1.Polyglycolic Acid Fibrous Scaffold Improving Endothelial Cell Coating and Vascularization of Islet.
Yang LI ; Ping FAN ; Xiao-Ming DING ; Xiao-Hui TIAN ; Xin-Shun FENG ; Hang YAN ; Xiao-Ming PAN ; Pu-Xun TIAN ; Jin ZHENG ; Chen-Guang DING ; Wu-Jun XUE
Chinese Medical Journal 2017;130(7):832-839
BACKGROUNDImproving islet graft revascularization has become a crucial task for prolonging islet graft survival. Endothelial cells (ECs) are the basis of new microvessels in an isolated islet, and EC coating has been demonstrated to improve the vascularization and survival of an islet. However, the traditional method of EC coating of islets has low efficiency in vitro. This study was conducted to evaluate the effect of a polyglycolic acid (PGA) scaffold on the efficiency of islet coating by ECs and the angiogenesis in the coated islet graft.
METHODSA PGA fibrous scaffold was used for EC coating of islet culture and was evaluated for its efficiency of EC coating on islets and islet graft angiogenesis.
RESULTSIn in vitro experiments, we found that apoptosis index of ECs-coating islet in PGA group (27% ± 8%) was significantly lower than that in control group (83% ± 20%, P < 0.05) after 7 days culture. Stimulation index was significantly greater in the PGA group than in the control group at day 7 after ECs-coating (2.07 ± 0.31 vs. 1.80 ± 0.23, P < 0.05). vascular endothelial growth factor (VEGF) level in the PGA group was significantly higher than the coating in the control group after 7 days culture (52.10 ± 13.50 ng/ml vs. 16.30 ± 8.10 ng/ml, P < 0.05). Because of a tight, circumvallated, adhesive and three-dimensional growth microenvironment, islet cultured in a PGA scaffold had higher coating efficiency showing stronger staining intensity of enzyme than those in the control group after 14 days of culture following ECs-coating. For in vivo study, PGA scaffold significantly prolonged the average survival time of EC-coated islet graft after transplantation compared with control group (15.30 ± 5.60 days vs. 8.30 ± 2.45 days, P < 0.05). The angiogenesis and area of survived grafts were more in the PGA group compared with the control group by measuring the mean microvessel density (8.60 ± 1.21/mm2 vs. 5.20 ± 0.87/mm2, P < 0.05). In addition, expression of VEGF and tyrosin-protein kinase receptor (Tie-2) gene increased in PGA scaffold group than that in control group by real-time reverse transcription-polymerase chain reaction analysis.
CONCLUSIONSThese results demonstrate that the efficiency of EC coating of islets was successfully increased by culturing ECs on a PGA scaffold. This method enhances the function, survival, and vascularization of isolated islets in vitro and in vivo.
Animals ; Apoptosis ; drug effects ; Endothelial Cells ; drug effects ; Enzyme-Linked Immunosorbent Assay ; Graft Survival ; drug effects ; Insulin ; metabolism ; Islets of Langerhans ; drug effects ; Islets of Langerhans Transplantation ; methods ; Neovascularization, Physiologic ; drug effects ; Polyglycolic Acid ; chemistry ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Rats, Wistar ; Tissue Scaffolds ; chemistry
2.Preparation and physicochemical characterization of T-OA PLGA microspheres.
Jing FU ; Xiao-Xu DONG ; Zu-Ping ZENG ; Xing-Bin YIN ; Fa-Wei LI ; Jian NI
Chinese Journal of Natural Medicines (English Ed.) 2017;15(12):912-916
As the carrier of water-insoluble drugs, microspheres can play a role in increasing solubility and delaying releasing essence. The objective of this study was to improve the solubility and to delay the release of a newly discovered antitumor compound 3β-hydroxyolea-12-en-28-oic acid-3, 5, 6-trimethylpyrazin-2-methyl ester (T-OA). Early-stage preparation discovery concept (EPDC) was employed in the present study. The preparation, physicochemical characterization, and drug release properties of PLGA microspheres were evaluated. T-OA-loaded PLGA microspheres were prepared by an oil-in-water (O/W) emulsification solvent evaporation method. Characterization and release behaviors of the T-OA PLGA microspheres were evaluated by X-ray diffract (XRD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and high performance liquid chromatography (HPLC). The results demonstrated that T-OA-loaded PLGA microspheres could be successfully obtained through solvent evaporation method with appropriate morphologic characteristics and high encapsulation efficiency. The XRD analysis showed that T-OA would be either molecularly dispersed in the polymer or distributed in an amorphous form. The DSC and FTIR analysis proved that there were interactions between T-OA and PLGA polymer. SEM observations displayed the morphology of the microspheres was homogeneous and the majority of the spheres ranged between 50 and 150 μm. The drug release behavior of the microspheres in the phosphate buffered saline medium exhibited a sustained release and the duration of the release lasted for more than 23 days, which was fit with zero-order release pattern with r = 0.9947. In conclusion, TOA-loaded PLGA microspheres might hold great promise for using as a drug-delivery system in biomedical applications.
