1.Progress in Application of Concentrated Growth Factor in Oral Tissue Regeneration.
Ying LU ; Si-Jun WANG ; Duo-Hong ZOU
Acta Academiae Medicinae Sinicae 2023;45(3):500-505
Tissue regeneration is an important engineering method for the treatment of oral soft and hard tissue defects.Growth factors,as one of the three elements of tissue regeneration,are a necessary condition for tissue regeneration.Concentrated growth factor(CGF)is a new generation of blood extract prepared by changing the centrifugal speed on the basis of the preparation of platelet-rich plasma(PRP)and platelet-rich fibrin(PRF).It contains abundant growth factors and a fibrin matrix with a three-dimensional network structure,being capable of activating angiogenesis and promoting tissue regeneration and healing.CGF has been widely used in the repair and regeneration of oral soft and hard tissues.This paper introduces the preparation and composition of CGF and reviews the application of CGF in oral implantation and the regeneration of oral bone tissue,periodontal tissue,and dental pulp tissue.
Platelet-Rich Plasma/metabolism*
;
Platelet-Rich Fibrin
;
Cell Proliferation
;
Bone and Bones
;
Intercellular Signaling Peptides and Proteins/metabolism*
;
Bone Regeneration
2.Analysis of Significant Genes and Pathways in Esophageal Cancer Based on Gene Expression Omnibus Database.
An-Yi SONG ; Lan MU ; Xiao-Yong DAI ; Li-Jun WANG ; Lai-Qiang HUANG
Chinese Medical Sciences Journal 2023;38(1):20-28
Objective To screen antigen targets for immunotherapy by analyzing over-expressed genes, and to identify significant pathways and molecular mechanisms in esophageal cancer by using bioinformatic methods such as enrichment analysis, protein-protein interaction (PPI) network, and survival analysis based on the Gene Expression Omnibus (GEO) database.Methods By screening with highly expressed genes, we mainly analyzed proteins MUC13 and EPCAM with transmembrane domain and antigen epitope from TMHMM and IEDB websites. Significant genes and pathways associated with the pathogenesis of esophageal cancer were identified using enrichment analysis, PPI network, and survival analysis. Several software and platforms including Prism 8, R language, Cytoscape, DAVID, STRING, and GEPIA platform were used in the search and/or figure creation.Results Genes MUC13 and EPCAM were over-expressed with several antigen epitopes in esophageal squamous cell carcinoma (ESCC) tissue. Enrichment analysis revealed that the process of keratinization was focused and a series of genes were related with the development of esophageal cancer. Four genes including ALDH3A1, C2, SLC6A1,and ZBTB7C were screened with significant P value of survival curve.Conclusions Genes MUC13 and EPCAM may be promising antigen targets or biomarkers for esophageal cancer. Keratinization may greatly impact the pathogenesis of esophageal cancer. Genes ALDH3A1, C2, SLC6A1,and ZBTB7C may play important roles in the development of esophageal cancer.
Humans
;
Esophageal Neoplasms/metabolism*
;
Esophageal Squamous Cell Carcinoma/metabolism*
;
Epithelial Cell Adhesion Molecule/metabolism*
;
Gene Expression Profiling/methods*
;
Gene Regulatory Networks
;
Gene Expression
;
Gene Expression Regulation, Neoplastic
;
Intracellular Signaling Peptides and Proteins
3.Identification of the target site of antimicrobial peptide AMP-17 against Candida albicans.
Longbing YANG ; Zhuqing TIAN ; Luoxiong ZHOU ; Chaoqin SUN ; Mingjiao HUANG ; Chunren TIAN ; Jian PENG ; Guo GUO
Chinese Journal of Biotechnology 2023;39(1):304-317
Candida albicans is one of the major causes of invasive fungal infections and a serious opportunistic pathogen in immunocompromised individuals. The antimicrobial peptide AMP-17 has prominent anti-Candida activity, and proteomic analysis revealed significant differences in the expression of cell wall (XOG1) and oxidative stress (SRR1) genes upon the action of AMP-17 on C. albicans, suggesting that AMP-17 may exert anti-C. albicans effects by affecting the expression of XOG1 and SRR1 genes. To further investigate whether XOG1 and SRR1 genes were the targets of AMP-17, C. albicans xog1Δ/Δ and srr1Δ/Δ mutants were constructed using the clustered regulatory interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) system. Phenotypic observations revealed that deletion of two genes had no significant effect on C. albicans growth and biofilm formation, whereas XOG1 gene deletion affected in vitro stress response and mycelium formation of C. albicans. Drug sensitivity assay showed that the MIC80 values of AMP-17 against xog1Δ/Δ and srr1Δ/Δ mutants increased from 8 μg/mL (for the wild type C. albicans SC5314) to 16 μg/mL, while the MIC80 values against srr1Δ/Δ: : srr1 revertants decreased to the level of the wild type SC5314. In addition, the ability of AMP-17 to inhibit biofilm formation of both deletion strains was significantly reduced compared to that of wild type SC5314, indicating that the susceptibility of the deletion mutants to AMP-17 was reduced in both the yeast state and during biofilm formation. These results suggest that XOG1 and SRR1 genes are likely two of the potential targets for AMP-17 to exert anti-C. albicans effects, which may facilitate further exploration of the antibacterial mechanism of novel peptide antifungal drugs.
