1.Research and Application of Scalp Surface Laplacian Technique
Rui-Xin LUO ; Si-Ying GUO ; Xin-Yi LI ; Yu-He ZHAO ; Chun-Hou ZHENG ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(2):425-438
Electroencephalogram (EEG) is a non-invasive, high temporal-resolution technique for monitoring brain activity. However, affected by the volume conduction effect, EEG has a low spatial resolution and is difficult to locate brain neuronal activity precisely. The surface Laplacian (SL) technique obtains the Laplacian EEG (LEEG) by estimating the second-order spatial derivative of the scalp potential. LEEG can reflect the radial current activity under the scalp, with positive values indicating current flow from the brain to the scalp (“source”) and negative values indicating current flow from the scalp to the brain (“sink”). It attenuates signals from volume conduction, effectively improving the spatial resolution of EEG, and is expected to contribute to breakthroughs in neural engineering. This paper provides a systematic overview of the principles and development of SL technology. Currently, there are two implementation paths for SL technology: current source density algorithms (CSD) and concentric ring electrodes (CRE). CSD performs the Laplace transform of the EEG signals acquired by conventional disc electrodes to indirectly estimate the LEEG. It can be mainly classified into local methods, global methods, and realistic Laplacian methods. The global method is the most commonly used approach in CSD, which can achieve more accurate estimation compared with the local method, and it does not require additional imaging equipment compared with the realistic Laplacian method. CRE employs new concentric ring electrodes instead of the traditional disc electrodes, and measures the LEEG directly by differential acquisition of the multi-ring signals. Depending on the structure, it can be divided into bipolar CRE, quasi-bipolar CRE, tripolar CRE, and multi-pole CRE. The tripolar CRE is widely used due to its optimal detection performance. While ensuring the quality of signal acquisition, the complexity of its preamplifier is relatively acceptable. Here, this paper introduces the study of the SL technique in resting rhythms, visual-related potentials, movement-related potentials, and sensorimotor rhythms. These studies demonstrate that SL technology can improve signal quality and enhance signal characteristics, confirming its potential applications in neuroscientific research, disease diagnosis, visual pathway detection, and brain-computer interfaces. CSD is frequently utilized in applications such as neuroscientific research and disease detection, where high-precision estimation of LEEG is required. And CRE tends to be used in brain-computer interfaces, that have stringent requirements for real-time data processing. Finally, this paper summarizes the strengths and weaknesses of SL technology and envisages its future development. SL technology boasts advantages such as reference independence, high spatial resolution, high temporal resolution, enhanced source connectivity analysis, and noise suppression. However, it also has shortcomings that can be further improved. Theoretically, simulation experiments should be conducted to investigate the theoretical characteristics of SL technology. For CSD methods, the algorithm needs to be optimized to improve the precision of LEEG estimation, reduce dependence on the number of channels, and decrease computational complexity and time consumption. For CRE methods, the electrodes need to be designed with appropriate structures and sizes, and the low-noise, high common-mode rejection ratio preamplifier should be developed. We hope that this paper can promote the in-depth research and wide application of SL technology.
2.Investigation and analysis of the current situation of occupational stress of radiation workers in China
Qi ZHANG ; Jianfei LU ; Peng TONG ; Haoran SUN ; Shanshan KOU ; Xiaolan ZHOU ; ·Yusufu AIKEBAIER ; Weiguo ZHU ; Changsong HOU
Chinese Journal of Radiological Health 2025;34(1):46-54
Objective To investigate and analyze the occupational stress levels and influencing factors among radiation workers in China, and provide a reference for alleviating occupational stress and promoting mental health. Methods Using the general situation questionnaire, Effort-Reward Imbalance questionnaire, and radiation protection knowledge questionnaire, a convenience sampling method was adopted to investigate the occupational stress of 243 radiation workers in Liaoning, Fujian, Guangdong, and Xinjiang provinces. The independent samples t-test, one-way analysis of variance, chi-square test, and binary logistic regression were used to analyze the influencing factors. Results The average score of Effort-Reward Imbalance was 0.97 ± 0.22, and 100 (41.15%) radiation workers had occupational stress. There were significant differences in the detection rate of occupational stress among radiation workers of different ages, working years in radiation positions, monthly incomes, daily sleep durations, and daily working hours (P < 0.05). Logistic regression analysis identified daily working hours as a factor contributing to occupational stress. Conclusion The occupational stress among radiation workers in China is relatively severe. It is recommended to pay attention to the associated risks and implement targeted intervention measures to reduce the impact of occupational stress.
