1.Research advance on structure and function of amides in Zanthoxylum plants.
Qian-Nv YE ; Xiao-Feng SHI ; Jun-Li YANG
China Journal of Chinese Materia Medica 2023;48(9):2406-2418
Zanthoxylum belongs to the Rutaceae family, and there are 81 Zanthoxylum species and 36 varieties in China. Most of the Zanthoxylum plants are used as culinary spice. In recent years, scholars in China and abroad have carried out in-depth research on Zanthoxylum plants, and found that the peculiar numbing sensation of Zanthoxylum plants originates from amides. It is also determined that amides are an important material basis for exerting pharmacological effects, especially in anti-inflammatory analgesia, anesthesia and other aspects. In this paper, 123 amides in 26 Zanthoxylum plants and their pharmacological activity that have been reported were summarized, which provided scientific reference for the clinical application of Zanthoxylum plants and the research and development of new drugs, and also facilitated the sustainable development and utilization of Zanthoxylum plant resources.
Zanthoxylum/chemistry*
;
Amides/chemistry*
;
Plant Extracts/pharmacology*
;
China
2.Toxicity attenuation processing technology and mechanism of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction.
Bing-Yin LI ; Jun-Ming WANG ; Ling-Ling SONG ; Ya-Qian DUAN ; Bing-Yu LONG ; Ling-Yu QIN ; Xiao-Hui WU ; Yan-Mei WANG ; Ming-Zhu GONG
China Journal of Chinese Materia Medica 2023;48(9):2455-2463
This study explored toxicity attenuation processing technology of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction for the first time, and further explored its detoxification mechanism. Nine processed products of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction were prepared by orthogonal experiment with three factors and three levels. Based on the decrease in the content of the main hepatotoxic component diosbulbin B before and after processing of Rhizoma Dioscoreae Bulbiferae by high-performance liquid chromatography, the toxicity attenuation technology was preliminarily screened out. On this basis, the raw and representative processed products of Rhizoma Dioscoreae Bulbiferae were given to mice by gavage with 2 g·kg~(-1)(equival to clinical equivalent dose) for 21 d. The serum and liver tissues were collected after the last administration for 24 h. The serum biochemical indexes reflecting liver function and liver histopathology were combined to further screen out and verify the proces-sing technology. Then, the lipid peroxidation and antioxidant indexes of liver tissue were detected by kit method, and the expressions of NADPH quinone oxidoreductase 1(NQO1) and glutamate-cysteine ligase(GCLM) in mice liver were detected by Western blot to further explore detoxification mechanism. The results showed that the processed products of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction reduced the content of diosbulbin B and improved the liver injury induced by Rhizoma Dioscoreae Bul-biferae to varying degrees, and the processing technology of A_2B_2C_3 reduced the excessive levels of alanine transaminase(ALT) and aspartate transaminase(AST) induced by raw Rhizoma Dioscoreae Bulbiferae by 50.2% and 42.4%, respectively(P<0.01, P<0.01). The processed products of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction reversed the decrease protein expression levels of NQO1 and GCLM in the liver of mice induced by raw Rhizoma Dioscoreae Bulbiferae to varying degrees(P<0.05 or P<0.01), and it also reversed the increasing level of malondialdehyde(MDA) and the decreasing levels of glutathione(GSH), glutathione peroxidase(GPX), and glutathione S-transferase(GST) in the liver of mice(P<0.05 or P<0.01). In summary, this study shows that the optimal toxicity attenuation processing technology of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction is A_2B_2C_3, that is, 10% of Paeoniae Radix Alba decoction is used for moistening Rhizoma Dioscoreae Bulbiferae and processed at 130 ℃ for 11 min. The detoxification mechanism involves enhancing the expression levels of NQO1 and GCLM antio-xidant proteins and related antioxidant enzymes in the liver.
Mice
;
Animals
;
Antioxidants/analysis*
;
Plant Extracts/pharmacology*
;
Drugs, Chinese Herbal/chemistry*
;
Rhizome/chemistry*
;
Paeonia/chemistry*
;
Glutathione/analysis*
3.Research progress on chemical constituents and pharmacological effects of Glechomae Herba and prediction of its Q-markers.
