1.Long non-coding RNA potassium voltage-gated channel subfamily Q member 1 overlapping transcript 1 regulates the proliferation and osteogenic differentiation of human periodontal ligament stem cells by targeting miR-24-3p.
Ming PANG ; Hong-Xia WEI ; Xi CHEN
West China Journal of Stomatology 2021;39(5):547-554
OBJECTIVES:
This study aims to explore the effect and molecular mechanism of long non-coding RNA (lncRNA) potassium voltage-gated channel subfamily Q member 1 overlapping transcript 1 (KCNQ1OT1) on proliferation and osteogenic differentiation in human periodontal ligament stem cells (hPDLSCs).
METHODS:
The hPDLSCs of normal periodontal tissues were isolated and cultured. The mineralized solution induced the osteoblast differentiation of hPDLSCs. The down-regulation of lncRNA KCNQ1OT1, the overexpression of anti-miR-24-3p on the proliferation and the levels of osteocalcin (OCN), osteopontin (OPN) and alkaline phosphatase (ALP) of hPDLSCs were investigated. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the levels of lncRNA KCNQ1OT1, miR-24-3p, OCN, OPN, and ALP. Methyl thiazolyl tetrazolium (MTT) method was used to detect cell viability and activity. Cell proliferation was evaluated by MTT. Western blot was used to detect protein expression. The targeted relationship between lncRNA KCNQ1OT1 and miR-24-3p was detected by double-luciferase experiment.
RESULTS:
The expression level of lncRNA KCNQ1OT1 increased, and that of miR-24-3p decreased during the osteogenesis of hPDLSCs (
CONCLUSIONS
Down-regulation of lncRNA KCNQ1OT1 inhibited the proliferation and osteogenic differentiation of hPDLSCs by targeting the up-regulated expression of miR-24-3p.
Cell Differentiation
;
Cell Proliferation
;
Humans
;
MicroRNAs/genetics*
;
Osteogenesis
;
Periodontal Ligament/cytology*
;
Potassium
;
Potassium Channels, Voltage-Gated
;
RNA, Long Noncoding/genetics*
;
Stem Cells/cytology*
2.Periostin inhibits hypoxia-induced oxidative stress and apoptosis in human periodontal ligament fibroblasts p38 MAPK signaling pathway.
Huili LIU ; Yidan WANG ; Yangli YUE ; Peng ZHANG ; Yali SUN ; Qiaohua CHEN
Journal of Zhejiang University. Medical sciences 2020;40(7):942-948
OBJECTIVE:
To investigate the effect of periostin on hypoxia-induced oxidative stress and apoptosis in human periodontal ligament fibroblasts and the molecular mechanism involved.
METHODS:
cultured human periodontal ligament fibroblasts were placed in an anaerobic gas-producing bag for hypoxia treatment for 48 h followed by treatment with periostin at low (25 ng/mL), moderate (50 ng/mL) or high (100 ng/mL) doses. MTT assay was used to measure the cell viability, and the cell apoptosis rate was determined using flow cytometry. The contents of IL-1β, IL-6 and TNF-α in the cells were determined with ELISA, and ROS levels were measured using a fluorescent plate reader. The intracellular SOD activity was detected using ELISA. The expressions of HIF-1α, P21, cyclin D1, Bax, cleaved caspase-3, Bcl-2, P38MAPK and p-p38 MAPK proteins in the cells were detected with Western blotting.
RESULTS:
Hypoxia treatment significantly reduced the cell viability ( < 0.05), increased P21, Bax, and cleaved caspase-3 protein levels ( < 0.05), promoted cell apoptosis ( < 0.05), and decreased cyclin D1 and Bcl-2 protein levels ( < 0.05) in the cells. Compared with the hypoxic group, the cells treated with periostin at different concentrations showed significantly increased cell viability ( < 0.05) with significantly lowered apoptotic rates ( < 0.05) and decreased expression levels of Bax and cleaved caspase-3 ( < 0.05) but significantly increased expression levels of cyclin D1 and Bcl-2 ( < 0.05). Hypoxic exposure of the cells resulted in significantly increased expression levels of HIF-1α and p-p38 MAPK ( < 0.05) and increased levels of IL-1β, IL-6, TNF-α and ROS ( < 0.05) but decreased SOD activity ( < 0.05). Periostin treatment at different concentrations significantly lowered the expression levels of HIF-1α and p-p38 MAPK ( < 0.05) and the levels of IL-1β, IL-6, TNF-α and ROS ( < 0.05) and significantly increased SOD activity in the hypoxic cells ( < 0.05).