Antineoplastic Agents
;
chemistry
;
Calorimetry, Differential Scanning
;
Chemistry, Pharmaceutical
;
Delayed-Action Preparations
;
chemistry
;
Drug Carriers
;
chemical synthesis
;
chemistry
;
Lactic Acid
;
chemical synthesis
;
chemistry
;
Microscopy, Electron, Scanning
;
Microspheres
;
Oleanolic Acid
;
chemistry
;
Polyglycolic Acid
;
chemical synthesis
;
chemistry
;
Polylactic Acid-Polyglycolic Acid Copolymer
;
Pyrazines
;
chemistry
;
Solubility
;
Spectroscopy, Fourier Transform Infrared
;
X-Ray Diffraction
3.Relation between drug release and the drug status within curcumin-loaded microsphere.
De CHEN ; Yi LIU ; Kai-yan FAN ; Yi-qiao XIE ; An-an YU ; Zi-hua XIA ; Fan YANG
Acta Pharmaceutica Sinica 2016;51(1):140-146
To study the relation between drug release and the drug status within curcumin-loaded microsphere, SPG (shirasu porous glass) membrane emulsification was used to prepare the curcumin-PLGA (polylactic-co-glycolic acid) microspheres with three levels of drug loading respectively, and the in vitro release was studied with high-performance liquid chromatography (HPLC). The morphology of microspheres was observed with scanning electron microscopy (SEM), and the drug status was studied with X-ray diffraction (XRD), differential scanning calorimetry (DSC) and infrared analysis (IR). The drug loading of microspheres was (5.85 ± 0.21)%, (11.71 ± 0.39)%, (15.41 ± 0.40)%, respectively. No chemical connection was found between curcumin and PLGA. According to the results of XRD, curcumin dispersed in PLGA as amorphous form within the microspheres of the lowest drug loading, while (2.12 ± 0.64)% and (5.66 ± 0.07)% curcumin crystals was detected in the other two kinds of microspheres, respectively, indicating that the drug status was different within three kinds of microspheres. In the data analysis, we found that PLGA had a limited capacity of dissolving curcumin. When the drug loading exceeded the limit, the excess curcumin would exist in the form of crystals in microspheres independently. Meanwhile, this factor contributes to the difference in drug release behavior of the three groups of microspheres.
Calorimetry, Differential Scanning
;
Curcumin
;
chemistry
;
Drug Liberation
;
Lactic Acid
;
Microscopy, Electron, Scanning
;
Microspheres
;
Polyglycolic Acid
;
X-Ray Diffraction
4.Fabrication of a new composite scaffold material for delivering rifampicin and its sustained drug release in rats.
Xue-Ming MA ; Zhen LIN ; Jia-Wei ZHANG ; Chao-Hui SANG ; Dong-Bin QU ; Jian-Ming JIANG
Journal of Southern Medical University 2016;36(3):309-315
OBJECTIVETo fabricate a new composite scaffold material as an implant for sustained delivery of rifampicin and evaluate its performance of sustained drug release and biocompatibility.
METHODSThe composite scaffold material was prepared by loading poly(lactic-co-glycolic) acid (PLGA) microspheres that encapsulated rifampicin in a biphasic calcium composite material with a negative surface charge. The in vitro drug release characteristics of the microspheres and the composite scaffold material were evaluated; the in vivo drug release profile of the composite scaffold material implanted in a rat muscle pouch was evaluated using high-performance liquid chromatography. The biochemical parameters of the serum and liver histopathologies of the rats receiving the transplantation were observed to assess the biocompatibility of the composite scaffold material.
RESULTSThe encapsulation efficiency and drug loading efficiency of microspheres were (56.05±5.33)% and (29.80±2.88)%, respectively. The cumulative drug release rate of the microspheres in vitro was (94.19±5.4)% at 28 days, as compared with the rate of (82.23±6.28)% of composite scaffold material. The drug-loaded composite scaffold material showed a good performance of in vivo drug release in rats, and the local drug concentration still reached 16.18±0.35 µg/g at 28 days after implantation. Implantation of the composite scaffold material resulted in transient and reversible liver injury, which was fully reparred at 28 days after the implantation.
