*
;
Humans
;
LDL-Receptor Related Proteins
9.Yiqi Yangyin Huazhuo Tongluo Formula alleviates diabetic podocyte injury by regulating miR-21a-5p/FoxO1/PINK1-mediated mitochondrial autophagy.
Kelei GUO ; Yingli LI ; Chenguang XUAN ; Zijun HOU ; Songshan YE ; Linyun LI ; Liping CHEN ; Li HAN ; Hua BIAN
Journal of Southern Medical University 2025;45(1):27-34
OBJECTIVES:
To investigate the protective effect of Yiqi Yangyin Huazhuo Tongluo Formula (YYHT) against high glucose-induced injury in mouse renal podocytes (MPC5 cells) and the possible mechanism.
METHODS:
Adult Wistar rats were treated with 19, 38, and 76 g/kg YYHT or saline via gavage for 7 days to prepare YYHT-medicated or blank sera for treatment of MPC5 cells cultured in high glucose (30 mmol/L) prior to transfection with a miR-21a-5p inhibitor or a miR-21a-5p mimic. The changes in miR-21a-5p expressions and the mRNA levels of FoxO1, PINK1, and Parkin in the treated cells were detected with qRT-PCR, and the protein levels of nephrin, podocin, FoxO1, PINK1, and Parkin were detected with Western blotting. Autophagic activity in the cells were evaluated with MDC staining. The effect of miR-21a-5p mimic on FoxO1 transcription and the binding of miR-21a-5p to FoxO1 were examined with luciferase reporter gene assay and radioimmunoprecipitation assay.
RESULTS:
MPC5 cells exposed to high glucose showed significantly increased miR-21a-5p expression, lowered expressions of FoxO1, PINK1, and Parkin1 mRNAs, and reduced levels of FoxO1, PINK1, parkin, nephrin, and podocin proteins and autophagic activity. Treatment of the exposed cells with YYHT-medicated sera and miR-21a-5p inhibitor both significantly enhanced the protein expressions of nephrin and podocin, inhibited the expression of miR-21a-5p, increased the mRNA and protein expressions of FoxO1, PINK1 and Parkin, and upregulated autophagic activity of the cells. Transfection with miR-21a-5p mimic effectively inhibited the transcription of FoxO1 and promoted the binding of miR-21a-5p to FoxO1 in MPC5 cells, and these effects were obviously attenuated by treatment with YYHT-medicated sera.
CONCLUSIONS
YYHT-medicated sera alleviate high glucose-induced injury in MPC5 cells by regulating miR-21a-5p/FoxO1/PINK1-mediated mitochondrial autophagy.
Animals
;
MicroRNAs/genetics*
;
Podocytes/pathology*
;
Drugs, Chinese Herbal/pharmacology*
;
Autophagy/drug effects*
;
Rats, Wistar
;
Protein Kinases/metabolism*
;
Rats
;
Forkhead Box Protein O1
;
Mice
;
Mitochondria/drug effects*
;
Ubiquitin-Protein Ligases/metabolism*
;
Glucose
;
Diabetic Nephropathies
;
Male
;
Membrane Proteins/metabolism*
;
Intracellular Signaling Peptides and Proteins
10.Effect of Huayu Tongluo moxibustion on learning-memory ability in rats with vascular dementia based on hippocampal Mst1/NF-κB p65 pathway.
Ping WANG ; Jun YANG ; Yu KONG ; Yating ZHANG ; Yinqiu FAN ; Haiping SHI ; Lanying LIU
Chinese Acupuncture & Moxibustion 2025;45(1):53-60
OBJECTIVE:
To observe the effects of Huayu Tongluo (transforming stasis and unblocking collaterals) moxibustion on learning-memory ability and hippocampal mammalian sterile 20-like kinase 1 (Mst1)/nuclear factor κB (NF-κB) p65 pathway related to inflammatory response in rats with vascular dementia (VD).
METHODS:
A total of 60 male Wistar rats of SPF grade were randomly divided into a sham operation group (12 rats) and a modeling group (48 rats). VD model was established by the method of modified bilateral common carotid artery permanent ligation in the modeling group. Thirty-six rats with successful modeling were randomly divided into a model group, a moxibustion group and a western medication group, with 12 rats in each group. Huayu Tongluo moxibustion was applied at "Dazhui" (GV14), "Baihui" (GV20) and "Shenting" (GV24) in the moxibustion group, 20 min each time, once a day, 7 day-intervention was as one course, and 1 day-interval was taken between two courses, for a total of 3 courses. In the western medication group, piracetam was given 0.72 mg/kg by intragastric administration, twice a day, the course of intervention was same as that of the moxibustion group. The learning-memory ability was detected by Morris water maze test; the morphology of hippocampal CA1 region was observed by HE staining; the mRNA expression of Mst1, M1 microglia markers CD86, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) was detected by real-time PCR; the levels of IL-6 and TNF-α in hippocampus were detected by ELISA; and the protein expression of Mst1 and NF-κB p65 in hippocampus was detected by Western blot in rats of each group.
RESULTS:
Compared with the sham operation group, the escape latency was prolonged in the model group (P<0.05); compared with the model group, the escape latency was shortened in the moxibustion group and the western medication group (P<0.05). The cells in the CA1 region of hippocampus were disordered, cell collapse and irregular nuclei could be observed in the model group; compared with the model group, the cell arrangement in the CA1 region of hippocampus was more regular, and the damage was improved in the moxibustion group and the western medication group. Compared with the sham operation group, the mRNA expression of Mst1, CD86, IL-6 and TNF-α, as well as the protein expression of Mst1, NF-κB p65 in hippocampus were increased in the model group (P<0.05). Compared with the model group, the mRNA expression of Mst1, CD86, IL-6 and TNF-α, as well as the protein expression of Mst1, NF-κB p65 in hippocampus were decreased in the moxibustion group and the western medication group (P<0.05). Compared with the sham operation group, the levels of IL-6 and TNF-α in hippocampus were increased in the model group (P<0.05). Compared with the model group, the levels of IL-6 and TNF-α in hippocampus were decreased in the moxibustion group and the western medication group (P<0.05).
CONCLUSION
Huayu Tongluo moxibustion can improve the learning-memory ability of VD rats, the mechanism may be related to regulating the activation of microglia through Mst1/NF-κB p65 pathway, reducing the release of pro-inflammatory factors i.e. IL-6 and TNF-α, so as to alleviating the damage of inflammatory factors in the hippocampus of VD rats.
Animals
;
Male
;
Rats
;
Moxibustion
;
Hippocampus/metabolism*
;
Rats, Wistar
;
Dementia, Vascular/genetics*
;
Memory/drug effects*
;
Humans
;
Transcription Factor RelA/genetics*
;
Learning
;
Protein Serine-Threonine Kinases/genetics*
;
Acupuncture Points
;
Interleukin-6/genetics*
;
Signal Transduction/drug effects*
;
Drugs, Chinese Herbal

Result Analysis
Print
Save
E-mail