CONCLUSIONS
Periostin promotes the proliferation, inhibits apoptosis, enhances cellular antioxidant capacity, and reduces inflammatory damage in human periodontal ligament fibroblasts exposed to hypoxia possibly by inhibiting the activation of the p38 MAPK signaling pathway.
Apoptosis
;
drug effects
;
Cell Adhesion Molecules
;
administration & dosage
;
Cell Hypoxia
;
Fibroblasts
;
drug effects
;
Humans
;
Oxidative Stress
;
drug effects
;
Periodontal Ligament
;
cytology
;
Signal Transduction
;
drug effects
;
p38 Mitogen-Activated Protein Kinases
3.Effects of Different Inflammatory Factors on Hepatocyte Kinase Receptors and Ligands in Human Periodontal Ligament Fibroblasts.
Xiao Nan XU ; Meng Lin WANG ; Ding ZHANG
Acta Academiae Medicinae Sinicae 2019;41(3):300-306
Objective To investigate the effects of different inflammatory factors on hepatocyte kinase receptor(Eph)and ligand(ephrin)in human periodontal ligament fibroblasts(hPDLFs).Methods hPDLFs were stimulated with either 10 ng/ml tumor necrosis factor-α(TNF-α)or 10 ng/ml interleukin(IL)-1β,and then the expressions of Eph and ephrin at both mRNA and protein levels were determined at 0,1,2,6,12,and 24 hours.Results The levels of Eph receptors and ephrin ligand changed in a time-dependent manner in human periodontal ligament fibroblasts after treatment with TNF-α or IL-1β. The expression of ephrinA2 significantly increased in both groups within 24 hours(all <0.05). In the TNF-α group,the mRNA expression of ephrinA2 significantly increased at 1 h and was significant higher that in the IL-1β group at 24 h(<0.05). EphB4 showed a time-dependent decline after a short period of high expression.Conclusions Both TNF-α and IL-1β can cause changes in the expressions of Eph receptors and ephrin ligands in hPDLFs. The changes induced by both are consistent,although the effect of TNF-α is more pronounced.
Cells, Cultured
;
Ephrins
;
metabolism
;
Fibroblasts
;
Humans
;
Interleukin-1beta
;
pharmacology
;
Ligands
;
Periodontal Ligament
;
cytology
;
Receptors, Eph Family
;
metabolism
;
Tumor Necrosis Factor-alpha
;
pharmacology
4.Transcriptional activation of glucose transporter 1 in orthodontic tooth movement-associated mechanical response.
Yu WANG ; Qian LI ; Fuliang LIU ; Shanshan JIN ; Yimei ZHANG ; Ting ZHANG ; Yunyan ZHU ; Yanheng ZHOU
International Journal of Oral Science 2018;10(3):27-27
The interplay between mechanoresponses and a broad range of fundamental biological processes, such as cell cycle progression, growth and differentiation, has been extensively investigated. However, metabolic regulation in mechanobiology remains largely unexplored. Here, we identified glucose transporter 1 (GLUT1)-the primary glucose transporter in various cells-as a novel mechanosensitive gene in orthodontic tooth movement (OTM). Using an in vivo rat OTM model, we demonstrated the specific induction of Glut1 proteins on the compressive side of a physically strained periodontal ligament. This transcriptional activation could be recapitulated in in vitro cultured human periodontal ligament cells (PDLCs), showing a time- and dose-dependent mechanoresponse. Importantly, application of GLUT1 specific inhibitor WZB117 greatly suppressed the efficiency of orthodontic tooth movement in a mouse OTM model, and this reduction was associated with a decline in osteoclastic activities. A mechanistic study suggested that GLUT1 inhibition affected the receptor activator for nuclear factor-κ B Ligand (RANKL)/osteoprotegerin (OPG) system by impairing compressive force-mediated RANKL upregulation. Consistently, pretreatment of PDLCs with WZB117 severely impeded the osteoclastic differentiation of co-cultured RAW264.7 cells. Further biochemical analysis indicated mutual regulation between GLUT1 and the MEK/ERK cascade to relay potential communication between glucose uptake and mechanical stress response. Together, these cross-species experiments revealed the transcriptional activation of GLUT1 as a novel and conserved linkage between metabolism and bone remodelling.