CONCLUSIONThe composite scaffold material possesses a good sustained drug release capacity and a good biocompatibility, and can serve as an alternative approach to conventional antituberculous chemotherapy.
Animals ; Biocompatible Materials ; chemistry ; Delayed-Action Preparations ; Drug Carriers ; chemistry ; Drug Liberation ; Lactic Acid ; chemistry ; Microspheres ; Polyglycolic Acid ; chemistry ; Rats ; Rifampin ; administration & dosage
5.Multilayer Coating of Tetrandrine-loaded PLGA nanoparticles: Effect of surface charges on cellular uptake rate and drug release profile.
Rui MENG ; Ke LI ; Zhe CHEN ; Chen SHI
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(1):14-20
The effect of surface charges on the cellular uptake rate and drug release profile of tetrandrine-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TPNs) was studied. Stabilizer-free nanoprecipitation method was used in this study for the synthesis of TPNs. A typical layer-by-layer approach was applied for multi-coating particles' surface with use of poly(styrene sulfonate) sodium salt (PSS) as anionic layer and poly(allylamine hydrochloride) (PAH) as cationic layer. The modified TPNs were characterized by different physicochemical techniques such as Zeta sizer, scanning electron microscopy and transmission electron microscopy. The drug loading efficiency, release profile and cellular uptake rate were evaluated by high performance liquid chromatography and confocal laser scanning microscopy, respectively. The resultant PSS/PAH/PSS/PAH/TPNs (4 layers) exhibited spherical-shaped morphology with the average size of 160.3±5.165 nm and zeta potential of-57.8 mV. The encapsulation efficiency and drug loading efficiency were 57.88% and 1.73%, respectively. Multi-layer coating of polymeric materials with different charges on particles' surface could dramatically influence the drug release profile of TPNs (4 layers vs. 3 layers). In addition, variable layers of surface coating could also greatly affect the cellular uptake rate of TPNs in A549 cells within 8 h. Overall, by coating particles' surface with those different charged polymers, precise control of drug release as well as cellular uptake rate can be achieved simultaneously. Thus, this approach provides a new strategy for controllable drug delivery.
Antineoplastic Agents, Phytogenic
;
administration & dosage
;
chemistry
;
Benzylisoquinolines
;
administration & dosage
;
chemistry
;
Cell Line, Tumor
;
Drug Liberation
;
Humans
;
Lactic Acid
;
chemistry
;
Nanoparticles
;
adverse effects
;
chemistry
;
metabolism
;
Polyamines
;
chemistry
;
Polyglycolic Acid
;
chemistry
;
Polystyrenes
;
chemistry
;
Static Electricity
6.Preparation and evaluation of risperidone-loaded microsphere/sucrose acetate isobutyrate in situ forming complex depot with double diffusion barriers.
Xia LIN ; Xing TANG ; Yu-hong XU ; Yu ZHANG ; Yan ZHANG ; Hai-bing HE
Acta Pharmaceutica Sinica 2015;50(6):775-782
In the present study, a risperidone loaded microsphere/sucrose acetate isobutyrate (SAIB) in situ forming complex depot was designed to reduce the burst release of SAIB in situ forming depot and to continuously release risperidone for a long-term period without lagime. The model drug risperidone (Ris) was first encapsulated into microspheres and then the Ris-microspheres were embedded into SAIB depot to reduce the amount of dissolved drug in the depot. The effects of different types of microsphere matrix, including chitosan and poly(lactide-coglycolide) (PLGA), matrix/Ris ratios in microspheres and morphology of microspheres on the drug release behavior of complex depot were investigated. In comparison with the Ris-loaded SAIB depot (Ris-SAIB), the complex depot containing chitosan microspheres (in which chitosan/Ris = 1 : 1, w/w) (Ris-Cm-SAIB) decreased the burst release from 12.16% to 5.80%. However, increased drug release rate after 4 days was observed in Ris-Cm-SAIB, which was caused by the high penetration of the medium to Ris-Cm-SAIB due to the hydrophilie of chitosan. By encapsulation of risperidone in PLGA microspheres, most drugs can be prevented from dissolving in the depot and meanwhile the hydrophobic PLGA can reduce the media penetration effect on the depot. The complex depot containing PLGA microspheres (in which PLGA/ drug=4 : 2, w/w) (Ris-Pm-SAIB) showed a significant effectiveness on reducing the burst release both in vitro and in vivo whereby only 0.64% drug was released on the first day in vitro and a low AUC0-4d value [(105.2± 24.4) ng.mL-1.d] was