Humans
;
Candida albicans
;
Antimicrobial Peptides
;
Proteomics
;
Peptides/pharmacology*
;
Transcription Factors/metabolism*
;
Antifungal Agents/pharmacology*
4.Coordinated Regulation of Myelination by Growth Factor and Amino-acid Signaling Pathways.
Zhiwen YANG ; Zongyan YU ; Bo XIAO
Neuroscience Bulletin 2023;39(3):453-465
Myelin-forming oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS) are essential for structural and functional homeostasis of nervous tissue. Albeit with certain similarities, the regulation of CNS and PNS myelination is executed differently. Recent advances highlight the coordinated regulation of oligodendrocyte myelination by amino-acid sensing and growth factor signaling pathways. In this review, we discuss novel insights into the understanding of differential regulation of oligodendrocyte and Schwann cell biology in CNS and PNS myelination, with particular focus on the roles of growth factor-stimulated RHEB-mTORC1 and GATOR2-mediated amino-acid sensing/signaling pathways. We also discuss recent progress on the metabolic regulation of oligodendrocytes and Schwann cells and the impact of their dysfunction on neuronal function and disease.
Amino Acids
;
Myelin Sheath/metabolism*
;
Schwann Cells/metabolism*
;
Oligodendroglia/metabolism*
;
Signal Transduction
;
Intercellular Signaling Peptides and Proteins/metabolism*
5.Metabolite alpha-ketoglutarate: a novel target of gasdermin C-dependent pyroptosis.
Yao ZHANG ; Wu JIAN ; Lu HE ; Jianhua WU
Chinese Medical Journal 2023;136(13):1630-1631
6.Physiological Roles of β-amyloid in Regulating Synaptic Function: Implications for AD Pathophysiology.
Wenwen CAI ; Linxi LI ; Shaoming SANG ; Xiaoli PAN ; Chunjiu ZHONG
Neuroscience Bulletin 2023;39(8):1289-1308
The physiological functions of endogenous amyloid-β (Aβ), which plays important role in the pathology of Alzheimer's disease (AD), have not been paid enough attention. Here, we review the multiple physiological effects of Aβ, particularly in regulating synaptic transmission, and the possible mechanisms, in order to decipher the real characters of Aβ under both physiological and pathological conditions. Some worthy studies have shown that the deprivation of endogenous Aβ gives rise to synaptic dysfunction and cognitive deficiency, while the moderate elevation of this peptide enhances long term potentiation and leads to neuronal hyperexcitability. In this review, we provide a new view for understanding the role of Aβ in AD pathophysiology from the perspective of physiological meaning.
Humans
;
Alzheimer Disease/pathology*
;
Amyloid beta-Peptides/metabolism*
;
Long-Term Potentiation
;
Synaptic Transmission/physiology*
;
Hippocampus
7.Improving Blood Monocyte Energy Metabolism Enhances Its Ability to Phagocytose Amyloid-β and Prevents Alzheimer's Disease-Type Pathology and Cognitive Deficits.
Zhi-Hao LIU ; Yu-Di BAI ; Zhong-Yuan YU ; Hui-Yun LI ; Jie LIU ; Cheng-Rong TAN ; Gui-Hua ZENG ; Yun-Feng TU ; Pu-Yang SUN ; Yu-Juan JIA ; Jin-Cai HE ; Yan-Jiang WANG ; Xian-Le BU
Neuroscience Bulletin 2023;39(12):1775-1788
Deficiencies in the clearance of peripheral amyloid β (Aβ) play a crucial role in the progression of Alzheimer's disease (AD). Previous studies have shown that the ability of blood monocytes to phagocytose Aβ is decreased in AD. However, the exact mechanism of Aβ clearance dysfunction in AD monocytes remains unclear. In the present study, we found that blood monocytes in AD mice exhibited decreases in energy metabolism, which was accompanied by cellular senescence, a senescence-associated secretory phenotype, and dysfunctional phagocytosis of Aβ. Improving energy metabolism rejuvenated monocytes and enhanced their ability to phagocytose Aβ in vivo and in vitro. Moreover, enhancing blood monocyte Aβ phagocytosis by improving energy metabolism alleviated brain Aβ deposition and neuroinflammation and eventually improved cognitive function in AD mice. This study reveals a new mechanism of impaired Aβ phagocytosis in monocytes and provides evidence that restoring their energy metabolism may be a novel therapeutic strategy for AD.
Animals
;
Mice
;
Alzheimer Disease
;
Amyloid beta-Peptides
;
Monocytes
;
Cognition
;
Energy Metabolism
;
Phagocytosis
8.MLL1 inhibits the neurogenic potential of SCAPs by interacting with WDR5 and repressing HES1.