Qian ZHANG ; Zhu-Zhen HAN ; Li-Hua GU ; Zheng-Tao WANG
China Journal of Chinese Materia Medica 2023;48(8):2041-2058
Glechomae Herba, the dried aerial part of Glechoma longituba(Labiatae), has the effects of promoting urination, draining dampness, and relieving stranguria. It has received wide attention in recent years owing to the satisfactory efficacy on lithiasis. Amid the in-depth chemical and pharmacological research, it has been found that Glechomae Herba has antibacterial, anti-inflammatory, antioxidant, antithrombotic, hepatoprotective, cholagogic, antitumor, hypoglycemic, and lipid-lowering effects. The main chemical constituents are volatile oils, flavonoids, terpenoids, phenylpropanoids, and organic acids. This paper summarized the chemical constituents and pharmacological effects of Glechomae Herba. Based on genetic relationship of plants, the characteristics, efficacy, and pharmacokinetics of the chemical constituents, and the potential of these constituents as quality markers(Q-markers), it was summed up that ursolic acid, caffeic acid, rosmarinic acid, luteolin-7-O-diglucuronide, apigenin, apigenin-7-O-diglucuronide, apigetrin, and glechone can be the candidate Q-markers of Glechomae Herba.
Apigenin
;
Plant Extracts/pharmacology*
;
Lamiaceae
;
Drugs, Chinese Herbal/pharmacology*
;
Flavonoids/pharmacology*
4.Mechanism of Marsdenia tenacissima against ovarian cancer based on network pharmacology and experimental verification.
Yu-Jie HU ; Lan-Yi WEI ; Juan ZHAO ; Qin-Fang ZHU ; Zhao-Yang MENG ; Jing-Jing MENG ; Jun-Jun CHEN ; Ling-Yan XU ; Yang-Yun ZHOU ; Yong-Long HAN
China Journal of Chinese Materia Medica 2023;48(8):2222-2232
The present study aimed to explore the main active components and underlying mechanisms of Marsdenia tenacissima in the treatment of ovarian cancer(OC) through network pharmacology, molecular docking, and in vitro cell experiments. The active components of M. tenacissima were obtained from the literature search, and their potential targets were obtained from SwissTargetPrediction. The OC-related targets were retrieved from Therapeutic Target Database(TTD), Online Mendelian Inheritance in Man(OMIM), GeneCards, and PharmGKB. The common targets of the drug and the disease were screened out by Venn diagram. Cytoscape was used to construct an "active component-target-disease" network, and the core components were screened out according to the node degree. The protein-protein interaction(PPI) network of the common targets was constructed by STRING and Cytoscape, and the core targets were screened out according to the node degree. GO and KEGG enrichment analyses of potential therapeutic targets were carried out with DAVID database. Molecular docking was used to determine the binding activity of some active components to key targets by AutoDock. Finally, the anti-OC activity of M. tenacissima extract was verified based on SKOV3 cells in vitro. The PI3K/AKT signaling pathway was selected for in vitro experimental verification according to the results of GO function and KEGG pathway analyses. Network pharmacology results showed that 39 active components, such as kaempferol, 11α-O-benzoyl-12β-O-acetyltenacigenin B, and drevogenin Q, were screened out, involving 25 core targets such as AKT1, VEGFA, and EGFR, and the PI3K-AKT signaling pathway was the main pathway of target protein enrichment. The results of molecular docking also showed that the top ten core components showed good binding affinity to the top ten core targets. The results of in vitro experiments showed that M. tenacissima extract could significantly inhibit the proliferation of OC cells, induce apoptosis of OC cells through the mitochondrial pathway, and down-regulate the expression of proteins related to the PI3K/AKT signaling pathway. This study shows that M. tenacissima has the characteristics of multi-component, multi-target, and multi-pathway synergistic effect in the treatment of OC, which provides a theoretical basis for in-depth research on the material basis, mechanism, and clinical application.
Humans
;
Female
;
Marsdenia
;
Molecular Docking Simulation
;
Network Pharmacology
;
Phosphatidylinositol 3-Kinases
;
Proto-Oncogene Proteins c-akt
;
Ovarian Neoplasms/genetics*
;
Databases, Genetic
;
Plant Extracts
;
Drugs, Chinese Herbal/pharmacology*
5.Properties of new exotic traditional Chinese medicinal Vernonia amygdalina leaves:a literature research.