Animals
;
Biomechanical Phenomena
;
Blotting, Western
;
Bone Remodeling
;
drug effects
;
Cells, Cultured
;
Glucose Transporter Type 1
;
antagonists & inhibitors
;
genetics
;
Humans
;
Hydroxybenzoates
;
pharmacology
;
Immunohistochemistry
;
MAP Kinase Signaling System
;
drug effects
;
Mice
;
Mice, Inbred C57BL
;
Osteoprotegerin
;
metabolism
;
Periodontal Ligament
;
cytology
;
RANK Ligand
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Reverse Transcriptase Polymerase Chain Reaction
;
Tooth Movement Techniques
;
Transcriptional Activation
5.Effects of Aging on the Proliferation and Differentiation Capacity of Human Periodontal Ligament Stem Cells.
Tingting DU ; Na LIU ; Bin GU ; Ying LI ; Yifang YUAN ; Wei ZHANG ; Tong ZHANG
Chinese Medical Sciences Journal 2017;32(2):83-81
Objective The aim of this study is to investigate the proliferation, differentiation and apoptosis of periodontal ligament stem cells (PDLSC) derived from different aged donors, and to evaluate the effects of aging on the biological characteristics of PDLSC.Methods Periodontal ligament tissues were obtained from 24 surgically extracted human premolars during orthodontics therapy. The specimens were divided into three groups according to the donor's age. Group A: 18-20 years, group B: 30-35 years, group C: 45-50 years. PDLSC were isolated and cultured using a tissue-block-based enzymolytic method by limiting dilution assay. The colony forming efficiency of PDLSC for three experimental groups was determined. Senescence-Associated β-Galactosidase (SA-β-G) expression in the three groups was examined using β-galactosidase staining working solution. Cell cycle and apoptosis of the PDLSC were examined by the flow cytometry. Alkaline phosphatase (ALP) activity was evaluated by ALP staining. The expression of osteoplastic differentiation related genes Runt-related transcription factor-2 (Runx-2), Collagen Type 1 (col-1), and ALP of PDLSC were examined by quantitative real-time RT-PCR.Results The colony forming efficiency of PDLSC in Group A, B and C was 36.67%, 22.67% and 9.33%, respectively, which decreased with donors' age (P<0.05). SA-β-G expression of the senescent PDLSC in group A, B and C were 4.14%, 16.39%, 50.38%, respectively (P<0.05). Cells in G2/S phase was 38.73%, 29.88%, 18.25% (P<0.05), and the apoptosis rate was 1.57%, 4.56%, 5.84% (P<0.05), in group A, B and C respectively. The ALP staining in the three groups decreased with the increase of donors' ages, and the expression of Runx-2, col-1 and ALP decreased gradually from group A to group C (all P<0.05), which indicated the osteogenic differentiation capacity of PDLSC decreased while donor aging.Conclusion Human PDLSC could be successfully isolated from periodontal ligament tissues of different aged donors. However, the proliferation and osteogenic differentiation capacity of PDLSC decreased while donor aging.
Adolescent
;
Adult
;
Aging
;
Alkaline Phosphatase
;
genetics
;
Apoptosis
;
Cell Cycle
;
Cell Differentiation
;
Cell Proliferation
;
Humans
;
Middle Aged
;
Osteogenesis
;
Periodontal Ligament
;
cytology
;
Stem Cells
;
cytology
6.Extracellular signal-regulated kinase signaling pathway regulates the endothelial differentiation of periodontal ligament stem cells.