Chen ZHANG ; Weilong YE ; Mengyao ZHAO ; Lujue LONG ; Dengsheng XIA ; Zhipeng FAN
International Journal of Oral Science 2023;15(1):48-48
Mesenchymal stem cell (MSC)-based therapy has emerged as a promising treatment for spinal cord injury (SCI), but improving the neurogenic potential of MSCs remains a challenge. Mixed lineage leukemia 1 (MLL1), an H3K4me3 methyltransferases, plays a critical role in regulating lineage-specific gene expression and influences neurogenesis. In this study, we investigated the role and mechanism of MLL1 in the neurogenesis of stem cells from apical papilla (SCAPs). We examined the expression of neural markers, and the nerve repair and regeneration ability of SCAPs using dynamic changes in neuron-like cells, immunofluorescence staining, and a SCI model. We employed a coimmunoprecipitation (Co-IP) assay, real-time RT-PCR, microarray analysis, and chromatin immunoprecipitation (ChIP) assay to investigate the molecular mechanism. The results showed that MLL1 knock-down increased the expression of neural markers, including neurogenic differentiation factor (NeuroD), neural cell adhesion molecule (NCAM), tyrosine hydroxylase (TH), βIII-tubulin and Nestin, and promoted neuron-like cell formation in SCAPs. In vivo, a transplantation experiment showed that depletion of MLL 1 in SCAPs can restore motor function in a rat SCI model. MLL1 can combine with WD repeat domain 5 (WDR5) and WDR5 inhibit the expression of neural markers in SCAPs. MLL1 regulates Hairy and enhancer of split 1 (HES1) expression by directly binds to HES1 promoters via regulating H3K4me3 methylation by interacting with WDR5. Additionally, HES1 enhances the expression of neural markers in SCAPs. Our findings demonstrate that MLL1 inhibits the neurogenic potential of SCAPs by interacting with WDR5 and repressing HES1. These results provide a potential therapeutic target for promoting the recovery of motor function in SCI patients.
Animals
;
Humans
;
Rats
;
Cell Differentiation
;
Intracellular Signaling Peptides and Proteins/therapeutic use*
;
Leukemia/metabolism*
;
Mesenchymal Stem Cells
;
Neurogenesis
;
Stem Cells
;
Transcription Factor HES-1/metabolism*
9.Research progress of the regulation of orphan nuclear receptors on chronic liver diseases.
Zhi-Hui YANG ; Jia-Hui WANG ; Lei WANG ; Xue-Lin DUAN ; Hong-Hong WANG ; Yue PENG ; Tie-Jian ZHAO ; Yang ZHENG
Acta Physiologica Sinica 2023;75(4):555-568
The development of chronic liver disease can be promoted by excessive fat accumulation, dysbiosis, viral infections and persistent inflammatory responses, which can lead to liver inflammation, fibrosis and carcinogenesis. An in-depth understanding of the etiology leading to chronic liver disease and the underlying mechanisms influencing its development can help identify potential therapeutic targets for targeted treatment. Orphan nuclear receptors (ONRs) are receptors that have no corresponding endogenous ligands to bind to them. The study of these ONRs and their biological properties has facilitated the development of synthetic ligands, which are important for investigating the effective targets for the treatment of a wide range of diseases. In recent years, it has been found that ONRs are essential for maintaining normal liver function and their dysfunction can affect a variety of liver diseases. ONRs can influence pathophysiological activities such as liver lipid metabolism, inflammatory response and cancer cell proliferation by regulating hormones/transcription factors and affecting the biological clock, oxidative stress, etc. This review focuses on the regulation of ONRs, mainly including retinoid related orphan nuclear receptors (RORs), pregnane X receptor (PXR), leukocyte cell derived chemotaxin 2 (LECT2), Nur77, and hepatocyte nuclear factor 4α (HNF4α), on the development of different types of chronic liver diseases in different ways, in order to provide useful references for the therapeutic strategies of chronic liver diseases based on the regulation of ONRs.
Humans
;
Orphan Nuclear Receptors/metabolism*
;
Receptors, Steroid/physiology*
;
Ligands
;
Liver
;
Liver Diseases
;
Intercellular Signaling Peptides and Proteins
10.Environmental pollutants and Alzheimer's disease.
Acta Physiologica Sinica 2023;75(6):740-766
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive impairment. The main hypotheses about the pathogenesis of AD include the hypothesis of β-amyloid protein, the hypothesis of abnormal phosphorylation of Tau protein, and the hypothesis of neuroinflammation. In recent years, environmental pollutants have been considered as an important factor in causing neurological dysfunction. Common environmental pollutants include heavy metals, pesticides, polychlorinated biphenyls, microplastics, and air pollutants, all of which have been proven to have neurotoxicity. In this review, we not only discussed epidemiological and animal experimental studies that link environmental pollution with AD, but also summarized the mechanisms of action of relevant toxins, providing insights for studying the interrelationships between environmental pollutants and AD.
Animals
;
Alzheimer Disease/chemically induced*
;
Environmental Pollutants/toxicity*
;
Neurodegenerative Diseases
;
Plastics
;
Amyloid beta-Peptides/metabolism*

Result Analysis
Print
Save
E-mail