detected over the first 4 days in vivo. In addition, drug release from Ris-Pm-SAIB can be modified by varying the morphology of microspheres. The porous PLGA microspheres could be prepared by adding medium chain triglyceride (MCT) in the organic phase which served as pore agents during the preparation of PLGA microspheres. The complex depot containing porous PLGA microspheres (which were prepared by co-encapsulation of 20% MCT) (Ris-PPm-SAIB) exhibited a slightly increased AUC0-4d of (194.6±15.8) ng.mL-1d and high plasma concentration levels from 4 to 78 days [Cs(4-78d)=(7.8±1.2) ng.mL-1]. The plasma concentration on 78 day C78d was (9.0 2.5) ng.mL-1 which was higher than that of Ris-Pm-SAIB [C78d= (1.6 ± 0.6) ng.mL-1]. In comparison with Ris-Pm-SAIB, the AUC4-78d of Ris-PPm-SAIB increased from (379.0±114.3) ng.mL-1.d to (465.0 ±149.2) ng.mL-1.d, indicating sufficient drug release from the Ris-PPm-SAIB. These results demonstrate that the risperidone loaded porous PLGA microsphere/SAIB in situ forming complex depot could not only efficiently reduce the burst release of SAIB depot both in vitro and in vivo, but also release the drug sufficiently in vivo, and be capable to continuously release the drug for 78 days.
Chitosan
;
Drug Carriers
;
Lactic Acid
;
Microspheres
;
Polyglycolic Acid
;
Risperidone
;
chemistry
;
Sucrose
;
analogs & derivatives
;
Technology, Pharmaceutical
7.In vitro and in vivo evaluation of the developed PLGA/HAp/Zein scaffolds for bone-cartilage interface regeneration.
Yong Xin LIN ; Zhi Yong DING ; Xiao Bin ZHOU ; Si Tao LI ; De Ming XIE ; Zhi Zhong LI ; Guo Dong SUN
Biomedical and Environmental Sciences 2015;28(1):1-12
OBJECTIVETo investigate the effect of electronspun PLGA/HAp/Zein scaffolds on the repair of cartilage defects.
METHODSThe PLGA/HAp/Zein composite scaffolds were fabricated by electrospinning method. The physiochemical properties and biocompatibility of the scaffolds were separately characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and fourier transform infrared spectroscopy (FTIR), human umbilical cord mesenchymal stem cells (hUC-MSCs) culture and animal experiments.
RESULTSThe prepared PLGA/HAp/Zein scaffolds showed fibrous structure with homogenous distribution. hUC-MSCs could attach to and grow well on PLGA/HAp/Zein scaffolds, and there was no significant difference between cell proliferation on scaffolds and that without scaffolds (P>0.05). The PLGA/HAp/Zein scaffolds possessed excellent ability to promote in vivo cartilage formation. Moreover, there was a large amount of immature chondrocytes and matrix with cartilage lacuna on PLGA/HAp/Zein scaffolds.
CONCLUSIONThe data suggest that the PLGA/HAp/Zein scaffolds possess good biocompatibility, which are anticipated to be potentially applied in cartilage tissue engineering and reconstruction.
Animals ; Biocompatible Materials ; Bone Development ; physiology ; Cartilage ; growth & development ; Cells, Cultured ; Durapatite ; chemistry ; Female ; Humans ; Lactic Acid ; chemistry ; Male ; Mesenchymal Stromal Cells ; physiology ; Polyglycolic Acid ; chemistry ; Regeneration ; physiology ; Tissue Scaffolds ; chemistry ; Young Adult ; Zein ; chemistry
8.Studies on preparation by SPG membrane emulsification method and in vitro characterization of tetradrine-tashionone II(A)-PLGA composite microspheres.
Jin LU ; Meng ZHANG ; Hua-xu ZHU ; Li-wei GUO ; Lin-mei PAN ; Ting-ming FU
China Journal of Chinese Materia Medica 2015;40(6):1091-1096
Tetradrine-tashionone II(A)-PLGA composite microspheres were prepared by the SPG membrane emulsification method, and the characterization of tetradrine-tashionone II(A) -PLGA composite microspheres were studied in this experiment. The results of IR, DSC and XRD showed that teradrine and tashionone II(A) in composite microspheres were highly dispersed in the PLGA with amorphous form. The results of tetradrine-tashionone II(A) -PLGA composite microspheres in vitro release experiment showed that the cumulative release amounts of tetradrine and tashionone II(A) were 6.44% and 3.60% in 24 h, and the cumulative release amounts of tetradrine and tashionone II(A) were 89.02% and 21.24% in 17 d. The process of drug in vitro release accorded with the model of Riger-Peppas. Tetradrine-tashionone II(A) -PLGA composite microspheres had slow-release effect, and it could significantly reduce the burst release, prolong the therapeutic time, decrease the dosage of drugs and provide a new idea and method to prepare traditional Chinese medicine compound.