Zi-Heng WANG ; Xiao-Jun ZHAO ; Xun CHEN ; Wen-Ting FEI ; Chun WANG ; Jian-Jun ZHANG ; Lin-Yuan WANG
China Journal of Chinese Materia Medica 2023;48(8):2265-2271
The leaves of Vernonia amygdalina Delile of the family Asteraceae(also known as "bitter leaf"), rich in biological activities, are used as both medicine and food for a long time in West tropical Africa. They have been introduced into Southeast Asia and Fujian and Guangdong provinces of China in recent years. However, little is known about the properties of the plant in traditional Chinese medicine(TCM), which limits its combination with other Chinese medicinal herbs. In this study, 473 articles on V. amygdalina leaves were selected from PubMed, Web of Science, CNKI, Wanfang Data and VIP to summarize their components, pharmacological effects and clinical research. V. amygdalina leaves presented anti-microbial, hypoglycemic, anti-hypertensive, lipid-lowering, anti-tumor, anti-inflammatory, antioxidant, and other pharmacological effects. On the basis of the theory of TCM properties, the leaves were inferred to be cold in property and bitter and sweet in flavor, acting on spleen, liver, stomach and large intestine and with the functions of clearing heat, drying dampness, purging fire, removing toxin, killing insects and preventing attack of malaria. They can be used to treat dampness-heat diarrhea, interior heat and diabetes, malaria, insect accumulation and eczema(5-10 g dry leaves by decoction per day and an appropriate amount of crushed fresh leaves applying to the affected area for external use). Due to the lack of TCM properties, V. amygdalina leaves are rarely used medicinally in China. The determination of medicinal properties of the leaves is conducive to the introduction of new exotic medicinal herbs and the development of new TCM resources, which facilitated further clinical application and research and development of Chinese medicinal herbs.
Antioxidants
;
Medicine, Chinese Traditional
;
Plant Extracts/pharmacology*
;
Plant Leaves
;
Plants, Medicinal
;
Vernonia
6.Potentiating effect and mechanism of extract of Jingfang Granules on activation of macrophages.
Dou-Dou HAO ; Zi-Han LU ; Yang-Gan LUO ; Peng-Fei TU ; Cheng-Hong SUN ; Jing-Chun YAO ; Qing WU ; Zhi-Xiang ZHU
China Journal of Chinese Materia Medica 2023;48(10):2803-2809
This study aimed to explore the potentiating effect and mechanism of the extract of Jingfang Granules(JFG) on the activation of macrophages. The RAW264.7 cells were treated with JFG extract and then stimulated by multiple agents. Subsequently, mRNA was extracted, and reverse transcription-polymerase chain reaction(RT-PCR) was used to measure the mRNA transcription of multiple cytokines in RAW264.7 cells. The levels of cytokines in the cell supernatant were detected by enzyme-linked immunosorbent assay(ELISA). In addition, the intracellular proteins were extracted and the activation of signaling pathways was determined by Western blot. The results showed that JFG extract alone could not promote or slightly promote the mRNA transcription of TNF-α, IL-6, IL-1β, MIP-1α, MCP-1, CCL5, IP-10, and IFN-β, and significantly enhance the mRNA transcription of these cytokines in RAW264.7 cells induced by R848 and CpG in a dose-dependent manner. Furthermore, JFG extract also potentiated the secretion of TNF-α, IL-6, MCP-1, and IFN-β by RAW264.7 cells stimulated with R848 and CpG. As revealed by mechanism analysis, JFG extract enhanced the phosphorylation of p38, ERK1/2, IRF3, STAT1, and STAT3 in RAW264.7 cells induced by CpG. The findings of this study indicate that JFG extract can selectively potentiate the activation of macrophages induced by R848 and CpG, which may be attributed to the promotion of the activation of MAPKs, IRF3, and STAT1/3 signaling pathways.
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Plant Extracts/metabolism*
;
Lipopolysaccharides/pharmacology*
;
Macrophages
;
Cytokines/metabolism*
;
RNA, Messenger/metabolism*
7.Anti-hyperuricemia activity and its mechanism of flavonoid extract from saffron floral bio-residues.