Hong ZHU ; Lankun LUO ; Ying WANG ; Jun TAN ; Peng XUE ; Qintao WANG
Chinese Journal of Stomatology 2016;51(3):154-159
OBJECTIVETo investigate the effect of extracellular signal-regulated kinase (ERK) signaling pathway on the endothelial differentiation of periodontal ligament stem cells (PDLSC).
METHODSHuman PDLSC was cultured in the medium with vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (b-FGF) to induce endothelial differentiation. Endothelial inducing cells was incubated with U0126, a specific p-ERK1/2 inhibitor. PDLSC from one person were randomly divided into four groups: control group, endothelial induced group, endothelial induced+DMSO group and endothelial induced+U0126 group. The protein expression of the p-EKR1/2 was analyzed by Western blotting at 0, 1, 3, 6 and 12 hours during endonthelial induction. The mRNA expressions of CD31, VE-cadherin, and VEGF were detected by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) after a 7-day induction. The proportion of CD31(+) to VE-cadherin(+) cells was identified by flow cytometry, and the ability of capillary-like tubes formation was detected by Matrigel assay after a 14-day induction. The measurement data were statistically analyzed.
RESULTSPhosphorylated ERK1/2 protein level in PDLSC was increased to 1.24±0.12 and 1.03±0.24 at 1 h and 3 h respectively, during the endothelial induction (P<0.01). The mRNA expressions of CD31 and VEGF in induced+U0126 group were decreased to 0.09±0.18 and 0.49±0.17, which were both significantly different with those in induced group (P<0.05). The proportion of CD31(+) to VE-cadherin(+) cells of induced+U0126 group were decreased to 5.22±0.85 and 3.56±0.87, which were both significantly different with those in induced group (P<0.05). In Matrigel assay, the branching points, tube number and tube length were decreased to 7.0±2.7, 33.5±6.4, and (15 951.0±758.1) pixels, which were all significantly different with those in induced group (P<0.05).
CONCLUSIONSThe endothelial differentiation of PDLSC is positively regulated by ERK signaling pathway. Inhibition of ERK1/2 phosphorylation could suppress endothelial differentiation of PDLSC.
Antigens, CD ; genetics ; metabolism ; Butadienes ; pharmacology ; Cadherins ; genetics ; metabolism ; Cell Differentiation ; Endothelial Cells ; cytology ; physiology ; Enzyme Inhibitors ; pharmacology ; Extracellular Signal-Regulated MAP Kinases ; physiology ; Fibroblast Growth Factor 2 ; pharmacology ; Humans ; Mitogen-Activated Protein Kinase 3 ; antagonists & inhibitors ; metabolism ; Nitriles ; pharmacology ; Periodontal Ligament ; cytology ; metabolism ; Phosphorylation ; Platelet Endothelial Cell Adhesion Molecule-1 ; genetics ; metabolism ; RNA, Messenger ; metabolism ; Random Allocation ; Signal Transduction ; Stem Cells ; cytology ; physiology ; Time Factors ; Vascular Endothelial Growth Factor A ; genetics ; metabolism ; pharmacology
7.The expression of serine protease HtrA1 in human periodontal ligament tissue and the effect of HtrA1 on the proliferation of human periodontal ligament cells.
Chinese Journal of Stomatology 2016;51(2):87-92
OBJECTIVETo observe the expression of serine protease HtrA1 in human periodontal ligament tissue and to explore the effect of HtrA1 on the proliferation of human periodontal ligament cells (hPDLC).
METHODSSix human premolars and three human third molars(patient's ages ranging from 12 to 25, with intact root, without caries and/or periodontitis) were obtained in the Department of Maxillofacial Surgery of Wuhan University Hospital of Stomatology. Reverse transcription-PCR(RT-PCR) and immunohistochemistry analysis were applied to investigate the expression of HtrA1. Primary hPDLC were obtained by tissue-culture method in vitro. The proliferation of hPDLC was determined by methyl thiazolytetrazolium(MTT). Lentivirus-mediated over-expression and reduction of HtrA1 level was performed. An empty vector was used as negative control. On days 1, 3, 5, 7 and 9, the growth of hPDLC was characterized using cell counting kit-8(CCK-8) assay.