3.Immunotherapy for Lung Cancer
Pei-Yang LI ; Feng-Qi LI ; Xiao-Jun HOU ; Xue-Ren LI ; Xin MU ; Hui-Min LIU ; Shou-Chun PENG
Progress in Biochemistry and Biophysics 2025;52(8):1998-2017
Lung cancer is the most common malignant tumor worldwide, ranking first in both incidence and mortality rates. According to the latest statistics from the International Agency for Research on Cancer (IARC), approximately 2.5 million new cases and around 1.8 million deaths from lung cancer occurred in 2022, placing a tremendous burden on global healthcare systems. The high mortality rate of lung cancer is closely linked to its subtle early symptoms, which often lead to diagnosis at advanced stages. This not only complicates treatment but also results in substantial economic losses. Current treatment options for lung cancer include surgery, radiotherapy, chemotherapy, targeted drug therapy, and immunotherapy. Among these, immunotherapy has emerged as the most groundbreaking advancement in recent years, owing to its unique antitumor mechanisms and impressive clinical benefits. Unlike traditional therapies such as radiotherapy and chemotherapy, immunotherapy activates or enhances the patient’s immune system to recognize and eliminate tumor cells. It offers advantages such as more durable therapeutic effects and relatively fewer toxic side effects. The main approaches to lung cancer immunotherapy include immune checkpoint inhibitors, tumor-specific antigen-targeted therapies, adoptive cell therapies, cancer vaccines, and oncolytic virus therapies. Among these, immune checkpoint inhibitors and tumor-specific antigen-targeted therapies have received approval from the U.S. Food and Drug Administration (FDA) for clinical use in lung cancer, significantly improving outcomes for patients with advanced non-small cell lung cancer. Although other immunotherapy strategies are still in clinical trials, they show great potential in improving treatment precision and efficacy. This article systematically reviews the latest research progress in lung cancer immunotherapy, including the development of novel immune checkpoint molecules, optimization of treatment strategies, identification of predictive biomarkers, and findings from recent clinical trials. It also discusses the current challenges in the field and outlines future directions, such as the development of next-generation immunotherapeutic agents, exploration of more effective combination regimens, and the establishment of precise efficacy prediction systems. The aim is to provide a valuable reference for the continued advancement of lung cancer immunotherapy.
4.Overview of epigenetic degraders based on PROTAC, molecular glue, and hydrophobic tagging technologies.
Xiaopeng PENG ; Zhihao HU ; Limei ZENG ; Meizhu ZHANG ; Congcong XU ; Benyan LU ; Chengpeng TAO ; Weiming CHEN ; Wen HOU ; Kui CHENG ; Huichang BI ; Wanyi PAN ; Jianjun CHEN
Acta Pharmaceutica Sinica B 2024;14(2):533-578
Epigenetic pathways play a critical role in the initiation, progression, and metastasis of cancer. Over the past few decades, significant progress has been made in the development of targeted epigenetic modulators (e.g., inhibitors). However, epigenetic inhibitors have faced multiple challenges, including limited clinical efficacy, toxicities, lack of subtype selectivity, and drug resistance. As a result, the design of new epigenetic modulators (e.g., degraders) such as PROTACs, molecular glue, and hydrophobic tagging (HyT) degraders has garnered significant attention from both academia and pharmaceutical industry, and numerous epigenetic degraders have been discovered in the past decade. In this review, we aim to provide an in-depth illustration of new degrading strategies (2017-2023) targeting epigenetic proteins for cancer therapy, focusing on the rational design, pharmacodynamics, pharmacokinetics, clinical status, and crystal structure information of these degraders. Importantly, we also provide deep insights into the potential challenges and corresponding remedies of this approach to drug design and development. Overall, we hope this review will offer a better mechanistic understanding and serve as a useful guide for the development of emerging epigenetic-targeting degraders.
5.Application of trauma-focused cognitive behavioral therapy among children and adolescents with childhood household dysfunction
Xinyi HOU ; Jingjing WAN ; Lianhua PENG ; Jiangming SHENG ; Nannan LONG ; Ping MAO
Journal of Central South University(Medical Sciences) 2024;49(1):145-152
Childhood household dysfunction(CHD)is a common adverse childhood experience,which brings the heavy physical and mental afflictions to children and adolescents.Trauma-focused cognitive behavioral therapy(TF-CBT)is an evidence-based psychotherapy that helps children and adolescents who have experienced childhood trauma with traumatic memories.It aims to enhance the coping abilities of CHD children and adolescents,thereby improving the negative effects caused by trauma and effectively reducing psychological burden.TF-CBT can effectively improve post-traumatic stress disorder,emotional and behavioral problems,and family function in children and adolescents with CHD.It is recommended to conduct high-quality original research in the future,develop targeted TF-CBT intervention plans based on potential predictive factors,adopt a combination of online and offline methods,and construct TF-CBT interventions suitable for the Chinese CHD population to meet the mental health service needs of CHD children and adolescents.