Na CHEN ; Hua LI ; Jing MENG ; Yi-Fei YANG ; Bin YANG
China Journal of Chinese Materia Medica 2023;48(1):148-159
A hyperuricemic rat model induced by adenine and ethambutol was established to investigate the anti-hyperuricemia activity and its mechanism of the flavonoid extract from saffron floral bio-residues. Sixty-seven SD rats were randomly divided into control group, model group, positive control group, and flavonoid extract groups(with 3 doses), respectively, and each group contained 11 or 12 rats. The hyperuricemic model was established by continuous oral administration of adenine(100 mg·kg~(-1)) and ethambutol(250 mg·kg~(-1)) for 7 days. At the same time, the positive control group was given allopurinol(20 mg·kg~(-1) per day) and the flavonoid extract groups were given the flavonoid extract at doses of 340, 170 and 85 mg·kg~(-1) per day, respectively. On day 8, rat serum, liver, kidney, and intestinal tissues were collected, and the levels of uric acid in serum and tissue, the xanthine oxidase activities and antioxi-dant activities in serum and liver were evaluated, and the kidney histopathology was explored. In addition, an untargeted serum metabolomics study was performed. According to the results, the flavonoid extract effectively reduced the uric acid levels in serum, kidney and ileum and inhibited the xanthine oxidase activities and elevated the antioxidant activities of serum and liver in hyperuricemic rat. At the same time, it reduced the levels of inflammation factors in kidney and protected renal function. Moreover, 68 differential metabolites of hyperuricemic rats were screened and most of which were lipids and amino acids. The flavonoid extract significantly retrieved the levels of differential metabolites in hyperuricemic rats, such as SM(d18:1/20:0), PC[18:0/18:2(92,12Z)], palmitic acid and citrulline, possibly through the following three pathways, i.e., arginine biosynthesis, glycine, serine and threonine metabolism, and histidine metabolism. To sum up, the flavonoid extract of saffron floral bio-residues lowered the uric acid level, increased the antioxidant activity, and alleviated inflammatory symptoms of hyperuricemic rats, which may be related to its inhibition of xanthine oxidase activity and regulation of serum lipids and amino acids metabolism.
Rats
;
Animals
;
Flavonoids/pharmacology*
;
Uric Acid
;
Crocus
;
Xanthine Oxidase
;
Ethambutol/adverse effects*
;
Rats, Sprague-Dawley
;
Hyperuricemia/drug therapy*
;
Kidney
;
Antioxidants/pharmacology*
;
Plant Extracts/adverse effects*
;
Amino Acids
;
Adenine/adverse effects*
;
Lipids
8.Optimization of ethanol reflux extraction process of Ziziphi Spinosae Semen- Schisandrae Sphenantherae Fructus based on network pharmacology combined with response surface methodology.
Mian HUANG ; Yu-Meng SONG ; Xi-Yue WANG ; Bing-Tao ZHAI ; Jiang-Xue CHENG ; Xiao-Fei ZHANG ; Dong-Yan GUO
China Journal of Chinese Materia Medica 2023;48(4):966-977
The present study optimized the ethanol extraction process of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus drug pair by network pharmacology and Box-Behnken method. Network pharmacology and molecular docking were used to screen out and verify the potential active components of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus, and the process evaluation indexes were determined in light of the components of the content determination under Ziziphi Spinosae Semen and Schisandrae Sphenantherae Fructus in the Chinese Pharmacopoeia(2020 edition). The analytic hierarchy process(AHP) was used to determine the weight coefficient of each component, and the comprehensive score was calculated as the process evaluation index. The ethanol extraction process of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus was optimized by the Box-Behnken method. The core components of the Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus drug pair were screened out as spinosin, jujuboside A, jujuboside B, schisandrin, schisandrol, schisandrin A, and schisandrin B. The optimal extraction conditions obtained by using the Box-Behnken method were listed below: extraction time of 90 min, ethanol volume fraction of 85%, and two times of extraction. Through network pharmacology and molecular docking, the process evaluation indexes were determined, and the optimized process was stable, which could provide an experimental basis for the production of preparations containing Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus.
Ethanol
;
Molecular Docking Simulation
;
Network Pharmacology
;
Seeds/chemistry*
;
Ziziphus/chemistry*
;
Plant Extracts/chemistry*
;
Schisandra/chemistry*
;
Fruit/chemistry*
;
Technology, Pharmaceutical
9.Research progress on chemical constituents and pharmacological activities of Viola plants.