RESULTSRT-PCR data indicated that HtrA1 mRNA was expressed in human periodontal ligament tissue. Immunohistochemistry analysis showed HtrA1 was expressed in human periodontal ligament, mainly in the cytoplasm of hPDLC and the extracellular matrix. The MTT result suggested that the growth curve was consistent with the growth characteristics of hPDLC. The stable over-expression and knockdown cell lines was successfully established by lentivirus with more than 90% transfection efficiency. CCK-8 assay showed that HtrA1 over-expression inhibited the proliferation of hPDLC(0.897±0.060, 0.890±0.083, 1.631±0.038, 1.111±0.041, 1.110±0.189), while cell proliferation increased after down-regulation of HtrA1(0.329±0.021, 0.529±0.044, 0.973±0.056, 1.626±0.102, 2.344±0.198)(P<0.05).
CONCLUSIONSHtrA1 is expressed in human periodontal ligament tissue at both mRNA and protein levels, and may play an important role in regulating the proliferation of hPDLC.
Adolescent ; Adult ; Cell Count ; Cell Proliferation ; Cells, Cultured ; Child ; Down-Regulation ; Genetic Vectors ; High-Temperature Requirement A Serine Peptidase 1 ; Humans ; Lentivirus ; physiology ; Periodontal Ligament ; cytology ; metabolism ; RNA, Messenger ; metabolism ; Serine Endopeptidases ; genetics ; metabolism ; Transfection ; Young Adult
8.Effects of intracellular Porphyromonas gingivalis on proliferation and osteogenic differentiation of human periodontal ligament cells in vitro.
Yong-Mei TAN ; Jin HOU ; Xiao-Jun YANG ; Yue-E LIANG ; Yan ZHANG ; Wang-Hong ZHAO
Journal of Southern Medical University 2016;36(4):525-531
OBJECTIVETo investigate the ability of Porphyromonas gingivalis to invade human periodontal ligament cells (hPDLCs) and the effect of intracellular P. gingivalis on cell proliferation and osteogenic differentiation in vitro.
METHODSThe invasion ability of P. gingivalis in hPDLCs was tested using an antibiotic protection assay at the multiplicity of infection (MOI) of 10 and 100. The proliferation of the infected cells was detected using a CFDA-SE kit, and the cells were sorted by fluorescence-activated cell sorting (FACS) followed by alizarin red staining for detecting mineralization nodules deposition; real-time PCR was used to examine the expression of Runx2 mRNA in the cells.
RESULTSP. gingivalis actively invaded hPDLCs, and the internalized P. gingivalis was able to resist antibiotic treatment. The cells infected by P. gingivalis exhibited no significant suppression of cell proliferation, but showed significantly lowered capacity for osteogenic differentiation, down-regulated RUNX2 mRNA expression, and reduced mineral deposition.
CONCLUSIONIntracellular P. gingivalis does not significantly affect the proliferation of hPDLCs but inhibits osteogenic differentiation of the cells.
Cell Differentiation ; Cell Proliferation ; Cells, Cultured ; Core Binding Factor Alpha 1 Subunit ; metabolism ; Flow Cytometry ; Fluoresceins ; Humans ; Osteogenesis ; Periodontal Ligament ; cytology ; microbiology ; Porphyromonas gingivalis ; RNA, Messenger ; Real-Time Polymerase Chain Reaction ; Succinimides
9.Effects of ginsenoside Rg-1 on the proliferation and osteogenic differentiation of human periodontal ligament stem cells.