6.A systematic review of mouse model construction for sarcopenia
Peng XIE ; Jiang ZHANG ; Xiaolei DENG ; Bo WEI ; Decai HOU
Chinese Journal of Tissue Engineering Research 2024;28(2):263-266
BACKGROUND:Sarcopenia is a progressive,generalized skeletal muscle disease that is closely related to the occurrence of osteoarthritis,fractures,limb disability and death in the elderly.Establishing animal models of sarcopenia is essential to understand the pathophysiology of sarcopenia and to identify effective treatment strategies. OBJECTIVE:To review the evaluation criteria of mouse models of sarcopenia and the modeling methods of mouse models of sarcopenia,and to analyze and compare the advantages and disadvantages of various modeling methods,in order to provide reference for the research and diagnosis and treatment of sarcopenia. METHODS:"Sarcopenia,skeletal muscle aging,mouse model,animal model"in Chinese and English were used as Chinese and English search terms,respectively.The search formula was"(sarcopenia OR skeletal muscle aging)AND(mouse model OR animal model)."CNKI,WanFang and PubMed were searched for related articles published from January 2010 and October 2022.A total of 59 articles were finally included for analysis. RESULTS AND CONCLUSION:There is a faster modeling time in SAMP8 mice and the type of muscle atrophy is consistent with that of patients with sarcopenia.Therefore,it is an ideal model.Although the surgical method can successfully induce muscle atrophy,it requires precise surgical operation,which is difficult and time-consuming.Hindlimb suspension modeling in mice is similar to that of the elderly and can be regarded as an effective model of senile sarcopenia.Although reagent injection molding is simple to perform,both the dose and number of days of administration of reagents are not clear and need to be further investigated.Transgenic mouse models are less commonly used and their model stability needs further study.The search for a mouse model with low cost,short time consumption and high simulation of human sarcopenia is still a future research direction.
7.Structural design and mechanical property analysis of trabecular scaffold of triply periodic minimal surface with a radial gradient
Yihai ZHANG ; Peng SHANG ; Benyuan MA ; Guanghui HOU ; Lunxu CUI ; Wanzhen SONG ; Dexuan QI ; Yancheng LIU
Chinese Journal of Tissue Engineering Research 2024;28(5):741-746
BACKGROUND:The elastic modulus of traditional bone implants is large and does not match the elastic modulus of human bone,which will cause a stress shielding effect and lead to bone resorption.The trabecular scaffold of the triply periodic minimal surface with radial gradient has elastic modulus matching with human cancellous bone,and its yield strength is greater than that of human cortical bone,which provides a new choice for the design of bone scaffold. OBJECTIVE:Triply periodic minimal surface structure with radial gradient was constructed by the implicit surface method.The sample was manufactured by laser selective melting technology,and the quasi-static compression test was carried out to obtain trabecular scaffolds with mechanical properties matching human bones. METHODS:Four types of the trabecular scaffolds of the triply periodic minimal surface with a radial gradient of G,I,P and D were established by the implicit surface method.Samples were manufactured by laser selective melting technology.We observed the surface morphology of the molded sample,evaluated the molding quality,conducted a quasi-static compression test,and evaluated the mechanical properties of the samples. RESULTS AND CONCLUSION:The quasi-static compression test results showed that compared with the four triply periodic minimal surface scaffolds,the platform stress of the G scaffold had less fluctuation and no failure or fracture,indicating that the G scaffold had the best plasticity.The mechanical properties of the G scaffolds with 45%,55%and 65%porosities were analyzed.It was found that the elastic modulus of G scaffolds with 55%porosity was within the range of elastic modulus of human cancellous bone(0.022-3.7 GPa),and the yield strength was close to the maximum yield strength of human cortical bone(187.7-222.3 MPa).In conclusion,G triply periodic minimal surface scaffold with 55%porosity can reduce the stress shielding effect,bear a higher body load,improve the stability of the implant,and prolong the service life of the implant.