Min ZHANG ; You-Heng GAO ; Ye LI ; Ya-Qiong BI ; Chun-Hong ZHANG ; Min-Hui LI ; Zhi-Lai ZHAN
China Journal of Chinese Materia Medica 2023;48(5):1145-1175
There are 500 species of Viola(Violaceae) worldwide, among which 111 species are widely distributed in China and have a long medicinal history and wide varieties. According to the authors' statistics, a total of 410 compounds have been isolated and identified from plants of this genus, including flavonoids, terpenoids, phenylpropanoids, organic acids, nitrogenous compounds, sterols, saccharides and their derivatives, volatile oils and cyclotides. The medicinal materials from these plants boast anti-microbial, anti-viral, anti-oxidant and anti-tumor activities. This study systematically reviewed the chemical constituents and pharmacological activities of Viola plants to provide a basis for further research and clinical application.
Viola/chemistry*
;
Plant Extracts/pharmacology*
;
Flavonoids
;
Terpenes/pharmacology*
;
China
10.Mechanism of Cistanches Herba in treatment of cancer-related fatigue based on network pharmacology and experimental verification.
Shi-Lei ZHANG ; Jia-Li LIU ; Fu-Kai GONG ; Jian-Hua YANG ; Jun-Ping HU
China Journal of Chinese Materia Medica 2023;48(5):1330-1342
This study aimed to explore the mechanism of Cistanches Herba in the treatment of cancer-induced fatigue(CRF) by network pharmacology combined with in vivo and in vitro experiments to provide a theoretical basis for the clinical medication. The chemical constituents and targets of Cistanches Herba were searched from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP). The targets of CRF were screened out by GeneCards and NCBI. The common targets of traditional Chinese medicine and disease were selected to construct a protein-protein interaction(PPI) network, followed by Gene Ontology(GO) functional and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses. A visual signal pathway rela-ted to Chinese medicine and disease targets was constructed. The CRF model was induced by paclitaxel(PTX) in mice. Mice were divided into a control group, a PTX model group, and low-and high-dose Cistanches Herba extract groups(250 and 500 mg·kg~(-1)). The anti-CRF effect in mice was evaluated by open field test, tail suspension test, and exhaustive swimming time, and the pathological morphology of skeletal muscle was evaluated by hematoxylin-eosin(HE) staining. The cancer cachexia model in C2C12 muscle cells was induced by C26 co-culture, and the cells were divided into a control group, a conditioned medium model group, and low-, medium-, and high-dose Cistanches Herba extract groups(62.5, 125, and 250 μg·mL~(-1)). The reactive oxygen species(ROS) content in each group was detected by flow cytometry, and the intracellular mitochondrial status was evaluated by transmission electron microscopy. The protein expression levels of hypoxia-inducible factor-1α(HIF-1α), BNIP3L, and Beclin-1 were detected by Western blot. Six effective constituents were screened out from Cistanches Herba. The core genes of Cistanches Herba in treating CRF were AKT1, IL-6, VEGFA, CASP3, JUN, EGFR, MYC, EGF, MAPK1, PTGS2, MMP9, IL-1B, FOS, and IL10, and the pathways related to CRF were AGE-RAGE and HIF-1α. Through GO enrichment analysis, it was found that the main biological functions involved were lipid peroxidation, nutrient deficiency, chemical stress, oxidative stress, oxygen content, and other biological processes. The results of the in vivo experiment showed that Cistanches Herba extract could significantly improve skeletal muscle atrophy in mice to relieve CRF. The in vitro experiment showed that Cistanches Herba extract could significantly reduce the content of intracellular ROS, the percentage of mitochondrial fragmentation, and the protein expression of Beclin-1 and increase the number of autophagosomes and the protein expression of HIF-1α and BNIP3L. Cistanches Herba showed a good anti-CRF effect, and its mechanism may be related to the key target proteins in the HIF-1α signaling pathway.
Animals
;
Mice
;
Cistanche
;
Network Pharmacology
;
Beclin-1
;
Reactive Oxygen Species
;
Plant Extracts
;
Drugs, Chinese Herbal/pharmacology*
;
Molecular Docking Simulation
;
Medicine, Chinese Traditional
;
Neoplasms/genetics*

Result Analysis
Print
Save
E-mail