Li-hua YIN ; Wen-xiao CHENG ; Zi-shun QIN ; Ke-mo SUN ; Mei ZHONG ; Jia-kui WANG ; Wei-yue GAO ; Zhan-hai YU
Chinese journal of integrative medicine 2015;21(9):676-681
OBJECTIVETo evaluate the effects of ginsenoside Rg-1 on the proliferation and osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and to explore the possible application on the alveolar bone regeneration.
METHODSTo determine the optimum concentration, the effects of ginsenoside Rg-1 ranging from 10 to 100 μmol/L were evaluated by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide, alkaline phosphatase activity and calcium deposition. Expressions of runt-related transcription factor 2, collagen alpha-2(I) chain, osteopontin, osteocalcin protein were examined using real-time polymerase chain reaction.
RESULTSCompared with the control group, a certain concentration (10 μmol/L) of the Rg-1 solution significantly enhanced the proliferation and osteogenic differentiation of hPDLSCs (P<0.05). However, concentrations that exceeds 100 μmol/L led to cytotoxicity whereas concentrations below 10 nmol/L showed no significant effect as compared with the control.
CONCLUSIONGinsenoside Rg-1 can enhance the proliferation and osteogenic differentiation of hPDLSCs at an optimal concentration of 10 μmol/L.
Adolescent ; Alkaline Phosphatase ; metabolism ; Biomarkers ; metabolism ; Calcification, Physiologic ; drug effects ; Cell Differentiation ; drug effects ; Cell Proliferation ; drug effects ; Cell Separation ; Cell Shape ; drug effects ; Cells, Cultured ; Flow Cytometry ; Ginsenosides ; pharmacology ; Humans ; Osteoblasts ; drug effects ; metabolism ; Osteogenesis ; drug effects ; genetics ; Periodontal Ligament ; cytology ; Real-Time Polymerase Chain Reaction ; Stem Cells ; cytology ; drug effects ; enzymology ; Time Factors ; Young Adult
10.Expression analysis of α-smooth muscle actin and tenascin-C in the periodontal ligament under orthodontic loading or in vitro culture.
Hui XU ; Ding BAI ; L-Bruno RUEST ; Jian Q FENG ; Yong-Wen GUO ; Ye TIAN ; Yan JING ; Yao HE ; Xiang-Long HAN
International Journal of Oral Science 2015;7(4):232-241
α-smooth muscle actin (α-SMA) and tenascin-C are stress-induced phenotypic features of myofibroblasts. The expression levels of these two proteins closely correlate with the extracellular mechanical microenvironment. We investigated how the expression of α-SMA and tenascin-C was altered in the periodontal ligament (PDL) under orthodontic loading to indirectly reveal the intrinsic mechanical microenvironment in the PDL. In this study, we demonstrated the synergistic effects of transforming growth factor-β1 (TGF-β1) and mechanical tensile or compressive stress on myofibroblast differentiation from human periodontal ligament cells (hPDLCs). The hPDLCs under higher tensile or compressive stress significantly increased their levels of α-SMA and tenascin-C compared with those under lower tensile or compressive stress. A similar trend was observed in the tension and compression areas of the PDL under continuous light or heavy orthodontic load in rats. During the time-course analysis of expression, we observed that an increase in α-SMA levels was matched by an increase in tenascin-C levels in the PDL under orthodontic load in vivo. The time-dependent variation of α-SMA and tenascin-C expression in the PDL may indicate the time-dependent variation of intrinsic stress under constant extrinsic loading.
Actins
;
analysis
;
drug effects
;
Adult
;
Animals
;
Biomechanical Phenomena
;
Cell Culture Techniques
;
Cell Differentiation
;
physiology
;
Cells, Cultured
;
Cellular Microenvironment
;
physiology
;
Humans
;
Male
;
Myofibroblasts
;
physiology
;
Orthodontic Wires
;
Periodontal Ligament
;
chemistry
;
cytology
;
Pressure
;
Rats
;
Rats, Sprague-Dawley
;
Stress, Mechanical
;
Tenascin
;
analysis
;
drug effects
;
Time Factors
;
Tooth Movement Techniques
;
instrumentation
;
Transforming Growth Factor beta1
;
pharmacology

Result Analysis
Print
Save
E-mail