8.Effect of restored height on neighboring vertebrae after vertebral body strengthening:a finite element analysis
Peng SHANG ; Lunxu CUI ; Benyuan MA ; Guanghui HOU ; Wanzhen SONG ; Yancheng LIU
Chinese Journal of Tissue Engineering Research 2024;28(36):5741-5746
BACKGROUND:Vertebral compression fracture is a common disease in the current orthopedic field.However,the occurrence of re-fracture in neighboring vertebrae after surgery is a problem that cannot be ignored,which has a serious impact on the normal life of patients. OBJECTIVE:The aim of this study is to establish four postoperative models with different recovery heights using computed tomography images.By using finite element analysis,we derived the stresses on the neighboring vertebrae at different recovery heights and further explored the importance of postoperative recovery of the height of the injured vertebrae. METHODS:A finite element model of the thoracolumbar spine(T11-L3)was established and validated,on the basis of which four postoperative finite element models of L1 with different recovery heights of 100%,80%,60%,and 40%were constructed,in which the cement capacity varied with the recovery height.The specific models are as follows:Model 1 was the postoperative model with normal recovery height,and the cement capacity was 8.3 mL.Model 2 was the postoperative model in which 20%of the anterior height of the L1 was removed and the posterior convexity angle became 10.41°,and the cement capacity was 6.9 mL.Model 3 was the postoperative model in which 40%of the anterior height of the L1 was removed and the posterior convexity angle became 20.17°,and the cement capacity was 4.7 mL.Model 4 was a postoperative model with 60%of the L1 anterior height removed and the posterior convexity angle changed to 28.85°,with a cement capacity of 3.6 mL.For evaluation of the postoperative model,we applied a moment of 7 Nm and an axial force of 500 N.The followings were recorded and analyzed:peak stresses in the L2 upper endplate and T12 lower endplate;peak stresses in the L2 and T12 cancellous bone. RESULTS AND CONCLUSION:(1)The highest peak stresses for each condition of the L2 upper endplate,T12 lower endplate,L2 cancellous bone,and T12 cancellous bone occurred in Model 1 and Model 4.In particular,the T12 lower endplate,except for the posterior extension condition,the anterior flexion,left and right lateral bending,and left and right rotation conditions all reached their highest peak stresses in Model 4,with stresses of 50.3,33.1,44.9,34.3,and 31.9 MPa.(2)Based on the peak stresses in the adjacent vertebral endplates and cancellous bone,after excluding Model 1 and Model 4,the minimum peak stresses for most of the conditions appeared in the Model 2,and the minimum peak stresses appeared in the Model 2 in 66.6%of the cases,especially in the upper endplates of the L2 and cancellous bone except for the posterior extension condition,the minimum peak stresses all appeared on the Model 2.(3)Therefore,controlling the recovery height at about 100%and 40%of the original height was a dangerous recovery height,which had a greater impact on the neighboring vertebrae.Controlling the recovery height at about 80%of the original height may be a more ideal choice.With a recovery height of about 80%of the original height,the adjacent vertebrae are subjected to less stress,thus reducing the risk of re-fracture of the adjacent vertebrae in the patient.
9.Monte Carlo simulation analysis of the design of a medical electron linear accelerator maze
Peng TONG ; Changsong HOU ; Jianfei LU ; Weiguo ZHU
Chinese Journal of Radiological Health 2024;33(3):248-253
Objective To analyze the impact of different maze structures of medical electron linear accelerator on the radiation level at the entrance of the treatment room. Methods The Monte Carlo simulation method was used to compare the radiation field distribution in two accelerator rooms with different maze widths and to conduct a detailed analysis of the radiation levels. Results The radiation level at the entrance of the accelerator room with a wide maze was significantly higher than that at the entrance of a compact maze. The neutron radiation level at the entrance of the narrow maze model decreased by 38.6% compared to the wide maze model, and the level of X-ray radiation also showed a declining trend. Conclusion When designing medical electron linear accelerators, a compact maze structure should be adopted to reduce the setting of unnecessary space, thereby lowering the radiation level at the entrance of the treatment room and enhancing the effectiveness of radiation protection.
10.Analysis of the current situation of occupational stress of radiation workers in typical nuclear power plants
Qi ZHANG ; Peng TONG ; Haoran SUN ; Jianfei LU ; Shanshan KOU ; Weiguo ZHU ; Changsong HOU
Chinese Journal of Radiological Health 2024;33(3):310-317
Objective To investigate the current situation of occupational stress among radiation workers in nuclear power plants in China, to explore the factors influencing occupational stress, and to provide a reference for improving occupational stress. Methods A convenient sampling method was adopted to investigate the occupational stress of 100 radiation workers in two nuclear power plants in Fujian and Liaoning, using the general situation questionnaire, effort-reward imbalance questionnaire, and the radiation protection knowledge questionnaire. Independent samples t-test, one-way analysis of variance, chi-square test, and binary logistic regression analysis were used to examine the current situation of occupational stress and the influencing factors. Results The average value of effort-reward imbalance was 0.99 ± 0.15 and 47 (47%) radiation workers had occupational stress. There were significant differences in the detection rate of occupational stress among radiation workers with different ages, years of radiation work, monthly incomes, sleep durations (day), and exercise habits (P < 0.05). Logistic regression analysis showed that monthly income, sleep duration (day), and exercise habits were the influencing factors for occupational stress. Conclusion The occupational stress of radiation workers in nuclear power plants is a serious issue influenced by many factors. Attention should be given to this issue, and targeted interventions should be implemented to improve the social and working environment of this occupational group and reduce the level of occupational stress.

Result Analysis
Print
Save
E-mail