Benzofurans
;
chemistry
;
Benzylisoquinolines
;
chemistry
;
Drug Carriers
;
chemistry
;
Drug Compounding
;
instrumentation
;
methods
;
Drugs, Chinese Herbal
;
chemistry
;
Kinetics
;
Lactic Acid
;
chemistry
;
Microspheres
;
Particle Size
;
Polyglycolic Acid
;
chemistry
9.Effects of PLGA absorbable membrane on preventing postoperative abdominal adhesion in rabbits.
Xiubing PANG ; Yongming PAN ; Fei HUA ; Chaoying SUN ; Liang CHEN ; Fangming CHEN ; Keyan ZHU ; Jianqin XU ; Minli CHEN
Chinese Journal of Medical Instrumentation 2014;38(5):389-392
OBJECTIVETo investigate the effects of PLGA absorbable membrane in prevention of postoperative abdominal adhesion in rabbits.
METHODS66 Japanese white rabbits were randomly divided into three groups: the normal control group n = 6, model control group n = 30 and PLGA group n = 30. Rabbits were received multifactor methods to establish postoperative abdominal adhesion models except for normal control group. The cecum wound was covered PLGA membrane in the PLGA group. At postoperative 1, 2, 4, 6 and 12 weeks, the abdominal cavities were reopened and the adhesive severity was graded blindly, and the hydroxyproline level in cecum tissue was measured and the cecum histopathology was observed.
RESULTS(1) the degree of adhesion and hydroxyproline level in model control group were significantly higher than those of normal control group (P < 0.05, P < 0.01), while the degree of adhesion and hydroxyproline level in PLGA group were significantly lower than those of model control group (P < 0.05). (2) HE staining showed that cecum serosa had obviously inflammatory cell infiltration and fibroblast proliferation, while PLGA could inhibit fibroblast proliferation and reduce the inflammatory cell infiltration and collagen.
CONCLUSIONPLGA absorbable membrane can inhibit fibroblast proliferation and collagen to prevent the experimental postoperative peritoneal adhesions.
Abdominal Cavity ; pathology ; Animals ; Cell Proliferation ; Collagen ; analysis ; Fibroblasts ; cytology ; Lactic Acid ; chemistry ; Membranes, Artificial ; Polyglycolic Acid ; chemistry ; Postoperative Complications ; prevention & control ; Rabbits ; Tissue Adhesions ; prevention & control
10.In vitro and in vivo study of fluorescent probe PLGA particles prepared by premix membrane emulsification method.
Tao HU ; Fei-Yan SHI ; Lin-Mei PAN ; Hua-Xu ZHU ; Li-Wei GUO
China Journal of Chinese Materia Medica 2014;39(23):4583-4589
Relatively uniform-sized nanoparticles made of poly (lactic-co-glycolic acid) (PLGA) were prepared by premix membrane emulsification method. After the drug loading property was completed, the dynamic tissue distribution of nanoparticles was recorded. With the average particle size and span as indexes, membrane pore size, number of passing membrane times, membrane pressure, volume ratio of oil-water phase and the concentration of poly(vinyl alcohol) (PVA) in external water phase were investigated by single factor test, the optimum preparation technology of blank PLGA nanlparticles was as following: pore size of SPG membrane was 1 μm, membrane pressure was 1. 15 MPa, the number of passing membrane time was 3, the mass fraction of PVA of 2%, volume ratio of oil-water phase of 1 : 5. Prepared nanoparticles were round with smooth surface, the mean diameter was 332.6 nm, span was 0.010, the confocal laser scanning microscope (CLSM) concluded that fluorescent substance is uniform composizion in PLGA nanoparticle, and the in vivo imaging technology in mice include that the nanoparticles show good liver and spleen targeting property.
Animals
;
Drug Carriers
;
chemistry
;
Drug Delivery Systems
;
instrumentation
;
Emulsions
;
chemistry
;
Fluorescent Dyes
;
chemistry
;
Lactic Acid
;
chemistry
;
Mice
;
Mice, Nude
;
Nanoparticles
;
chemistry
;
Particle Size
;
Polyglycolic Acid
;
chemistry

Result Analysis
Print
Save
E-mail